// $Id$ //*************************************************************************** // File: // Sparc.cpp // // Purpose: // // History: // 7/15/01 - Vikram Adve - Created //**************************************************************************/ #include "SparcInternals.h" #include "llvm/Target/Sparc.h" #include "llvm/CodeGen/InstrScheduling.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/CodeGen/RegisterAllocation.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Method.h" #include "llvm/PassManager.h" #include using std::cerr; // Build the MachineInstruction Description Array... const MachineInstrDescriptor SparcMachineInstrDesc[] = { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS }, #include "SparcInstr.def" }; //---------------------------------------------------------------------------- // allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine // that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface) //---------------------------------------------------------------------------- // TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); } //--------------------------------------------------------------------------- // class InsertPrologEpilogCode // // Insert SAVE/RESTORE instructions for the method // // Insert prolog code at the unique method entry point. // Insert epilog code at each method exit point. // InsertPrologEpilog invokes these only if the method is not compiled // with the leaf method optimization. // //--------------------------------------------------------------------------- static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR]; class InsertPrologEpilogCode : public MethodPass { TargetMachine &Target; public: inline InsertPrologEpilogCode(TargetMachine &T) : Target(T) {} bool runOnMethod(Method *M) { MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(M); if (!mcodeInfo.isCompiledAsLeafMethod()) { InsertPrologCode(M); InsertEpilogCode(M); } return false; } void InsertPrologCode(Method *M); void InsertEpilogCode(Method *M); }; void InsertPrologEpilogCode::InsertPrologCode(Method* method) { BasicBlock* entryBB = method->getEntryNode(); unsigned N = GetInstructionsForProlog(entryBB, Target, minstrVec); assert(N <= MAX_INSTR_PER_VMINSTR); MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec(); bbMvec.insert(bbMvec.begin(), minstrVec, minstrVec+N); } void InsertPrologEpilogCode::InsertEpilogCode(Method* method) { for (Method::iterator I=method->begin(), E=method->end(); I != E; ++I) if ((*I)->getTerminator()->getOpcode() == Instruction::Ret) { BasicBlock* exitBB = *I; unsigned N = GetInstructionsForEpilog(exitBB, Target, minstrVec); MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec(); MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(exitBB->getTerminator()); // Remove the NOPs in the delay slots of the return instruction const MachineInstrInfo &mii = Target.getInstrInfo(); unsigned numNOPs = 0; while (termMvec.back()->getOpCode() == NOP) { assert( termMvec.back() == bbMvec.back()); termMvec.pop_back(); bbMvec.pop_back(); ++numNOPs; } assert(termMvec.back() == bbMvec.back()); // Check that we found the right number of NOPs and have the right // number of instructions to replace them. unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode()); assert(numNOPs == ndelays && "Missing NOPs in delay slots?"); assert(N == ndelays && "Cannot use epilog code for delay slots?"); // Append the epilog code to the end of the basic block. bbMvec.push_back(minstrVec[0]); } } //--------------------------------------------------------------------------- // class UltraSparcFrameInfo // // Purpose: // Interface to stack frame layout info for the UltraSPARC. // Starting offsets for each area of the stack frame are aligned at // a multiple of getStackFrameSizeAlignment(). //--------------------------------------------------------------------------- int UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& , bool& pos) const { pos = false; // static stack area grows downwards return StaticAreaOffsetFromFP; } int UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); if (int mod = autoVarsSize % getStackFrameSizeAlignment()) autoVarsSize += (getStackFrameSizeAlignment() - mod); return StaticAreaOffsetFromFP - autoVarsSize; } int UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); unsigned int spillAreaSize = mcInfo.getRegSpillsSize(); int offset = autoVarsSize + spillAreaSize; if (int mod = offset % getStackFrameSizeAlignment()) offset += (getStackFrameSizeAlignment() - mod); return StaticAreaOffsetFromFP - offset; } int UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { // dynamic stack area grows downwards starting at top of opt-args area unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize(); int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP; assert(offset % getStackFrameSizeAlignment() == 0); return offset; } //--------------------------------------------------------------------------- // class UltraSparcMachine // // Purpose: // Primary interface to machine description for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class TargetMachine, and creates machine-dependent subclasses // for classes such as MachineInstrInfo. // //--------------------------------------------------------------------------- UltraSparc::UltraSparc() : TargetMachine("UltraSparc-Native"), instrInfo(*this), schedInfo(*this), regInfo(*this), frameInfo(*this), cacheInfo(*this) { optSizeForSubWordData = 4; minMemOpWordSize = 8; maxAtomicMemOpWordSize = 8; } //===---------------------------------------------------------------------===// // GenerateCodeForTarget Pass // // Native code generation for a specified target. //===---------------------------------------------------------------------===// class ConstructMachineCodeForMethod : public MethodPass { TargetMachine &Target; public: inline ConstructMachineCodeForMethod(TargetMachine &T) : Target(T) {} bool runOnMethod(Method *M) { MachineCodeForMethod::construct(M, Target); return false; } }; class InstructionSelection : public MethodPass { TargetMachine &Target; public: inline InstructionSelection(TargetMachine &T) : Target(T) {} bool runOnMethod(Method *M) { if (SelectInstructionsForMethod(M, Target)) cerr << "Instr selection failed for method " << M->getName() << "\n"; return false; } }; struct FreeMachineCodeForMethod : public MethodPass { static void freeMachineCode(Instruction *I) { MachineCodeForInstruction::destroy(I); } bool runOnMethod(Method *M) { for_each(M->inst_begin(), M->inst_end(), freeMachineCode); // Don't destruct MachineCodeForMethod - The global printer needs it //MachineCodeForMethod::destruct(M); return false; } }; // addPassesToEmitAssembly - This method controls the entire code generation // process for the ultra sparc. // void UltraSparc::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // Construct and initialize the MachineCodeForMethod object for this method. PM.add(new ConstructMachineCodeForMethod(*this)); PM.add(new InstructionSelection(*this)); //PM.add(createInstructionSchedulingWithSSAPass(*this)); PM.add(getRegisterAllocator(*this)); //PM.add(new OptimizeLeafProcedures()); //PM.add(new DeleteFallThroughBranches()); //PM.add(new RemoveChainedBranches()); // should be folded with previous //PM.add(new RemoveRedundantOps()); // operations with %g0, NOP, etc. PM.add(new InsertPrologEpilogCode(*this)); // Output assembly language to the .s file. Assembly emission is split into // two parts: Method output and Global value output. This is because method // output is pipelined with all of the rest of code generation stuff, // allowing machine code representations for methods to be free'd after the // method has been emitted. // PM.add(getMethodAsmPrinterPass(PM, Out)); PM.add(new FreeMachineCodeForMethod()); // Free stuff no longer needed // Emit Module level assembly after all of the methods have been processed. PM.add(getModuleAsmPrinterPass(PM, Out)); }