//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===// // // This file implements sparse conditional constant propogation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches constant, and unconditionalizes them // * Folds multiple identical constants in the constant pool together // // Notice that: // * This pass has a habit of making definitions be dead. It is a good idea // to to run a DCE pass sometime after running this pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ConstantHandling.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/iPHINode.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/Pass.h" #include "llvm/Support/InstVisitor.h" #include "Support/STLExtras.h" #include "Support/StatisticReporter.h" #include #include #include using std::cerr; static Statistic<> NumInstRemoved("sccp\t\t- Number of instructions removed"); // InstVal class - This class represents the different lattice values that an // instruction may occupy. It is a simple class with value semantics. // namespace { class InstVal { enum { undefined, // This instruction has no known value constant, // This instruction has a constant value // Range, // This instruction is known to fall within a range overdefined // This instruction has an unknown value } LatticeValue; // The current lattice position Constant *ConstantVal; // If Constant value, the current value public: inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} // markOverdefined - Return true if this is a new status to be in... inline bool markOverdefined() { if (LatticeValue != overdefined) { LatticeValue = overdefined; return true; } return false; } // markConstant - Return true if this is a new status for us... inline bool markConstant(Constant *V) { if (LatticeValue != constant) { LatticeValue = constant; ConstantVal = V; return true; } else { assert(ConstantVal == V && "Marking constant with different value"); } return false; } inline bool isUndefined() const { return LatticeValue == undefined; } inline bool isConstant() const { return LatticeValue == constant; } inline bool isOverdefined() const { return LatticeValue == overdefined; } inline Constant *getConstant() const { return ConstantVal; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // SCCP Class // // This class does all of the work of Sparse Conditional Constant Propogation. // namespace { class SCCP : public FunctionPass, public InstVisitor { std::set BBExecutable;// The basic blocks that are executable std::map ValueState; // The state each value is in... std::vector InstWorkList;// The instruction work list std::vector BBWorkList; // The BasicBlock work list public: const char *getPassName() const { return "Sparse Conditional Constant Propogation"; } // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm, // and return true if the function was modified. // bool runOnFunction(Function *F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } //===--------------------------------------------------------------------===// // The implementation of this class // private: friend class InstVisitor; // Allow callbacks from visitor // markValueOverdefined - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. // inline bool markConstant(Instruction *I, Constant *V) { DEBUG(cerr << "markConstant: " << V << " = " << I); if (ValueState[I].markConstant(V)) { InstWorkList.push_back(I); return true; } return false; } // markValueOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the instruction work list so // that the users of the instruction are updated later. // inline bool markOverdefined(Value *V) { if (ValueState[V].markOverdefined()) { if (Instruction *I = dyn_cast(V)) { DEBUG(cerr << "markOverdefined: " << V); InstWorkList.push_back(I); // Only instructions go on the work list } return true; } return false; } // getValueState - Return the InstVal object that corresponds to the value. // This function is neccesary because not all values should start out in the // underdefined state... Argument's should be overdefined, and // constants should be marked as constants. If a value is not known to be an // Instruction object, then use this accessor to get its value from the map. // inline InstVal &getValueState(Value *V) { std::map::iterator I = ValueState.find(V); if (I != ValueState.end()) return I->second; // Common case, in the map if (Constant *CPV = dyn_cast(V)) { // Constants are constant ValueState[CPV].markConstant(CPV); } else if (isa(V)) { // Arguments are overdefined ValueState[V].markOverdefined(); } // All others are underdefined by default... return ValueState[V]; } // markExecutable - Mark a basic block as executable, adding it to the BB // work list if it is not already executable... // void markExecutable(BasicBlock *BB) { if (BBExecutable.count(BB)) return; DEBUG(cerr << "Marking BB Executable: " << BB); BBExecutable.insert(BB); // Basic block is executable! BBWorkList.push_back(BB); // Add the block to the work list! } // visit implementations - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. // void visitPHINode(PHINode *I); // Terminators void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ } void visitTerminatorInst(TerminatorInst *TI); void visitUnaryOperator(Instruction *I); void visitCastInst(CastInst *I) { visitUnaryOperator(I); } void visitBinaryOperator(Instruction *I); void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); } // Instructions that cannot be folded away... void visitStoreInst (Instruction *I) { /*returns void*/ } void visitMemAccessInst (Instruction *I) { markOverdefined(I); } void visitCallInst (Instruction *I) { markOverdefined(I); } void visitInvokeInst (Instruction *I) { markOverdefined(I); } void visitAllocationInst(Instruction *I) { markOverdefined(I); } void visitFreeInst (Instruction *I) { /*returns void*/ } void visitInstruction(Instruction *I) { // If a new instruction is added to LLVM that we don't handle... cerr << "SCCP: Don't know how to handle: " << I; markOverdefined(I); // Just in case } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void getFeasibleSuccessors(TerminatorInst *I, std::vector &Succs); // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible... // bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow.... Based on this // information, we need to update the specified user of this instruction. // void OperandChangedState(User *U) { // Only instructions use other variable values! Instruction *I = cast(U); if (!BBExecutable.count(I->getParent())) return;// Inst not executable yet! visit(I); } }; } // end anonymous namespace // createSCCPPass - This is the public interface to this file... // Pass *createSCCPPass() { return new SCCP(); } //===----------------------------------------------------------------------===// // SCCP Class Implementation // runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm, // and return true if the function was modified. // bool SCCP::runOnFunction(Function *F) { // Mark the first block of the function as being executable... markExecutable(F->front()); // Process the work lists until their are empty! while (!BBWorkList.empty() || !InstWorkList.empty()) { // Process the instruction work list... while (!InstWorkList.empty()) { Instruction *I = InstWorkList.back(); InstWorkList.pop_back(); DEBUG(cerr << "\nPopped off I-WL: " << I); // "I" got into the work list because it either made the transition from // bottom to constant, or to Overdefined. // // Update all of the users of this instruction's value... // for_each(I->use_begin(), I->use_end(), bind_obj(this, &SCCP::OperandChangedState)); } // Process the basic block work list... while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DEBUG(cerr << "\nPopped off BBWL: " << BB); // If this block only has a single successor, mark it as executable as // well... if not, terminate the do loop. // if (BB->getTerminator()->getNumSuccessors() == 1) markExecutable(BB->getTerminator()->getSuccessor(0)); // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } if (DebugFlag) { for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (!BBExecutable.count(*I)) cerr << "BasicBlock Dead:" << *I; } // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. // bool MadeChanges = false; for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) { BasicBlock *BB = *FI; for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { Instruction *Inst = *BI; InstVal &IV = ValueState[Inst]; if (IV.isConstant()) { Constant *Const = IV.getConstant(); DEBUG(cerr << "Constant: " << Const << " = " << Inst); // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); // Remove the operator from the list of definitions... and delete it. delete BB->getInstList().remove(BI); // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; } else { ++BI; } } } // Reset state so that the next invocation will have empty data structures BBExecutable.clear(); ValueState.clear(); return MadeChanges; } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void SCCP::getFeasibleSuccessors(TerminatorInst *TI, std::vector &Succs) { assert(Succs.size() == TI->getNumSuccessors() && "Succs vector wrong size!"); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isUnconditional()) { Succs[0] = true; } else { InstVal &BCValue = getValueState(BI->getCondition()); if (BCValue.isOverdefined()) { // Overdefined condition variables mean the branch could go either way. Succs[0] = Succs[1] = true; } else if (BCValue.isConstant()) { // Constant condition variables mean the branch can only go a single way Succs[BCValue.getConstant() == ConstantBool::False] = true; } } } else if (InvokeInst *II = dyn_cast(TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; } else if (SwitchInst *SI = dyn_cast(TI)) { InstVal &SCValue = getValueState(SI->getCondition()); if (SCValue.isOverdefined()) { // Overdefined condition? // All destinations are executable! Succs.assign(TI->getNumSuccessors(), true); } else if (SCValue.isConstant()) { Constant *CPV = SCValue.getConstant(); // Make sure to skip the "default value" which isn't a value for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... Succs[i] = true; return; } } // Constant value not equal to any of the branches... must execute // default branch then... Succs[0] = true; } } else { cerr << "SCCP: Don't know how to handle: " << TI; Succs.assign(TI->getNumSuccessors(), true); } } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible... // bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { assert(BBExecutable.count(To) && "Dest should always be alive!"); // Make sure the source basic block is executable!! if (!BBExecutable.count(From)) return false; // Check to make sure this edge itself is actually feasible now... TerminatorInst *FT = From->getTerminator(); std::vector SuccFeasible(FT->getNumSuccessors()); getFeasibleSuccessors(FT, SuccFeasible); // Check all edges from From to To. If any are feasible, return true. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (FT->getSuccessor(i) == To && SuccFeasible[i]) return true; // Otherwise, none of the edges are actually feasible at this time... return false; } // visit Implementations - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. // void SCCP::visitPHINode(PHINode *PN) { unsigned NumValues = PN->getNumIncomingValues(), i; InstVal *OperandIV = 0; // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is overdefined. // If there are no executable operands, the PHI remains undefined. // for (i = 0; i < NumValues; ++i) { if (isEdgeFeasible(PN->getIncomingBlock(i), PN->getParent())) { InstVal &IV = getValueState(PN->getIncomingValue(i)); if (IV.isUndefined()) continue; // Doesn't influence PHI node. if (IV.isOverdefined()) { // PHI node becomes overdefined! markOverdefined(PN); return; } if (OperandIV == 0) { // Grab the first value... OperandIV = &IV; } else { // Another value is being merged in! // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. // Check to see if there are two different constants merging... if (IV.getConstant() != OperandIV->getConstant()) { // Yes there is. This means the PHI node is not constant. // You must be overdefined poor PHI. // markOverdefined(PN); // The PHI node now becomes overdefined return; // I'm done analyzing you } } } } // If we exited the loop, this means that the PHI node only has constant // arguments that agree with each other(and OperandIV is a pointer to one // of their InstVal's) or OperandIV is null because there are no defined // incoming arguments. If this is the case, the PHI remains undefined. // if (OperandIV) { assert(OperandIV->isConstant() && "Should only be here for constants!"); markConstant(PN, OperandIV->getConstant()); // Aquire operand value } } void SCCP::visitTerminatorInst(TerminatorInst *TI) { std::vector SuccFeasible(TI->getNumSuccessors()); getFeasibleSuccessors(TI, SuccFeasible); // Mark all feasible successors executable... for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) { BasicBlock *Succ = TI->getSuccessor(i); markExecutable(Succ); // Visit all of the PHI nodes that merge values from this block... // Because this edge may be new executable, and PHI nodes that used to be // constant now may not be. // for (BasicBlock::iterator I = Succ->begin(); PHINode *PN = dyn_cast(*I); ++I) visitPHINode(PN); } } void SCCP::visitUnaryOperator(Instruction *I) { Value *V = I->getOperand(0); InstVal &VState = getValueState(V); if (VState.isOverdefined()) { // Inherit overdefinedness of operand markOverdefined(I); } else if (VState.isConstant()) { // Propogate constant value Constant *Result = isa(I) ? ConstantFoldCastInstruction(VState.getConstant(), I->getType()) : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant()); if (Result) { // This instruction constant folds! markConstant(I, Result); } else { markOverdefined(I); // Don't know how to fold this instruction. :( } } } // Handle BinaryOperators and Shift Instructions... void SCCP::visitBinaryOperator(Instruction *I) { InstVal &V1State = getValueState(I->getOperand(0)); InstVal &V2State = getValueState(I->getOperand(1)); if (V1State.isOverdefined() || V2State.isOverdefined()) { markOverdefined(I); } else if (V1State.isConstant() && V2State.isConstant()) { Constant *Result = 0; if (isa(I)) Result = ConstantFoldBinaryInstruction(I->getOpcode(), V1State.getConstant(), V2State.getConstant()); else if (isa(I)) Result = ConstantFoldShiftInstruction(I->getOpcode(), V1State.getConstant(), V2State.getConstant()); if (Result) markConstant(I, Result); // This instruction constant folds! else markOverdefined(I); // Don't know how to fold this instruction. :( } }