//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumSpills, "Number of register spills");
STATISTIC(NumReMats, "Number of re-materialization");
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused, "Number of values reused");
STATISTIC(NumDSE   , "Number of dead stores elided");
STATISTIC(NumDCE   , "Number of copies elided");

namespace {
  enum SpillerName { simple, local };

  static cl::opt<SpillerName>
  SpillerOpt("spiller",
             cl::desc("Spiller to use: (default: local)"),
             cl::Prefix,
             cl::values(clEnumVal(simple, "  simple spiller"),
                        clEnumVal(local,  "  local spiller"),
                        clEnumValEnd),
             cl::init(local));
}

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

VirtRegMap::VirtRegMap(MachineFunction &mf)
  : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
    ReMatId(MAX_STACK_SLOT+1) {
  grow();
}

void VirtRegMap::grow() {
  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}

int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
                                                        RC->getAlignment());
  Virt2StackSlotMap[virtReg] = frameIndex;
  ++NumSpills;
  return frameIndex;
}

void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((frameIndex >= 0 ||
          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg] = frameIndex;
}

int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign re-mat id to already spilled register");
  const MachineInstr *DefMI = getReMaterializedMI(virtReg);
  int FrameIdx;
  if (TII.isLoadFromStackSlot((MachineInstr*)DefMI, FrameIdx)) {
    // Load from stack slot is re-materialize as reload from the stack slot!
    Virt2StackSlotMap[virtReg] = FrameIdx;
    return FrameIdx;
  }
  Virt2StackSlotMap[virtReg] = ReMatId;
  return ReMatId++;
}

void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
                            unsigned OpNo, MachineInstr *NewMI) {
  // Move previous memory references folded to new instruction.
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
    MI2VirtMap.erase(I++);
  }

  ModRef MRInfo;
  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
      TID->findTiedToSrcOperand(OpNo) != -1) {
    // Folded a two-address operand.
    MRInfo = isModRef;
  } else if (OldMI->getOperand(OpNo).isDef()) {
    MRInfo = isMod;
  } else {
    MRInfo = isRef;
  }

  // add new memory reference
  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}

void VirtRegMap::print(std::ostream &OS) const {
  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();

  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";

  }

  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
  OS << '\n';
}

void VirtRegMap::dump() const {
  print(DOUT);
}


//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//

Spiller::~Spiller() {}

namespace {
  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
  };
}

bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
  DOUT << "********** REWRITE MACHINE CODE **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
  const TargetMachine &TM = MF.getTarget();
  const MRegisterInfo &MRI = *TM.getRegisterInfo();
  bool *PhysRegsUsed = MF.getUsedPhysregs();

  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
  // each vreg once (in the case where a spilled vreg is used by multiple
  // operands).  This is always smaller than the number of operands to the
  // current machine instr, so it should be small.
  std::vector<unsigned> LoadedRegs;

  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
    MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::iterator MII = MBB.begin(),
           E = MBB.end(); MII != E; ++MII) {
      MachineInstr &MI = *MII;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (MO.isRegister() && MO.getReg())
          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned VirtReg = MO.getReg();
            unsigned PhysReg = VRM.getPhys(VirtReg);
            if (VRM.hasStackSlot(VirtReg)) {
              int StackSlot = VRM.getStackSlot(VirtReg);
              const TargetRegisterClass* RC =
                MF.getSSARegMap()->getRegClass(VirtReg);

              if (MO.isUse() &&
                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
                  == LoadedRegs.end()) {
                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
                LoadedRegs.push_back(VirtReg);
                ++NumLoads;
                DOUT << '\t' << *prior(MII);
              }

              if (MO.isDef()) {
                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
                ++NumStores;
              }
            }
            PhysRegsUsed[PhysReg] = true;
            MI.getOperand(i).setReg(PhysReg);
          } else {
            PhysRegsUsed[MO.getReg()] = true;
          }
      }

      DOUT << '\t' << MI;
      LoadedRegs.clear();
    }
  }
  return true;
}

//===----------------------------------------------------------------------===//
//  Local Spiller Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// LocalSpiller - This spiller does a simple pass over the machine basic
  /// block to attempt to keep spills in registers as much as possible for
  /// blocks that have low register pressure (the vreg may be spilled due to
  /// register pressure in other blocks).
  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
    const MRegisterInfo *MRI;
    const TargetInstrInfo *TII;
  public:
    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
      MRI = MF.getTarget().getRegisterInfo();
      TII = MF.getTarget().getInstrInfo();
      DOUT << "\n**** Local spiller rewriting function '"
           << MF.getFunction()->getName() << "':\n";

      std::vector<MachineInstr *> ReMatedMIs;
      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
           MBB != E; ++MBB)
        RewriteMBB(*MBB, VRM, ReMatedMIs);
      for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
        delete ReMatedMIs[i];
      return true;
    }
  private:
    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
                    std::vector<MachineInstr*> &ReMatedMIs);
  };
}

/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
/// top down, keep track of which spills slots are available in each register.
///
/// Note that not all physregs are created equal here.  In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using that
/// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
/// addAvailable sets it if.
namespace {
class VISIBILITY_HIDDEN AvailableSpills {
  const MRegisterInfo *MRI;
  const TargetInstrInfo *TII;

  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
  // register values that are still available, due to being loaded or stored to,
  // but not invalidated yet. It also tracks the instructions that defined
  // or used the register.
  typedef std::pair<unsigned, std::vector<MachineInstr*> > SSInfo;
  std::map<int, SSInfo> SpillSlotsAvailable;
    
  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
  // which stack slot values are currently held by a physreg.  This is used to
  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
  std::multimap<unsigned, int> PhysRegsAvailable;
  
  void disallowClobberPhysRegOnly(unsigned PhysReg);

  void ClobberPhysRegOnly(unsigned PhysReg);
public:
  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
    : MRI(mri), TII(tii) {
  }
  
  const MRegisterInfo *getRegInfo() const { return MRI; }

  /// getSpillSlotPhysReg - If the specified stack slot is available in a 
  /// physical register, return that PhysReg, otherwise return 0. It also
  /// returns by reference the instruction that either defines or last uses
  /// the register.
  unsigned getSpillSlotPhysReg(int Slot, MachineInstr *&SSMI) const {
    std::map<int, SSInfo>::const_iterator I = SpillSlotsAvailable.find(Slot);
    if (I != SpillSlotsAvailable.end()) {
      if (!I->second.second.empty())
        SSMI = I->second.second.back();
      return I->second.first >> 1;  // Remove the CanClobber bit.
    }
    return 0;
  }

  /// addLastUse - Add the last use information of all stack slots whose
  /// values are available in the specific register.
  void addLastUse(unsigned PhysReg, MachineInstr *Use) {
    std::multimap<unsigned, int>::iterator I =
      PhysRegsAvailable.lower_bound(PhysReg);
    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
      int Slot = I->second;
      I++;

      std::map<int, SSInfo>::iterator II = SpillSlotsAvailable.find(Slot);
      assert(II != SpillSlotsAvailable.end() && "Slot not available!");
      unsigned Val = II->second.first;
      assert((Val >> 1) == PhysReg && "Bidirectional map mismatch!");
      // This can be true if there are multiple uses of the same register.
      if (II->second.second.back() != Use)
        II->second.second.push_back(Use);
    }
  }
  
  /// removeLastUse - Remove the last use information of all stack slots whose
  /// values are available in the specific register.
  void removeLastUse(unsigned PhysReg, MachineInstr *Use) {
    std::multimap<unsigned, int>::iterator I =
      PhysRegsAvailable.lower_bound(PhysReg);
    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
      int Slot = I->second;
      I++;

      std::map<int, SSInfo>::iterator II = SpillSlotsAvailable.find(Slot);
      assert(II != SpillSlotsAvailable.end() && "Slot not available!");
      unsigned Val = II->second.first;
      assert((Val >> 1) == PhysReg && "Bidirectional map mismatch!");
      if (II->second.second.back() == Use)
        II->second.second.pop_back();
    }
  }
  
  /// addAvailable - Mark that the specified stack slot is available in the
  /// specified physreg.  If CanClobber is true, the physreg can be modified at
  /// any time without changing the semantics of the program.
  void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
                    bool CanClobber = true) {
    // If this stack slot is thought to be available in some other physreg, 
    // remove its record.
    ModifyStackSlot(Slot);
    
    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
    std::vector<MachineInstr*> DefUses;
    DefUses.push_back(MI);
    SpillSlotsAvailable[Slot] =
      std::make_pair((Reg << 1) | (unsigned)CanClobber, DefUses);
  
    if (Slot > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
    else
      DOUT << "Remembering SS#" << Slot;
    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
  }

  /// canClobberPhysReg - Return true if the spiller is allowed to change the 
  /// value of the specified stackslot register if it desires.  The specified
  /// stack slot must be available in a physreg for this query to make sense.
  bool canClobberPhysReg(int Slot) const {
    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
    return SpillSlotsAvailable.find(Slot)->second.first & 1;
  }
  
  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
  /// stackslot register. The register is still available but is no longer
  /// allowed to be modifed.
  void disallowClobberPhysReg(unsigned PhysReg);
  
  /// ClobberPhysReg - This is called when the specified physreg changes
  /// value.  We use this to invalidate any info about stuff we thing lives in
  /// it and any of its aliases.
  void ClobberPhysReg(unsigned PhysReg);

  /// ModifyStackSlot - This method is called when the value in a stack slot
  /// changes.  This removes information about which register the previous value
  /// for this slot lives in (as the previous value is dead now).
  void ModifyStackSlot(int Slot);
};
}

/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int Slot = I->second;
    I++;
    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsAvailable[Slot].first &= ~1;
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " copied, it is available for use but can no longer be modified\n";
  }
}

/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register and its aliases. The register and its aliases may
/// still available but is no longer allowed to be modifed.
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    disallowClobberPhysRegOnly(*AS);
  disallowClobberPhysRegOnly(PhysReg);
}

/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int Slot = I->second;
    PhysRegsAvailable.erase(I++);
    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsAvailable.erase(Slot);
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " clobbered, invalidating ";
    if (Slot > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
    else
      DOUT << "SS#" << Slot << "\n";
  }
}

/// ClobberPhysReg - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    ClobberPhysRegOnly(*AS);
  ClobberPhysRegOnly(PhysReg);
}

/// ModifyStackSlot - This method is called when the value in a stack slot
/// changes.  This removes information about which register the previous value
/// for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlot(int Slot) {
  std::map<int, SSInfo>::iterator It = SpillSlotsAvailable.find(Slot);
  if (It == SpillSlotsAvailable.end()) return;
  unsigned Reg = It->second.first >> 1;
  SpillSlotsAvailable.erase(It);
  
  // This register may hold the value of multiple stack slots, only remove this
  // stack slot from the set of values the register contains.
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
  for (; ; ++I) {
    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
           "Map inverse broken!");
    if (I->second == Slot) break;
  }
  PhysRegsAvailable.erase(I);
}



// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand.  See comments below.
namespace {
  struct ReusedOp {
    // The MachineInstr operand that reused an available value.
    unsigned Operand;

    // StackSlot - The spill slot of the value being reused.
    unsigned StackSlot;

    // PhysRegReused - The physical register the value was available in.
    unsigned PhysRegReused;

    // AssignedPhysReg - The physreg that was assigned for use by the reload.
    unsigned AssignedPhysReg;
    
    // VirtReg - The virtual register itself.
    unsigned VirtReg;

    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
             unsigned vreg)
      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
      VirtReg(vreg) {}
  };
  
  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
  /// is reused instead of reloaded.
  class VISIBILITY_HIDDEN ReuseInfo {
    MachineInstr &MI;
    std::vector<ReusedOp> Reuses;
    BitVector PhysRegsClobbered;
  public:
    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
      PhysRegsClobbered.resize(mri->getNumRegs());
    }
    
    bool hasReuses() const {
      return !Reuses.empty();
    }
    
    /// addReuse - If we choose to reuse a virtual register that is already
    /// available instead of reloading it, remember that we did so.
    void addReuse(unsigned OpNo, unsigned StackSlot,
                  unsigned PhysRegReused, unsigned AssignedPhysReg,
                  unsigned VirtReg) {
      // If the reload is to the assigned register anyway, no undo will be
      // required.
      if (PhysRegReused == AssignedPhysReg) return;
      
      // Otherwise, remember this.
      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused, 
                                AssignedPhysReg, VirtReg));
    }

    void markClobbered(unsigned PhysReg) {
      PhysRegsClobbered.set(PhysReg);
    }

    bool isClobbered(unsigned PhysReg) const {
      return PhysRegsClobbered.test(PhysReg);
    }
    
    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
    /// is some other operand that is using the specified register, either pick
    /// a new register to use, or evict the previous reload and use this reg. 
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::map<int, MachineInstr*> &MaybeDeadStores,
                             SmallSet<unsigned, 8> &Rejected) {
      if (Reuses.empty()) return PhysReg;  // This is most often empty.

      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
        ReusedOp &Op = Reuses[ro];
        // If we find some other reuse that was supposed to use this register
        // exactly for its reload, we can change this reload to use ITS reload
        // register. That is, unless its reload register has already been
        // considered and subsequently rejected because it has also been reused
        // by another operand.
        if (Op.PhysRegReused == PhysReg &&
            Rejected.count(Op.AssignedPhysReg) == 0) {
          // Yup, use the reload register that we didn't use before.
          unsigned NewReg = Op.AssignedPhysReg;
          Rejected.insert(PhysReg);
          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected);
        } else {
          // Otherwise, we might also have a problem if a previously reused
          // value aliases the new register.  If so, codegen the previous reload
          // and use this one.          
          unsigned PRRU = Op.PhysRegReused;
          const MRegisterInfo *MRI = Spills.getRegInfo();
          if (MRI->areAliases(PRRU, PhysReg)) {
            // Okay, we found out that an alias of a reused register
            // was used.  This isn't good because it means we have
            // to undo a previous reuse.
            MachineBasicBlock *MBB = MI->getParent();
            const TargetRegisterClass *AliasRC =
              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);

            // Copy Op out of the vector and remove it, we're going to insert an
            // explicit load for it.
            ReusedOp NewOp = Op;
            Reuses.erase(Reuses.begin()+ro);

            // Ok, we're going to try to reload the assigned physreg into the
            // slot that we were supposed to in the first place.  However, that
            // register could hold a reuse.  Check to see if it conflicts or
            // would prefer us to use a different register.
            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
                                         MI, Spills, MaybeDeadStores, Rejected);
            
            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
                                      NewOp.StackSlot, AliasRC);
            Spills.ClobberPhysReg(NewPhysReg);
            Spills.ClobberPhysReg(NewOp.PhysRegReused);
            
            // Any stores to this stack slot are not dead anymore.
            MaybeDeadStores.erase(NewOp.StackSlot);
            
            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
            
            Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
            ++NumLoads;
            DEBUG(MachineBasicBlock::iterator MII = MI;
                  DOUT << '\t' << *prior(MII));
            
            DOUT << "Reuse undone!\n";
            --NumReused;
            
            // Finally, PhysReg is now available, go ahead and use it.
            return PhysReg;
          }
        }
      }
      return PhysReg;
    }

    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
    /// 'Rejected' set to remember which registers have been considered and
    /// rejected for the reload. This avoids infinite looping in case like
    /// this:
    /// t1 := op t2, t3
    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
    /// t1 <- desires r1
    ///       sees r1 is taken by t2, tries t2's reload register r0
    ///       sees r0 is taken by t3, tries t3's reload register r1
    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::map<int, MachineInstr*> &MaybeDeadStores) {
      SmallSet<unsigned, 8> Rejected;
      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected);
    }
  };
}


/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them.  If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
                              std::vector<MachineInstr*> &ReMatedMIs) {
  DOUT << MBB.getBasicBlock()->getName() << ":\n";

  // Spills - Keep track of which spilled values are available in physregs so
  // that we can choose to reuse the physregs instead of emitting reloads.
  AvailableSpills Spills(MRI, TII);
  
  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::map<int, MachineInstr*> MaybeDeadStores;

  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();

  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
       MII != E; ) {
    MachineInstr &MI = *MII;
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;

    /// ReusedOperands - Keep track of operand reuse in case we need to undo
    /// reuse.
    ReuseInfo ReusedOperands(MI, MRI);

    // Loop over all of the implicit defs, clearing them from our available
    // sets.
    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();

    // If this instruction is being rematerialized, just remove it!
    int FrameIdx;
    if ((TID->Flags & M_REMATERIALIZIBLE) ||
        TII->isLoadFromStackSlot(&MI, FrameIdx)) {
      bool Remove = true;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (!MO.isRegister() || MO.getReg() == 0)
          continue;   // Ignore non-register operands.
        if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
          Remove = false;
          break;
        }
      }
      if (Remove) {
        VRM.RemoveFromFoldedVirtMap(&MI);
        ReMatedMIs.push_back(MI.removeFromParent());
        MII = NextMII;
        continue;
      }
    }

    const unsigned *ImpDef = TID->ImplicitDefs;
    if (ImpDef) {
      for ( ; *ImpDef; ++ImpDef) {
        PhysRegsUsed[*ImpDef] = true;
        ReusedOperands.markClobbered(*ImpDef);
        Spills.ClobberPhysReg(*ImpDef);
      }
    }

    // Process all of the spilled uses and all non spilled reg references.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isRegister() || MO.getReg() == 0)
        continue;   // Ignore non-register operands.
      
      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
        // Ignore physregs for spilling, but remember that it is used by this
        // function.
        PhysRegsUsed[MO.getReg()] = true;
        ReusedOperands.markClobbered(MO.getReg());
        continue;
      }
      
      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
             "Not a virtual or a physical register?");
      
      unsigned VirtReg = MO.getReg();
      if (!VRM.hasStackSlot(VirtReg)) {
        // This virtual register was assigned a physreg!
        unsigned Phys = VRM.getPhys(VirtReg);
        PhysRegsUsed[Phys] = true;
        if (MO.isDef())
          ReusedOperands.markClobbered(Phys);
        MI.getOperand(i).setReg(Phys);
        continue;
      }
      
      // This virtual register is now known to be a spilled value.
      if (!MO.isUse())
        continue;  // Handle defs in the loop below (handle use&def here though)

      bool doReMat = VRM.isReMaterialized(VirtReg);
      int StackSlot = VRM.getStackSlot(VirtReg);
      unsigned PhysReg;

      // Check to see if this stack slot is available.
      MachineInstr *SSMI = NULL;
      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot, SSMI))) {
        // This spilled operand might be part of a two-address operand.  If this
        // is the case, then changing it will necessarily require changing the 
        // def part of the instruction as well.  However, in some cases, we
        // aren't allowed to modify the reused register.  If none of these cases
        // apply, reuse it.
        bool CanReuse = true;
        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
        if (ti != -1 &&
            MI.getOperand(ti).isReg() && 
            MI.getOperand(ti).getReg() == VirtReg) {
          // Okay, we have a two address operand.  We can reuse this physreg as
          // long as we are allowed to clobber the value and there isn't an
          // earlier def that has already clobbered the physreg.
          CanReuse = Spills.canClobberPhysReg(StackSlot) &&
            !ReusedOperands.isClobbered(PhysReg);
        }
        
        if (CanReuse) {
          // If this stack slot value is already available, reuse it!
          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << StackSlot;
          DOUT << " from physreg "
               << MRI->getName(PhysReg) << " for vreg"
               << VirtReg <<" instead of reloading into physreg "
               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
          MI.getOperand(i).setReg(PhysReg);

          // Extend the live range of the MI that last kill the register if
          // necessary.
          bool WasKill = false;
          if (SSMI) {
            int UIdx = SSMI->findRegisterUseOperand(PhysReg, true);
            if (UIdx != -1) {
              MachineOperand &MOK = SSMI->getOperand(UIdx);
              WasKill = MOK.isKill();
              MOK.unsetIsKill();
            }
          }
          if (ti == -1) {
            // Unless it's the use of a two-address code, transfer the kill
            // of the reused register to this use.
            if (WasKill)
              MI.getOperand(i).setIsKill();
            Spills.addLastUse(PhysReg, &MI);
          }

          // The only technical detail we have is that we don't know that
          // PhysReg won't be clobbered by a reloaded stack slot that occurs
          // later in the instruction.  In particular, consider 'op V1, V2'.
          // If V1 is available in physreg R0, we would choose to reuse it
          // here, instead of reloading it into the register the allocator
          // indicated (say R1).  However, V2 might have to be reloaded
          // later, and it might indicate that it needs to live in R0.  When
          // this occurs, we need to have information available that
          // indicates it is safe to use R1 for the reload instead of R0.
          //
          // To further complicate matters, we might conflict with an alias,
          // or R0 and R1 might not be compatible with each other.  In this
          // case, we actually insert a reload for V1 in R1, ensuring that
          // we can get at R0 or its alias.
          ReusedOperands.addReuse(i, StackSlot, PhysReg,
                                  VRM.getPhys(VirtReg), VirtReg);
          if (ti != -1)
            // Only mark it clobbered if this is a use&def operand.
            ReusedOperands.markClobbered(PhysReg);
          ++NumReused;
          continue;
        }
        
        // Otherwise we have a situation where we have a two-address instruction
        // whose mod/ref operand needs to be reloaded.  This reload is already
        // available in some register "PhysReg", but if we used PhysReg as the
        // operand to our 2-addr instruction, the instruction would modify
        // PhysReg.  This isn't cool if something later uses PhysReg and expects
        // to get its initial value.
        //
        // To avoid this problem, and to avoid doing a load right after a store,
        // we emit a copy from PhysReg into the designated register for this
        // operand.
        unsigned DesignatedReg = VRM.getPhys(VirtReg);
        assert(DesignatedReg && "Must map virtreg to physreg!");

        // Note that, if we reused a register for a previous operand, the
        // register we want to reload into might not actually be
        // available.  If this occurs, use the register indicated by the
        // reuser.
        if (ReusedOperands.hasReuses())
          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
                                                      Spills, MaybeDeadStores);
        
        // If the mapped designated register is actually the physreg we have
        // incoming, we don't need to inserted a dead copy.
        if (DesignatedReg == PhysReg) {
          // If this stack slot value is already available, reuse it!
          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << StackSlot;
          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
               << VirtReg
               << " instead of reloading into same physreg.\n";
          MI.getOperand(i).setReg(PhysReg);
          ReusedOperands.markClobbered(PhysReg);
          ++NumReused;
          continue;
        }
        
        const TargetRegisterClass* RC =
          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);

        PhysRegsUsed[DesignatedReg] = true;
        ReusedOperands.markClobbered(DesignatedReg);
        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);

        // Extend the live range of the MI that last kill the register if
        // necessary.
        bool WasKill = false;
        if (SSMI) {
          int UIdx = SSMI->findRegisterUseOperand(PhysReg, true);
          if (UIdx != -1) {
            MachineOperand &MOK = SSMI->getOperand(UIdx);
            WasKill = MOK.isKill();
            MOK.unsetIsKill();
          }
        }
        MachineInstr *CopyMI = prior(MII);
        if (WasKill) {
          // Transfer kill to the next use.
          int UIdx = CopyMI->findRegisterUseOperand(PhysReg);
          assert(UIdx != -1);
          MachineOperand &MOU = CopyMI->getOperand(UIdx);
          MOU.setIsKill();
        }
        Spills.addLastUse(PhysReg, CopyMI);

        // This invalidates DesignatedReg.
        Spills.ClobberPhysReg(DesignatedReg);
        
        Spills.addAvailable(StackSlot, &MI, DesignatedReg);
        MI.getOperand(i).setReg(DesignatedReg);
        DOUT << '\t' << *prior(MII);
        ++NumReused;
        continue;
      }
      
      // Otherwise, reload it and remember that we have it.
      PhysReg = VRM.getPhys(VirtReg);
      assert(PhysReg && "Must map virtreg to physreg!");
      const TargetRegisterClass* RC =
        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);

      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (ReusedOperands.hasReuses())
        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                                                 Spills, MaybeDeadStores);
      
      PhysRegsUsed[PhysReg] = true;
      ReusedOperands.markClobbered(PhysReg);
      if (doReMat) {
        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
        ++NumReMats;
      } else {
        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
        ++NumLoads;
      }
      // This invalidates PhysReg.
      Spills.ClobberPhysReg(PhysReg);

      // Any stores to this stack slot are not dead anymore.
      if (!doReMat)
        MaybeDeadStores.erase(StackSlot);
      Spills.addAvailable(StackSlot, &MI, PhysReg);
      // Assumes this is the last use. IsKill will be unset if reg is reused
      // unless it's a two-address operand.
      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
        MI.getOperand(i).setIsKill();
      MI.getOperand(i).setReg(PhysReg);
      DOUT << '\t' << *prior(MII);
    }

    DOUT << '\t' << MI;

    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register
    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
      DOUT << "Folded vreg: " << I->second.first << "  MR: "
           << I->second.second;
      unsigned VirtReg = I->second.first;
      VirtRegMap::ModRef MR = I->second.second;
      if (!VRM.hasStackSlot(VirtReg)) {
        DOUT << ": No stack slot!\n";
        continue;
      }
      int SS = VRM.getStackSlot(VirtReg);
      DOUT << " - StackSlot: " << SS << "\n";
      
      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
          if (FrameIdx == SS) {
            // If this spill slot is available, turn it into a copy (or nothing)
            // instead of leaving it as a load!
            MachineInstr *SSMI = NULL;
            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS, SSMI)) {
              DOUT << "Promoted Load To Copy: " << MI;
              MachineFunction &MF = *MBB.getParent();
              if (DestReg != InReg) {
                MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
                                  MF.getSSARegMap()->getRegClass(VirtReg));
                // Revisit the copy so we make sure to notice the effects of the
                // operation on the destreg (either needing to RA it if it's 
                // virtual or needing to clobber any values if it's physical).
                NextMII = &MI;
                --NextMII;  // backtrack to the copy.
              } else
                DOUT << "Removing now-noop copy: " << MI;

              // Either way, the live range of the last kill of InReg has been
              // extended. Remove its kill.
              bool WasKill = false;
              if (SSMI) {
                int UIdx = SSMI->findRegisterUseOperand(InReg, true);
                if (UIdx != -1) {
                  MachineOperand &MOK = SSMI->getOperand(UIdx);
                  WasKill = MOK.isKill();
                  MOK.unsetIsKill();
                }
              }
              if (NextMII != MBB.end()) {
                // If NextMII uses InReg and the use is not a two address
                // operand, mark it killed.
                int UIdx = NextMII->findRegisterUseOperand(InReg);
                if (UIdx != -1) {
                  MachineOperand &MOU = NextMII->getOperand(UIdx);
                  if (WasKill) {
                    const TargetInstrDescriptor *NTID =
                      NextMII->getInstrDescriptor();
                    if (UIdx >= NTID->numOperands ||
                        NTID->getOperandConstraint(UIdx, TOI::TIED_TO) == -1)
                      MOU.setIsKill();
                  }
                  Spills.addLastUse(InReg, &(*NextMII));
                }
              }

              VRM.RemoveFromFoldedVirtMap(&MI);
              MBB.erase(&MI);
              goto ProcessNextInst;
            }
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
      if (MDSI != MaybeDeadStores.end()) {
        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
          MaybeDeadStores.erase(MDSI);
        else {
          // If we get here, the store is dead, nuke it now.
          assert(VirtRegMap::isMod && "Can't be modref!");
          DOUT << "Removed dead store:\t" << *MDSI->second;
          MBB.erase(MDSI->second);
          VRM.RemoveFromFoldedVirtMap(MDSI->second);
          MaybeDeadStores.erase(MDSI);
          ++NumDSE;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        // Notice that the value in this stack slot has been modified.
        Spills.ModifyStackSlot(SS);
        
        // If this is *just* a mod of the value, check to see if this is just a
        // store to the spill slot (i.e. the spill got merged into the copy). If
        // so, realize that the vreg is available now, and add the store to the
        // MaybeDeadStore info.
        int StackSlot;
        if (!(MR & VirtRegMap::isRef)) {
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
                   "Src hasn't been allocated yet?");
            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
            // this as a potentially dead store in case there is a subsequent
            // store into the stack slot without a read from it.
            MaybeDeadStores[StackSlot] = &MI;

            // If the stack slot value was previously available in some other
            // register, change it now.  Otherwise, make the register available,
            // in PhysReg.
            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
          }
        }
      }
    }

    // Process all of the spilled defs.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
        unsigned VirtReg = MO.getReg();

        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
          // Check to see if this is a noop copy.  If so, eliminate the
          // instruction before considering the dest reg to be changed.
          unsigned Src, Dst;
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
            ++NumDCE;
            DOUT << "Removing now-noop copy: " << MI;
            Spills.removeLastUse(Src, &MI);
            MBB.erase(&MI);
            VRM.RemoveFromFoldedVirtMap(&MI);
            Spills.disallowClobberPhysReg(VirtReg);
            goto ProcessNextInst;
          }
          
          // If it's not a no-op copy, it clobbers the value in the destreg.
          Spills.ClobberPhysReg(VirtReg);
          ReusedOperands.markClobbered(VirtReg);
 
          // Check to see if this instruction is a load from a stack slot into
          // a register.  If so, this provides the stack slot value in the reg.
          int FrameIdx;
          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
            assert(DestReg == VirtReg && "Unknown load situation!");
            
            // Otherwise, if it wasn't available, remember that it is now!
            Spills.addAvailable(FrameIdx, &MI, DestReg);
            goto ProcessNextInst;
          }
            
          continue;
        }

        // The only vregs left are stack slot definitions.
        int StackSlot = VRM.getStackSlot(VirtReg);
        const TargetRegisterClass *RC =
          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);

        // If this def is part of a two-address operand, make sure to execute
        // the store from the correct physical register.
        unsigned PhysReg;
        int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
        if (TiedOp != -1)
          PhysReg = MI.getOperand(TiedOp).getReg();
        else {
          PhysReg = VRM.getPhys(VirtReg);
          if (ReusedOperands.isClobbered(PhysReg)) {
            // Another def has taken the assigned physreg. It must have been a
            // use&def which got it due to reuse. Undo the reuse!
            PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                                                     Spills, MaybeDeadStores);
          }
        }

        PhysRegsUsed[PhysReg] = true;
        ReusedOperands.markClobbered(PhysReg);
        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
        DOUT << "Store:\t" << *next(MII);
        MI.getOperand(i).setReg(PhysReg);

        // If there is a dead store to this stack slot, nuke it now.
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
        if (LastStore) {
          DOUT << "Removed dead store:\t" << *LastStore;
          ++NumDSE;
          MBB.erase(LastStore);
          VRM.RemoveFromFoldedVirtMap(LastStore);
        }
        LastStore = next(MII);

        // If the stack slot value was previously available in some other
        // register, change it now.  Otherwise, make the register available,
        // in PhysReg.
        Spills.ModifyStackSlot(StackSlot);
        Spills.ClobberPhysReg(PhysReg);
        Spills.addAvailable(StackSlot, LastStore, PhysReg);
        ++NumStores;

        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        {
          unsigned Src, Dst;
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
            ++NumDCE;
            DOUT << "Removing now-noop copy: " << MI;
            Spills.removeLastUse(Src, &MI);
            MBB.erase(&MI);
            VRM.RemoveFromFoldedVirtMap(&MI);
            goto ProcessNextInst;
          }
        }        
      }
    }
  ProcessNextInst:
    MII = NextMII;
  }
}



llvm::Spiller* llvm::createSpiller() {
  switch (SpillerOpt) {
  default: assert(0 && "Unreachable!");
  case local:
    return new LocalSpiller();
  case simple:
    return new SimpleSpiller();
  }
}