//===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// PPC target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ppctti" #include "PPC.h" #include "PPCTargetMachine.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; // Declare the pass initialization routine locally as target-specific passes // don't havve a target-wide initialization entry point, and so we rely on the // pass constructor initialization. namespace llvm { void initializePPCTTIPass(PassRegistry &); } namespace { class PPCTTI : public ImmutablePass, public TargetTransformInfo { const PPCTargetMachine *TM; const PPCSubtarget *ST; const PPCTargetLowering *TLI; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; public: PPCTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { llvm_unreachable("This pass cannot be directly constructed"); } PPCTTI(const PPCTargetMachine *TM) : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), TLI(TM->getTargetLowering()) { initializePPCTTIPass(*PassRegistry::getPassRegistry()); } virtual void initializePass() { pushTTIStack(this); } virtual void finalizePass() { popTTIStack(); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { TargetTransformInfo::getAnalysisUsage(AU); } /// Pass identification. static char ID; /// Provide necessary pointer adjustments for the two base classes. virtual void *getAdjustedAnalysisPointer(const void *ID) { if (ID == &TargetTransformInfo::ID) return (TargetTransformInfo*)this; return this; } /// \name Scalar TTI Implementations /// @{ virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const; virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const; /// @} /// \name Vector TTI Implementations /// @{ virtual unsigned getNumberOfRegisters(bool Vector) const; virtual unsigned getRegisterBitWidth(bool Vector) const; virtual unsigned getMaximumUnrollFactor() const; virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, OperandValueKind) const; virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const; virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const; virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const; virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const; virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const; /// @} }; } // end anonymous namespace INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti", "PPC Target Transform Info", true, true, false) char PPCTTI::ID = 0; ImmutablePass * llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) { return new PPCTTI(TM); } //===----------------------------------------------------------------------===// // // PPC cost model. // //===----------------------------------------------------------------------===// PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); if (ST->hasPOPCNTD() && TyWidth <= 64) return PSK_FastHardware; return PSK_Software; } void PPCTTI::getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const { if (ST->getDarwinDirective() == PPC::DIR_A2) { // The A2 is in-order with a deep pipeline, and concatenation unrolling // helps expose latency-hiding opportunities to the instruction scheduler. UP.Partial = UP.Runtime = true; } } unsigned PPCTTI::getNumberOfRegisters(bool Vector) const { if (Vector && !ST->hasAltivec()) return 0; return 32; } unsigned PPCTTI::getRegisterBitWidth(bool Vector) const { if (Vector) { if (ST->hasAltivec()) return 128; return 0; } if (ST->isPPC64()) return 64; return 32; } unsigned PPCTTI::getMaximumUnrollFactor() const { unsigned Directive = ST->getDarwinDirective(); // The 440 has no SIMD support, but floating-point instructions // have a 5-cycle latency, so unroll by 5x for latency hiding. if (Directive == PPC::DIR_440) return 5; // The A2 has no SIMD support, but floating-point instructions // have a 6-cycle latency, so unroll by 6x for latency hiding. if (Directive == PPC::DIR_A2) return 6; // FIXME: For lack of any better information, do no harm... if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) return 1; // For most things, modern systems have two execution units (and // out-of-order execution). return 2; } unsigned PPCTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Op1Info, OperandValueKind Op2Info) const { assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); // Fallback to the default implementation. return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); } unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const { return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); } unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); } unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { assert(Val->isVectorTy() && "This must be a vector type"); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Estimated cost of a load-hit-store delay. This was obtained // experimentally as a minimum needed to prevent unprofitable // vectorization for the paq8p benchmark. It may need to be // raised further if other unprofitable cases remain. unsigned LHSPenalty = 12; // Vector element insert/extract with Altivec is very expensive, // because they require store and reload with the attendant // processor stall for load-hit-store. Until VSX is available, // these need to be estimated as very costly. if (ISD == ISD::EXTRACT_VECTOR_ELT || ISD == ISD::INSERT_VECTOR_ELT) return LHSPenalty + TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); } unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); // Each load/store unit costs 1. unsigned Cost = LT.first * 1; // PPC in general does not support unaligned loads and stores. They'll need // to be decomposed based on the alignment factor. unsigned SrcBytes = LT.second.getStoreSize(); if (SrcBytes && Alignment && Alignment < SrcBytes) Cost *= (SrcBytes/Alignment); return Cost; }