//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==// // // This file implements all of the stuff neccesary to output a .s file from // LLVM. The code in this file assumes that the specified module has already // been compiled into the internal data structures of the Module. // // The entry point of this file is the UltraSparc::emitAssembly method. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "llvm/Analysis/SlotCalculator.h" #include "llvm/Transforms/Linker.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/GlobalVariable.h" #include "llvm/GlobalValue.h" #include "llvm/ConstPoolVals.h" #include "llvm/DerivedTypes.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/Module.h" #include "llvm/Support/HashExtras.h" #include "llvm/Support/StringExtras.h" #include namespace { class SparcAsmPrinter { typedef hash_map ValIdMap; typedef ValIdMap:: iterator ValIdMapIterator; typedef ValIdMap::const_iterator ValIdMapConstIterator; ostream &toAsm; SlotCalculator Table; // map anonymous values to unique integer IDs ValIdMap valToIdMap; // used for values not handled by SlotCalculator const UltraSparc &Target; enum Sections { Unknown, Text, ReadOnlyData, InitRWData, UninitRWData, } CurSection; public: inline SparcAsmPrinter(ostream &o, const Module *M, const UltraSparc &t) : toAsm(o), Table(SlotCalculator(M, true)), Target(t), CurSection(Unknown) { emitModule(M); } private : void emitModule(const Module *M); void emitMethod(const Method *M); void emitGlobalsAndConstants(const Module* module); //void processMethodArgument(const MethodArgument *MA); void emitBasicBlock(const BasicBlock *BB); void emitMachineInst(const MachineInstr *MI); void printGlobalVariable( const GlobalVariable* GV); void printSingleConstant( const ConstPoolVal* CV); void printConstantValueOnly(const ConstPoolVal* CV); void printConstant( const ConstPoolVal* CV, string valID=string("")); unsigned int printOperands(const MachineInstr *MI, unsigned int opNum); void printOneOperand(const MachineOperand &Op); bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum); bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum); // enterSection - Use this method to enter a different section of the output // executable. This is used to only output neccesary section transitions. // void enterSection(enum Sections S) { if (S == CurSection) return; // Only switch section if neccesary CurSection = S; toAsm << "\n\t.section "; switch (S) { default: assert(0 && "Bad section name!"); case Text: toAsm << "\".text\""; break; case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break; case InitRWData: toAsm << "\".data\",#alloc,#write"; break; case UninitRWData: toAsm << "\".bss\",#alloc,#write\nBbss.bss:"; break; } toAsm << "\n"; } string getValidSymbolName(const string &S) { string Result; // Symbol names in Sparc assembly language have these rules: // (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }* // (b) A name beginning in "." is treated as a local name. // (c) Names beginning with "_" are reserved by ANSI C and shd not be used. // if (S[0] == '_' || isdigit(S[0])) Result += "ll"; for (unsigned i = 0; i < S.size(); ++i) { char C = S[i]; if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C)) Result += C; else { Result += '_'; Result += char('0' + ((unsigned char)C >> 4)); Result += char('0' + (C & 0xF)); } } return Result; } // getID - Return a valid identifier for the specified value. Base it on // the name of the identifier if possible, use a numbered value based on // prefix otherwise. FPrefix is always prepended to the output identifier. // string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) { string Result; string FP(FPrefix ? FPrefix : ""); // "Forced prefix" if (V->hasName()) { Result = FP + V->getName(); } else { int valId = Table.getValSlot(V); if (valId == -1) { ValIdMapConstIterator I = valToIdMap.find(V); valId = (I == valToIdMap.end())? (valToIdMap[V] = valToIdMap.size()) : (*I).second; } Result = FP + string(Prefix) + itostr(valId); } return getValidSymbolName(Result); } // getID Wrappers - Ensure consistent usage... string getID(const Module *M) { return getID(M, "LLVMModule_"); } string getID(const Method *M) { return getID(M, "LLVMMethod_"); } string getID(const BasicBlock *BB) { return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str()); } string getID(const GlobalVariable *GV) { return getID(GV, "LLVMGlobal_", ".G_"); } string getID(const ConstPoolVal *CV) { return getID(CV, "LLVMConst_", ".C_"); } unsigned getOperandMask(unsigned Opcode) { switch (Opcode) { case SUBcc: return 1 << 3; // Remove CC argument case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc default: return 0; // By default, don't hack operands... } } }; inline bool SparcAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum) { switch (MI->getOpCode()) { case JMPLCALL: case JMPLRET: return (opNum == 0); default: return false; } } inline bool SparcAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum) { if (Target.getInstrInfo().isLoad(MI->getOpCode())) return (opNum == 0); else if (Target.getInstrInfo().isStore(MI->getOpCode())) return (opNum == 1); else return false; } #define PrintOp1PlusOp2(Op1, Op2) \ printOneOperand(Op1); \ toAsm << "+"; \ printOneOperand(Op2); unsigned int SparcAsmPrinter::printOperands(const MachineInstr *MI, unsigned int opNum) { const MachineOperand& Op = MI->getOperand(opNum); if (OpIsBranchTargetLabel(MI, opNum)) { PrintOp1PlusOp2(Op, MI->getOperand(opNum+1)); return 2; } else if (OpIsMemoryAddressBase(MI, opNum)) { toAsm << "["; PrintOp1PlusOp2(Op, MI->getOperand(opNum+1)); toAsm << "]"; return 2; } else { printOneOperand(Op); return 1; } } void SparcAsmPrinter::printOneOperand(const MachineOperand &op) { switch (op.getOperandType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_CCRegister: case MachineOperand::MO_MachineRegister: { int RegNum = (int)op.getAllocatedRegNum(); // ****this code is temporary till NULL Values are fixed if (RegNum == Target.getRegInfo().getInvalidRegNum()) { toAsm << ""; } else { toAsm << "%" << Target.getRegInfo().getUnifiedRegName(RegNum); } break; } case MachineOperand::MO_PCRelativeDisp: { const Value *Val = op.getVRegValue(); if (!Val) toAsm << "\t<*NULL Value*>"; else if (const BasicBlock *BB = dyn_cast(Val)) toAsm << getID(BB); else if (const Method *M = dyn_cast(Val)) toAsm << getID(M); else if (const GlobalVariable *GV=dyn_cast(Val)) toAsm << getID(GV); else if (const ConstPoolVal *CV = dyn_cast(Val)) toAsm << getID(CV); else toAsm << ""; break; } case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: toAsm << op.getImmedValue(); break; default: toAsm << op; // use dump field break; } } void SparcAsmPrinter::emitMachineInst(const MachineInstr *MI) { unsigned Opcode = MI->getOpCode(); if (TargetInstrDescriptors[Opcode].iclass & M_DUMMY_PHI_FLAG) return; // IGNORE PHI NODES toAsm << "\t" << TargetInstrDescriptors[Opcode].opCodeString << "\t"; unsigned Mask = getOperandMask(Opcode); bool NeedComma = false; unsigned N = 1; for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N) if (! ((1 << OpNum) & Mask)) { // Ignore this operand? if (NeedComma) toAsm << ", "; // Handle comma outputing NeedComma = true; N = printOperands(MI, OpNum); } else N = 1; toAsm << endl; } void SparcAsmPrinter::emitBasicBlock(const BasicBlock *BB) { // Emit a label for the basic block toAsm << getID(BB) << ":\n"; // Get the vector of machine instructions corresponding to this bb. const MachineCodeForBasicBlock &MIs = BB->getMachineInstrVec(); MachineCodeForBasicBlock::const_iterator MII = MIs.begin(), MIE = MIs.end(); // Loop over all of the instructions in the basic block... for (; MII != MIE; ++MII) emitMachineInst(*MII); toAsm << "\n"; // Seperate BB's with newlines } void SparcAsmPrinter::emitMethod(const Method *M) { if (M->isExternal()) return; // Make sure the slot table has information about this method... Table.incorporateMethod(M); string methName = getID(M); toAsm << "!****** Outputing Method: " << methName << " ******\n"; enterSection(Text); toAsm << "\t.align\t4\n\t.global\t" << methName << "\n"; //toAsm << "\t.type\t" << methName << ",#function\n"; toAsm << "\t.type\t" << methName << ", 2\n"; toAsm << methName << ":\n"; // Output code for all of the basic blocks in the method... for (Method::const_iterator I = M->begin(), E = M->end(); I != E; ++I) emitBasicBlock(*I); // Output a .size directive so the debugger knows the extents of the function toAsm << ".EndOf_" << methName << ":\n\t.size " << methName << ", .EndOf_" << methName << "-" << methName << endl; // Put some spaces between the methods toAsm << "\n\n"; // Forget all about M. Table.purgeMethod(); } inline bool ArrayTypeIsString(ArrayType* arrayType) { return (arrayType->getElementType() == Type::UByteTy || arrayType->getElementType() == Type::SByteTy); } inline const string TypeToDataDirective(const Type* type) { switch(type->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: return ".byte"; case Type::UShortTyID: case Type::ShortTyID: return ".half"; case Type::UIntTyID: case Type::IntTyID: return ".word"; case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID: return ".xword"; case Type::FloatTyID: return ".single"; case Type::DoubleTyID: return ".double"; case Type::ArrayTyID: if (ArrayTypeIsString((ArrayType*) type)) return ".ascii"; else return ""; default: return ""; } } // Get the size of the constant for the given target. // If this is an unsized array, return 0. // inline unsigned int ConstantToSize(const ConstPoolVal* CV, const TargetMachine& target) { if (ConstPoolArray* CPA = dyn_cast(CV)) { ArrayType *aty = cast(CPA->getType()); if (ArrayTypeIsString(aty)) return 1 + CPA->getNumOperands(); else if (! aty->isSized()) return 0; } return target.findOptimalStorageSize(CV->getType()); } inline unsigned int TypeToSize(const Type* type, const TargetMachine& target) { return target.findOptimalStorageSize(type); } // Align data larger than one L1 cache line on L1 cache line boundaries. // Align all smaller data on the next higher 2^x boundary (4, 8, ...). // inline unsigned int SizeToAlignment(unsigned int size, const TargetMachine& target) { unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); if (size > (unsigned) cacheLineSize / 2) return cacheLineSize; else for (unsigned sz=1; /*no condition*/; sz *= 2) if (sz >= size) return sz; } // Get the size of the type and then use SizeToAlignment. // If this is an unsized array, just return the L1 cache line size // (viz., the default behavior for large global objects). // inline unsigned int TypeToAlignment(const Type* type, const TargetMachine& target) { if (ArrayType* aty = dyn_cast(type)) if (! aty->isSized()) return target.getCacheInfo().getCacheLineSize(1); return SizeToAlignment(target.findOptimalStorageSize(type), target); } // Get the size of the constant and then use SizeToAlignment. // Handles strings as a special case; inline unsigned int ConstantToAlignment(const ConstPoolVal* CV, const TargetMachine& target) { unsigned int constantSize; if (ConstPoolArray* CPA = dyn_cast(CV)) if (ArrayTypeIsString(cast(CPA->getType()))) return SizeToAlignment(1 + CPA->getNumOperands(), target); return TypeToAlignment(CV->getType(), target); } // Print a single constant value. void SparcAsmPrinter::printSingleConstant(const ConstPoolVal* CV) { assert(CV->getType() != Type::VoidTy && CV->getType() != Type::TypeTy && CV->getType() != Type::LabelTy && "Unexpected type for ConstPoolVal"); assert((! isa( CV) && ! isa(CV)) && "Collective types should be handled outside this function"); toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t"; if (CV->getType()->isPrimitiveType()) { if (CV->getType() == Type::FloatTy || CV->getType() == Type::DoubleTy) toAsm << "0r"; // FP constants must have this prefix toAsm << CV->getStrValue() << endl; } else if (ConstPoolPointer* CPP = dyn_cast(CV)) { if (! CPP->isNullValue()) assert(0 && "Cannot yet print non-null pointer constants to assembly"); else toAsm << (void*) NULL << endl; } else if (ConstPoolPointerRef* CPRef = dyn_cast(CV)) { assert(0 && "Cannot yet initialize pointer refs in assembly"); } else { assert(0 && "Unknown elementary type for constant"); } } // Print a constant value or values (it may be an aggregate). // Uses printSingleConstant() to print each individual value. void SparcAsmPrinter::printConstantValueOnly(const ConstPoolVal* CV) { ConstPoolArray *CPA = dyn_cast(CV); if (CPA && isStringCompatible(CPA)) { // print the string alone and return toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << endl; } else if (CPA) { // Not a string. Print the values in successive locations const vector& constValues = CPA->getValues(); for (unsigned i=1; i < constValues.size(); i++) this->printConstantValueOnly(cast(constValues[i].get())); } else if (ConstPoolStruct *CPS = dyn_cast(CV)) { // Print the fields in successive locations const vector& constValues = CPS->getValues(); for (unsigned i=1; i < constValues.size(); i++) this->printConstantValueOnly(cast(constValues[i].get())); } else this->printSingleConstant(CV); } // Print a constant (which may be an aggregate) prefixed by all the // appropriate directives. Uses printConstantValueOnly() to print the // value or values. void SparcAsmPrinter::printConstant(const ConstPoolVal* CV, string valID) { if (valID.length() == 0) valID = getID(CV); toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << endl; // Print .size and .type only if it is not a string. ConstPoolArray *CPA = dyn_cast(CV); if (CPA && isStringCompatible(CPA)) { // print it as a string and return toAsm << valID << ":" << endl; toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << endl; return; } toAsm << "\t.type" << "\t" << valID << ",#object" << endl; unsigned int constSize = ConstantToSize(CV, Target); if (constSize) toAsm << "\t.size" << "\t" << valID << "," << constSize << endl; toAsm << valID << ":" << endl; this->printConstantValueOnly(CV); } void SparcAsmPrinter::printGlobalVariable(const GlobalVariable* GV) { toAsm << "\t.global\t" << getID(GV) << endl; if (GV->hasInitializer()) printConstant(GV->getInitializer(), getID(GV)); else { toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getValueType(), Target) << endl; toAsm << "\t.type\t" << getID(GV) << ",#object" << endl; toAsm << "\t.reserve\t" << getID(GV) << "," << TypeToSize(GV->getType()->getValueType(), Target) << endl; } } static void FoldConstPools(const Module *M, hash_set& moduleConstPool) { for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) if (! (*I)->isExternal()) { const hash_set& pool = MachineCodeForMethod::get(*I).getConstantPoolValues(); moduleConstPool.insert(pool.begin(), pool.end()); } } void SparcAsmPrinter::emitGlobalsAndConstants(const Module *M) { // First, get the constants there were marked by the code generator for // inclusion in the assembly code data area and fold them all into a // single constant pool since there may be lots of duplicates. Also, // lets force these constants into the slot table so that we can get // unique names for unnamed constants also. // hash_set moduleConstPool; FoldConstPools(M, moduleConstPool); // Now, emit the three data sections separately; the cost of I/O should // make up for the cost of extra passes over the globals list! // // Read-only data section (implies initialized) for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI) { const GlobalVariable* GV = *GI; if (GV->hasInitializer() && GV->isConstant()) { if (GI == M->gbegin()) enterSection(ReadOnlyData); printGlobalVariable(GV); } } for (hash_set::const_iterator I=moduleConstPool.begin(), E = moduleConstPool.end(); I != E; ++I) printConstant(*I); // Initialized read-write data section for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI) { const GlobalVariable* GV = *GI; if (GV->hasInitializer() && ! GV->isConstant()) { if (GI == M->gbegin()) enterSection(InitRWData); printGlobalVariable(GV); } } // Uninitialized read-write data section for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI) { const GlobalVariable* GV = *GI; if (! GV->hasInitializer()) { if (GI == M->gbegin()) enterSection(UninitRWData); printGlobalVariable(GV); } } toAsm << endl; } void SparcAsmPrinter::emitModule(const Module *M) { // TODO: Look for a filename annotation on M to emit a .file directive for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) emitMethod(*I); emitGlobalsAndConstants(M); } } // End anonymous namespace // // emitAssembly - Output assembly language code (a .s file) for the specified // method. The specified method must have been compiled before this may be // used. // void UltraSparc::emitAssembly(const Module *M, ostream &toAsm) const { SparcAsmPrinter Print(toAsm, M, *this); }