//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements an analysis that determines, for a given memory // operation, what preceding memory operations it depends on. It builds on // alias analysis information, and tries to provide a lazy, caching interface to // a common kind of alias information query. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetData.h" using namespace llvm; char MemoryDependenceAnalysis::ID = 0; Instruction* const MemoryDependenceAnalysis::NonLocal = (Instruction*)-3; Instruction* const MemoryDependenceAnalysis::None = (Instruction*)-4; // Register this pass... static RegisterPass X("memdep", "Memory Dependence Analysis"); /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. /// void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } /// getCallSiteDependency - Private helper for finding the local dependencies /// of a call site. Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C, Instruction* start, BasicBlock* block) { AliasAnalysis& AA = getAnalysis(); TargetData& TD = getAnalysis(); BasicBlock::iterator blockBegin = C.getInstruction()->getParent()->begin(); BasicBlock::iterator QI = C.getInstruction(); // If the starting point was specifiy, use it if (start) { QI = start; blockBegin = start->getParent()->end(); // If the starting point wasn't specified, but the block was, use it } else if (!start && block) { QI = block->end(); blockBegin = block->end(); } // Walk backwards through the block, looking for dependencies while (QI != blockBegin) { --QI; // If this inst is a memory op, get the pointer it accessed Value* pointer = 0; uint64_t pointerSize = 0; if (StoreInst* S = dyn_cast(QI)) { pointer = S->getPointerOperand(); pointerSize = TD.getTypeSize(S->getOperand(0)->getType()); } else if (LoadInst* L = dyn_cast(QI)) { pointer = L->getPointerOperand(); pointerSize = TD.getTypeSize(L->getType()); } else if (AllocationInst* AI = dyn_cast(QI)) { pointer = AI; if (ConstantInt* C = dyn_cast(AI->getArraySize())) pointerSize = C->getZExtValue() * \ TD.getTypeSize(AI->getAllocatedType()); else pointerSize = ~0UL; } else if (VAArgInst* V = dyn_cast(QI)) { pointer = V->getOperand(0); pointerSize = TD.getTypeSize(V->getType()); } else if (FreeInst* F = dyn_cast(QI)) { pointer = F->getPointerOperand(); // FreeInsts erase the entire structure pointerSize = ~0UL; } else if (CallSite::get(QI).getInstruction() != 0) { if (AA.getModRefInfo(C, CallSite::get(QI)) != AliasAnalysis::NoModRef) { if (!start && !block) { depGraphLocal.insert(std::make_pair(C.getInstruction(), std::make_pair(QI, true))); reverseDep[QI].insert(C.getInstruction()); } return QI; } else { continue; } } else continue; if (AA.getModRefInfo(C, pointer, pointerSize) != AliasAnalysis::NoModRef) { if (!start && !block) { depGraphLocal.insert(std::make_pair(C.getInstruction(), std::make_pair(QI, true))); reverseDep[QI].insert(C.getInstruction()); } return QI; } } // No dependence found depGraphLocal.insert(std::make_pair(C.getInstruction(), std::make_pair(NonLocal, true))); reverseDep[NonLocal].insert(C.getInstruction()); return NonLocal; } /// nonLocalHelper - Private helper used to calculate non-local dependencies /// by doing DFS on the predecessors of a block to find its dependencies void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query, BasicBlock* block, DenseMap& resp) { // Set of blocks that we've already visited in our DFS SmallPtrSet visited; // Current stack of the DFS SmallVector stack; stack.push_back(block); // Do a basic DFS while (!stack.empty()) { BasicBlock* BB = stack.back(); // If we've already visited this block, no need to revist if (visited.count(BB)) { stack.pop_back(); continue; } // If we find a new block with a local dependency for query, // then we insert the new dependency and backtrack. if (BB != block) { visited.insert(BB); Instruction* localDep = getDependency(query, 0, BB); if (localDep != NonLocal) { resp.insert(std::make_pair(BB, localDep)); stack.pop_back(); continue; } // If we re-encounter the starting block, we still need to search it // because there might be a dependency in the starting block AFTER // the position of the query. This is necessary to get loops right. } else if (BB == block && stack.size() > 1) { visited.insert(BB); Instruction* localDep = getDependency(query, 0, BB); if (localDep != query) resp.insert(std::make_pair(BB, localDep)); stack.pop_back(); continue; } // If we didn't find anything, recurse on the precessors of this block bool predOnStack = false; bool inserted = false; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) if (!visited.count(*PI)) { stack.push_back(*PI); inserted = true; } else predOnStack = true; // If we inserted a new predecessor, then we'll come back to this block if (inserted) continue; // If we didn't insert because we have no predecessors, then this // query has no dependency at all. else if (!inserted && !predOnStack) { resp.insert(std::make_pair(BB, None)); // If we didn't insert because our predecessors are already on the stack, // then we might still have a dependency, but it will be discovered during // backtracking. } else if (!inserted && predOnStack){ resp.insert(std::make_pair(BB, NonLocal)); } stack.pop_back(); } } /// getNonLocalDependency - Fills the passed-in map with the non-local /// dependencies of the queries. The map will contain NonLocal for /// blocks between the query and its dependencies. void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query, DenseMap& resp) { // First check that we don't actually have a local dependency. Instruction* localDep = getDependency(query); if (localDep != NonLocal) { resp.insert(std::make_pair(query->getParent(),localDep)); return; } // If not, go ahead and search for non-local ones. nonLocalHelper(query, query->getParent(), resp); } /// getDependency - Return the instruction on which a memory operation /// depends. The local paramter indicates if the query should only /// evaluate dependencies within the same basic block. Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query, Instruction* start, BasicBlock* block) { // Start looking for dependencies with the queried inst BasicBlock::iterator QI = query; // Check for a cached result std::pair cachedResult = depGraphLocal[query]; // If we have a _confirmed_ cached entry, return it if (cachedResult.second) return cachedResult.first; else if (cachedResult.first && cachedResult.first != NonLocal) // If we have an unconfirmed cached entry, we can start our search from there QI = cachedResult.first; if (start) QI = start; else if (!start && block) QI = block->end(); AliasAnalysis& AA = getAnalysis(); TargetData& TD = getAnalysis(); // Get the pointer value for which dependence will be determined Value* dependee = 0; uint64_t dependeeSize = 0; bool queryIsVolatile = false; if (StoreInst* S = dyn_cast(query)) { dependee = S->getPointerOperand(); dependeeSize = TD.getTypeSize(S->getOperand(0)->getType()); queryIsVolatile = S->isVolatile(); } else if (LoadInst* L = dyn_cast(query)) { dependee = L->getPointerOperand(); dependeeSize = TD.getTypeSize(L->getType()); queryIsVolatile = L->isVolatile(); } else if (VAArgInst* V = dyn_cast(query)) { dependee = V->getOperand(0); dependeeSize = TD.getTypeSize(V->getType()); } else if (FreeInst* F = dyn_cast(query)) { dependee = F->getPointerOperand(); // FreeInsts erase the entire structure, not just a field dependeeSize = ~0UL; } else if (CallSite::get(query).getInstruction() != 0) return getCallSiteDependency(CallSite::get(query), start, block); else if (isa(query)) return None; else return None; BasicBlock::iterator blockBegin = block ? block->begin() : query->getParent()->begin(); // Walk backwards through the basic block, looking for dependencies while (QI != blockBegin) { --QI; // If this inst is a memory op, get the pointer it accessed Value* pointer = 0; uint64_t pointerSize = 0; if (StoreInst* S = dyn_cast(QI)) { // All volatile loads/stores depend on each other if (queryIsVolatile && S->isVolatile()) { if (!start && !block) { depGraphLocal.insert(std::make_pair(query, std::make_pair(S, true))); reverseDep[S].insert(query); } return S; } pointer = S->getPointerOperand(); pointerSize = TD.getTypeSize(S->getOperand(0)->getType()); } else if (LoadInst* L = dyn_cast(QI)) { // All volatile loads/stores depend on each other if (queryIsVolatile && L->isVolatile()) { if (!start && !block) { depGraphLocal.insert(std::make_pair(query, std::make_pair(L, true))); reverseDep[L].insert(query); } return L; } pointer = L->getPointerOperand(); pointerSize = TD.getTypeSize(L->getType()); } else if (AllocationInst* AI = dyn_cast(QI)) { pointer = AI; if (ConstantInt* C = dyn_cast(AI->getArraySize())) pointerSize = C->getZExtValue() * \ TD.getTypeSize(AI->getAllocatedType()); else pointerSize = ~0UL; } else if (VAArgInst* V = dyn_cast(QI)) { pointer = V->getOperand(0); pointerSize = TD.getTypeSize(V->getType()); } else if (FreeInst* F = dyn_cast(QI)) { pointer = F->getPointerOperand(); // FreeInsts erase the entire structure pointerSize = ~0UL; } else if (CallSite::get(QI).getInstruction() != 0) { // Call insts need special handling. Check if they can modify our pointer AliasAnalysis::ModRefResult MR = AA.getModRefInfo(CallSite::get(QI), dependee, dependeeSize); if (MR != AliasAnalysis::NoModRef) { // Loads don't depend on read-only calls if (isa(query) && MR == AliasAnalysis::Ref) continue; if (!start && !block) { depGraphLocal.insert(std::make_pair(query, std::make_pair(QI, true))); reverseDep[QI].insert(query); } return QI; } else { continue; } } // If we found a pointer, check if it could be the same as our pointer if (pointer) { AliasAnalysis::AliasResult R = AA.alias(pointer, pointerSize, dependee, dependeeSize); if (R != AliasAnalysis::NoAlias) { // May-alias loads don't depend on each other if (isa(query) && isa(QI) && R == AliasAnalysis::MayAlias) continue; if (!start && !block) { depGraphLocal.insert(std::make_pair(query, std::make_pair(QI, true))); reverseDep[QI].insert(query); } return QI; } } } // If we found nothing, return the non-local flag if (!start && !block) { depGraphLocal.insert(std::make_pair(query, std::make_pair(NonLocal, true))); reverseDep[NonLocal].insert(query); } return NonLocal; } /// removeInstruction - Remove an instruction from the dependence analysis, /// updating the dependence of instructions that previously depended on it. /// This method attempts to keep the cache coherent using the reverse map. void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) { // Figure out the new dep for things that currently depend on rem Instruction* newDep = NonLocal; depMapType::iterator depGraphEntry = depGraphLocal.find(rem); // We assume here that it's not in the reverse map if it's not in // the dep map. Checking it could be expensive, so don't do it. if (depGraphEntry != depGraphLocal.end()) { if (depGraphEntry->second.first != NonLocal && depGraphEntry->second.second) { // If we have dep info for rem, set them to it BasicBlock::iterator RI = depGraphEntry->second.first; RI++; newDep = RI; } else if (depGraphEntry->second.first == NonLocal && depGraphEntry->second.second ) { // If we have a confirmed non-local flag, use it newDep = NonLocal; } else { // Otherwise, use the immediate successor of rem // NOTE: This is because, when getDependence is called, it will first // check the immediate predecessor of what is in the cache. BasicBlock::iterator RI = rem; RI++; newDep = RI; } SmallPtrSet& set = reverseDep[rem]; for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) { // Insert the new dependencies // Mark it as unconfirmed as long as it is not the non-local flag depGraphLocal[*I] = std::make_pair(newDep, !newDep); } reverseDep.erase(rem); } getAnalysis().deleteValue(rem); }