//===--Graph.cpp--- implements Graph class ---------------- ------*- C++ -*--=// // // This implements Graph for helping in trace generation // This graph gets used by "ProfilePaths" class // //===----------------------------------------------------------------------===// #include "Graph.h" #include "llvm/BasicBlock.h" #include #include using std::list; using std::set; using std::map; using std::vector; using std::cerr; static const graphListElement *findNodeInList(const Graph::nodeList &NL, Node *N) { for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI) if (*NI->element== *N) return &*NI; return 0; } static graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) { for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI) if (*NI->element== *N) return &*NI; return 0; } //graph constructor with root and exit specified Graph::Graph(std::set n, std::set e, Node *rt, Node *lt){ strt=rt; ext=lt; for(set::iterator x=n.begin(), en=n.end(); x!=en; ++x) nodes[*x] = list(); for(set::iterator x=e.begin(), en=e.end(); x!=en; ++x){ Edge ee=*x; int w=ee.getWeight(); nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w)); } } //check whether graph has an edge //having an edge simply means that there is an edge in the graph //which has same endpoints as the given edge bool Graph::hasEdge(Edge ed) const{ if(ed.isNull()) return false; nodeList nli=getNodeList(ed.getFirst()); Node *nd2=ed.getSecond(); return (findNodeInList(nli,nd2)!=NULL); } //check whether graph has an edge, with a given wt //having an edge simply means that there is an edge in the graph //which has same endpoints as the given edge //This function checks, moreover, that the wt of edge matches too bool Graph::hasEdgeAndWt(Edge ed) const{ if(ed.isNull()) return false; Node *nd2=ed.getSecond(); nodeList nli=getNodeList(ed.getFirst()); for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI) if(*NI->element == *nd2 && ed.getWeight()==NI->weight) return true; return false; } //add a node void Graph::addNode(Node *nd){ list lt=getAllNodes(); for(list::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){ if(**LI==*nd) return; } nodes[nd] = list(); } //add an edge //this adds an edge ONLY when //the edge to be added doesn not already exist //we "equate" two edges here only with their //end points void Graph::addEdge(Edge ed, int w){ nodeList &ndList = nodes[ed.getFirst()]; Node *nd2=ed.getSecond(); if(findNodeInList(nodes[ed.getFirst()], nd2)) return; ndList.push_front(graphListElement(nd2,w)); } //add an edge EVEN IF such an edge already exists //this may make a multi-graph //which does happen when we add dummy edges //to the graph, for compensating for back-edges void Graph::addEdgeForce(Edge ed){ nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(), ed.getWeight())); } //remove an edge //Note that it removes just one edge, //the first edge that is encountered void Graph::removeEdge(Edge ed){ nodeList &ndList = nodes[ed.getFirst()]; Node &nd2 = *ed.getSecond(); for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) { if(*NI->element == nd2) { ndList.erase(NI); break; } } } //set the weight of an edge void Graph::setWeight(Edge ed){ graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond()); if (El) El->weight=ed.getWeight(); } //get the list of successor nodes list Graph::getSuccNodes(Node *nd) const { nodeMapTy::const_iterator nli = nodes.find(nd); assert(nli != nodes.end() && "Node must be in nodes map"); const nodeList &nl = nli->second; list lt; for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI) lt.push_back(NI->element); return lt; } //get the list of predecessor nodes list Graph::getPredNodes(Node *nd) const{ list lt; for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){ Node *lnode=EI->first; const nodeList &nl = getNodeList(lnode); const graphListElement *N = findNodeInList(nl, nd); if (N) lt.push_back(lnode); } return lt; } //get the list of all the vertices in graph list Graph::getAllNodes() const{ list lt; for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x) lt.push_back(x->first); return lt; } //class to compare two nodes in graph //based on their wt: this is used in //finding the maximal spanning tree struct compare_nodes { bool operator()(Node *n1, Node *n2){ return n1->getWeight() < n2->getWeight(); } }; static void printNode(Node *nd){ cerr<<"Node:"<getElement()->getName()<<"\n"; } //Get the Maximal spanning tree (also a graph) //of the graph Graph* Graph::getMaxSpanningTree(){ //assume connected graph Graph *st=new Graph();//max spanning tree, undirected edges int inf=9999999;//largest key list lt = getAllNodes(); //initially put all vertices in vector vt //assign wt(root)=0 //wt(others)=infinity // //now: //pull out u: a vertex frm vt of min wt //for all vertices w in vt, //if wt(w) greater than //the wt(u->w), then assign //wt(w) to be wt(u->w). // //make parent(u)=w in the spanning tree //keep pulling out vertices from vt till it is empty vector vt; map parent; map ed_weight; //initialize: wt(root)=0, wt(others)=infinity //parent(root)=NULL, parent(others) not defined (but not null) for(list::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ Node *thisNode=*LI; if(*thisNode == *getRoot()){ thisNode->setWeight(0); parent[thisNode]=NULL; ed_weight[thisNode]=0; } else{ thisNode->setWeight(inf); } st->addNode(thisNode);//add all nodes to spanning tree //we later need to assign edges in the tree vt.push_back(thisNode); //pushed all nodes in vt } //keep pulling out vertex of min wt from vt while(!vt.empty()){ Node *u=*(min_element(vt.begin(), vt.end(), compare_nodes())); #ifdef DEBUG_PATH_PROFILES cerr<<"popped wt"<<(u)->getWeight()<<"\n"; printNode(u); #endif if(parent[u]!=NULL){ //so not root Edge edge(parent[u],u, ed_weight[u]); //assign edge in spanning tree st->addEdge(edge,ed_weight[u]); #ifdef DEBUG_PATH_PROFILES cerr<<"added:\n"; printEdge(edge); #endif } //vt.erase(u); //remove u frm vt for(vector::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){ if(**VI==*u){ vt.erase(VI); break; } } //assign wt(v) to all adjacent vertices v of u //only if v is in vt Graph::nodeList nl=getNodeList(u); for(nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){ Node *v=NI->element; int weight=-NI->weight; //check if v is in vt bool contains=false; for(vector::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){ if(**VI==*v){ contains=true; break; } } #ifdef DEBUG_PATH_PROFILES cerr<<"wt:v->wt"<getWeight()<<"\n"; printNode(v);cerr<<"node wt:"<<(*v).weight<<"\n"; #endif //so if v in in vt, change wt(v) to wt(u->v) //only if wt(u->v)getWeight()){ parent[v]=u; ed_weight[v]=weight; v->setWeight(weight); #ifdef DEBUG_PATH_PROFILES cerr<getWeight()<<":Set weight------\n"; printGraph(); printEdge(Edge(u,v,weight)); #endif } } } return st; } //print the graph (for debugging) void Graph::printGraph(){ list lt=getAllNodes(); cerr<<"Graph---------------------\n"; for(list::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ cerr<<((*LI)->getElement())->getName()<<"->"; Graph::nodeList nl=getNodeList(*LI); for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){ cerr<<":"<<"("<<(NI->element->getElement()) ->getName()<<":"<element->getWeight()<<","<weight<<")"; } cerr<<"--------\n"; } } //get a list of nodes in the graph //in r-topological sorted order //note that we assumed graph to be connected list Graph::reverseTopologicalSort() const{ list toReturn; list lt=getAllNodes(); for(list::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK) DFS_Visit(*LI, toReturn); } return toReturn; } //a private method for doing DFS traversal of graph //this is used in determining the reverse topological sort //of the graph void Graph::DFS_Visit(Node *nd, list &toReturn) const { nd->setWeight(GREY); list lt=getSuccNodes(nd); for(list::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){ if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK) DFS_Visit(*LI, toReturn); } toReturn.push_back(nd); } //Ordinarily, the graph is directional //this converts the graph into an //undirectional graph //This is done by adding an edge //v->u for all existing edges u->v void Graph::makeUnDirectional(){ list allNodes=getAllNodes(); for(list::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI) { nodeList nl=getNodeList(*NI); for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){ Edge ed(NLI->element, *NI, NLI->weight); if(!hasEdgeAndWt(ed)){ #ifdef DEBUG_PATH_PROFILES cerr<<"######doesn't hv\n"; printEdge(ed); #endif addEdgeForce(ed); } } } } //reverse the sign of weights on edges //this way, max-spanning tree could be obtained //usin min-spanning tree, and vice versa void Graph::reverseWts(){ list allNodes=getAllNodes(); for(list::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI) { nodeList node_list=getNodeList(*NI); for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end(); NLI!=NLE; ++NLI) NLI->weight=-NLI->weight; } } //getting the backedges in a graph //Its a variation of DFS to get the backedges in the graph //We get back edges by associating a time //and a color with each vertex. //The time of a vertex is the time when it was first visited //The color of a vertex is initially WHITE, //Changes to GREY when it is first visited, //and changes to BLACK when ALL its neighbors //have been visited //So we have a back edge when we meet a successor of //a node with smaller time, and GREY color void Graph::getBackEdges(vector &be) const{ map color; map d; list allNodes=getAllNodes(); int time=0; for(list::const_iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ if(color[*NI]!=GREY && color[*NI]!=BLACK) getBackEdgesVisit(*NI, be, color, d, time); } } //helper function to get back edges: it is called by //the "getBackEdges" function above void Graph::getBackEdgesVisit(Node *u, vector &be, map &color, map &d, int &time) const{ color[u]=GREY; time++; d[u]=time; list succ_list=getSuccNodes(u); for(list::const_iterator v=succ_list.begin(), ve=succ_list.end(); v!=ve; ++v){ if(color[*v]!=GREY && color[*v]!=BLACK){ getBackEdgesVisit(*v, be, color, d, time); } //now checking for d and f vals if(color[*v]==GREY){ //so v is ancestor of u if time of u > time of v if(d[u] >= d[*v]){ Edge *ed=new Edge(u, *v); if (!(*u == *getExit() && **v == *getRoot())) be.push_back(*ed); // choose the forward edges } } } color[u]=BLACK;//done with visiting the node and its neighbors }