//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmLexer.h" #include "llvm/MC/MCAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" using namespace llvm; namespace { struct ARMOperand; // The shift types for register controlled shifts in arm memory addressing enum ShiftType { Lsl, Lsr, Asr, Ror, Rrx }; class ARMAsmParser : public TargetAsmParser { MCAsmParser &Parser; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool ParseRegister(ARMOperand &Op); bool ParseMemory(ARMOperand &Op); bool ParseShift(enum ShiftType *St, const MCExpr *ShiftAmount); bool ParseOperand(ARMOperand &Op); bool ParseDirectiveWord(unsigned Size, SMLoc L); // TODO - For now hacked versions of the next two are in here in this file to // allow some parser testing until the table gen versions are implemented. /// @name Auto-generated Match Functions /// { bool MatchInstruction(SmallVectorImpl &Operands, MCInst &Inst); /// MatchRegisterName - Match the given string to a register name, or 0 if /// there is no match. unsigned MatchRegisterName(const StringRef &Name); /// } public: ARMAsmParser(const Target &T, MCAsmParser &_Parser) : TargetAsmParser(T), Parser(_Parser) {} virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst); virtual bool ParseDirective(AsmToken DirectiveID); }; } // end anonymous namespace namespace { /// ARMOperand - Instances of this class represent a parsed ARM machine /// instruction. struct ARMOperand { enum { Token, Register, Memory } Kind; union { struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNum; bool Writeback; } Reg; // This is for all forms of ARM address expressions struct { unsigned BaseRegNum; bool OffsetIsReg; const MCExpr *Offset; // used when OffsetIsReg is false unsigned OffsetRegNum; // used when OffsetIsReg is true bool OffsetRegShifted; // only used when OffsetIsReg is true enum ShiftType ShiftType; // used when OffsetRegShifted is true const MCExpr *ShiftAmount; // used when OffsetRegShifted is true bool Preindexed; bool Postindexed; bool Negative; // only used when OffsetIsReg is true bool Writeback; } Mem; }; StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNum; } bool isToken() const {return Kind == Token; } bool isReg() const { return Kind == Register; } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } static ARMOperand CreateToken(StringRef Str) { ARMOperand Res; Res.Kind = Token; Res.Tok.Data = Str.data(); Res.Tok.Length = Str.size(); return Res; } static ARMOperand CreateReg(unsigned RegNum, bool Writeback) { ARMOperand Res; Res.Kind = Register; Res.Reg.RegNum = RegNum; Res.Reg.Writeback = Writeback; return Res; } static ARMOperand CreateMem(unsigned BaseRegNum, bool OffsetIsReg, const MCExpr *Offset, unsigned OffsetRegNum, bool OffsetRegShifted, enum ShiftType ShiftType, const MCExpr *ShiftAmount, bool Preindexed, bool Postindexed, bool Negative, bool Writeback) { ARMOperand Res; Res.Kind = Memory; Res.Mem.BaseRegNum = BaseRegNum; Res.Mem.OffsetIsReg = OffsetIsReg; Res.Mem.Offset = Offset; Res.Mem.OffsetRegNum = OffsetRegNum; Res.Mem.OffsetRegShifted = OffsetRegShifted; Res.Mem.ShiftType = ShiftType; Res.Mem.ShiftAmount = ShiftAmount; Res.Mem.Preindexed = Preindexed; Res.Mem.Postindexed = Postindexed; Res.Mem.Negative = Negative; Res.Mem.Writeback = Writeback; return Res; } }; } // end anonymous namespace. // Try to parse a register name. The token must be an Identifier when called, // and if it is a register name a Reg operand is created, the token is eaten // and false is returned. Else true is returned and no token is eaten. // TODO this is likely to change to allow different register types and or to // parse for a specific register type. bool ARMAsmParser::ParseRegister(ARMOperand &Op) { const AsmToken &Tok = getLexer().getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. unsigned RegNum; RegNum = MatchRegisterName(Tok.getString()); if (RegNum == 0) return true; getLexer().Lex(); // Eat identifier token. bool Writeback = false; const AsmToken &ExclaimTok = getLexer().getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Writeback = true; getLexer().Lex(); // Eat exclaim token } Op = ARMOperand::CreateReg(RegNum, Writeback); return false; } // Try to parse an arm memory expression. It must start with a '[' token. // TODO Only preindexing and postindexing addressing are started, unindexed // with option, etc are still to do. bool ARMAsmParser::ParseMemory(ARMOperand &Op) { const AsmToken &LBracTok = getLexer().getTok(); assert(LBracTok.is(AsmToken::LBrac) && "Token is not an Left Bracket"); getLexer().Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = getLexer().getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) return Error(BaseRegTok.getLoc(), "register expected"); unsigned BaseRegNum = MatchRegisterName(BaseRegTok.getString()); if (BaseRegNum == 0) return Error(BaseRegTok.getLoc(), "register expected"); getLexer().Lex(); // Eat identifier token. bool Preindexed = false; bool Postindexed = false; bool OffsetIsReg = false; bool Negative = false; bool Writeback = false; // First look for preindexed address forms: // [Rn, +/-Rm] // [Rn, #offset] // [Rn, +/-Rm, shift] // that is after the "[Rn" we now have see if the next token is a comma. const AsmToken &Tok = getLexer().getTok(); if (Tok.is(AsmToken::Comma)) { Preindexed = true; getLexer().Lex(); // Eat comma token. const AsmToken &NextTok = getLexer().getTok(); if (NextTok.is(AsmToken::Plus)) getLexer().Lex(); // Eat plus token. else if (NextTok.is(AsmToken::Minus)) { Negative = true; getLexer().Lex(); // Eat minus token } // See if there is a register following the "[Rn," we have so far. const AsmToken &OffsetRegTok = getLexer().getTok(); unsigned OffsetRegNum = MatchRegisterName(OffsetRegTok.getString()); bool OffsetRegShifted = false; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset; if (OffsetRegNum != 0) { OffsetIsReg = true; getLexer().Lex(); // Eat identifier token for the offset register. // Look for a comma then a shift const AsmToken &Tok = getLexer().getTok(); if (Tok.is(AsmToken::Comma)) { getLexer().Lex(); // Eat comma token. const AsmToken &Tok = getLexer().getTok(); if (ParseShift(&ShiftType, ShiftAmount)) return Error(Tok.getLoc(), "shift expected"); OffsetRegShifted = true; } } else { // "[Rn," we have so far was not followed by "Rm" // Look for #offset following the "[Rn," const AsmToken &HashTok = getLexer().getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); getLexer().Lex(); // Eat hash token. if (getParser().ParseExpression(Offset)) return true; } const AsmToken &RBracTok = getLexer().getTok(); if (RBracTok.isNot(AsmToken::RBrac)) return Error(RBracTok.getLoc(), "']' expected"); getLexer().Lex(); // Eat right bracket token. const AsmToken &ExclaimTok = getLexer().getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Writeback = true; getLexer().Lex(); // Eat exclaim token } Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback); return false; } // The "[Rn" we have so far was not followed by a comma. else if (Tok.is(AsmToken::RBrac)) { // This is a post indexing addressing forms: // [Rn], #offset // [Rn], +/-Rm // [Rn], +/-Rm, shift // that is a ']' follows after the "[Rn". Postindexed = true; Writeback = true; getLexer().Lex(); // Eat right bracket token. const AsmToken &CommaTok = getLexer().getTok(); if (CommaTok.isNot(AsmToken::Comma)) return Error(CommaTok.getLoc(), "',' expected"); getLexer().Lex(); // Eat comma token. const AsmToken &NextTok = getLexer().getTok(); if (NextTok.is(AsmToken::Plus)) getLexer().Lex(); // Eat plus token. else if (NextTok.is(AsmToken::Minus)) { Negative = true; getLexer().Lex(); // Eat minus token } // See if there is a register following the "[Rn]," we have so far. const AsmToken &OffsetRegTok = getLexer().getTok(); unsigned OffsetRegNum = MatchRegisterName(OffsetRegTok.getString()); bool OffsetRegShifted = false; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset; if (OffsetRegNum != 0) { OffsetIsReg = true; getLexer().Lex(); // Eat identifier token for the offset register. // Look for a comma then a shift const AsmToken &Tok = getLexer().getTok(); if (Tok.is(AsmToken::Comma)) { getLexer().Lex(); // Eat comma token. const AsmToken &Tok = getLexer().getTok(); if (ParseShift(&ShiftType, ShiftAmount)) return Error(Tok.getLoc(), "shift expected"); OffsetRegShifted = true; } } else { // "[Rn]," we have so far was not followed by "Rm" // Look for #offset following the "[Rn]," const AsmToken &HashTok = getLexer().getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); getLexer().Lex(); // Eat hash token. if (getParser().ParseExpression(Offset)) return true; } Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback); return false; } return true; } /// ParseShift as one of these two: /// ( lsl | lsr | asr | ror ) , # shift_amount /// rrx /// and returns true if it parses a shift otherwise it returns false. bool ARMAsmParser::ParseShift(ShiftType *St, const MCExpr *ShiftAmount) { const AsmToken &Tok = getLexer().getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; const StringRef &ShiftName = Tok.getString(); if (ShiftName == "lsl" || ShiftName == "LSL") *St = Lsl; else if (ShiftName == "lsr" || ShiftName == "LSR") *St = Lsr; else if (ShiftName == "asr" || ShiftName == "ASR") *St = Asr; else if (ShiftName == "ror" || ShiftName == "ROR") *St = Ror; else if (ShiftName == "rrx" || ShiftName == "RRX") *St = Rrx; else return true; getLexer().Lex(); // Eat shift type token. // For all but a Rotate right there must be a '#' and a shift amount if (*St != Rrx) { // Look for # following the shift type const AsmToken &HashTok = getLexer().getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); getLexer().Lex(); // Eat hash token. if (getParser().ParseExpression(ShiftAmount)) return true; } return false; } // A hack to allow some testing unsigned ARMAsmParser::MatchRegisterName(const StringRef &Name) { if (Name == "r1") return 1; else if (Name == "r2") return 2; else if (Name == "r3") return 3; else if (Name == "sp") return 13; return 0; } // A hack to allow some testing bool ARMAsmParser::MatchInstruction(SmallVectorImpl &Operands, MCInst &Inst) { struct ARMOperand Op0 = Operands[0]; assert(Op0.Kind == ARMOperand::Token && "First operand not a Token"); const StringRef &Mnemonic = Op0.getToken(); if (Mnemonic == "add" || Mnemonic == "stmfd" || Mnemonic == "str" || Mnemonic == "ldmfd" || Mnemonic == "ldr") return false; return true; } // TODO - this is a work in progress bool ARMAsmParser::ParseOperand(ARMOperand &Op) { switch (getLexer().getKind()) { case AsmToken::Identifier: if (!ParseRegister(Op)) return false; // TODO parse other operands that start with an identifier return true; case AsmToken::LBrac: if (!ParseMemory(Op)) return false; default: return true; } } bool ARMAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) { SmallVector Operands; Operands.push_back(ARMOperand::CreateToken(Name)); SMLoc Loc = getLexer().getTok().getLoc(); if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. Operands.push_back(ARMOperand()); if (ParseOperand(Operands.back())) return true; while (getLexer().is(AsmToken::Comma)) { getLexer().Lex(); // Eat the comma. // Parse and remember the operand. Operands.push_back(ARMOperand()); if (ParseOperand(Operands.back())) return true; } } if (!MatchInstruction(Operands, Inst)) return false; Error(Loc, "ARMAsmParser::ParseInstruction only partly implemented"); return true; } bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(4, DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); getLexer().Lex(); } } getLexer().Lex(); return false; } // Force static initialization. extern "C" void LLVMInitializeARMAsmParser() { RegisterAsmParser X(TheARMTarget); RegisterAsmParser Y(TheThumbTarget); }