//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a linear scan register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/Debug.h" #include "LiveIntervals.h" #include "PhysRegTracker.h" #include "VirtRegMap.h" #include #include using namespace llvm; namespace { class RA : public MachineFunctionPass { private: MachineFunction* mf_; const TargetMachine* tm_; const MRegisterInfo* mri_; LiveIntervals* li_; typedef std::list IntervalPtrs; IntervalPtrs unhandled_, fixed_, active_, inactive_, handled_; std::auto_ptr prt_; std::auto_ptr vrm_; std::auto_ptr spiller_; typedef std::vector SpillWeights; SpillWeights spillWeights_; public: virtual const char* getPassName() const { return "Linear Scan Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - register allocate the whole function bool runOnMachineFunction(MachineFunction&); void releaseMemory(); private: /// linearScan - the linear scan algorithm void linearScan(); /// initIntervalSets - initializa the four interval sets: /// unhandled, fixed, active and inactive void initIntervalSets(LiveIntervals::Intervals& li); /// processActiveIntervals - expire old intervals and move /// non-overlapping ones to the incative list void processActiveIntervals(IntervalPtrs::value_type cur); /// processInactiveIntervals - expire old intervals and move /// overlapping ones to the active list void processInactiveIntervals(IntervalPtrs::value_type cur); /// updateSpillWeights - updates the spill weights of the /// specifed physical register and its weight void updateSpillWeights(unsigned reg, SpillWeights::value_type weight); /// assignRegOrStackSlotAtInterval - assign a register if one /// is available, or spill. void assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur); /// /// register handling helpers /// /// getFreePhysReg - return a free physical register for this /// virtual register interval if we have one, otherwise return /// 0 unsigned getFreePhysReg(IntervalPtrs::value_type cur); /// assignVirt2StackSlot - assigns this virtual register to a /// stack slot. returns the stack slot int assignVirt2StackSlot(unsigned virtReg); void printIntervals(const char* const str, RA::IntervalPtrs::const_iterator i, RA::IntervalPtrs::const_iterator e) const { if (str) std::cerr << str << " intervals:\n"; for (; i != e; ++i) { std::cerr << "\t" << **i << " -> "; unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) { reg = vrm_->getPhys(reg); } std::cerr << mri_->getName(reg) << '\n'; } } // void verifyAssignment() const { // for (Virt2PhysMap::const_iterator i = v2pMap_.begin(), // e = v2pMap_.end(); i != e; ++i) // for (Virt2PhysMap::const_iterator i2 = next(i); i2 != e; ++i2) // if (MRegisterInfo::isVirtualRegister(i->second) && // (i->second == i2->second || // mri_->areAliases(i->second, i2->second))) { // const LiveIntervals::Interval // &in = li_->getInterval(i->second), // &in2 = li_->getInterval(i2->second); // if (in.overlaps(in2)) { // std::cerr << in << " overlaps " << in2 << '\n'; // assert(0); // } // } // } }; } void RA::releaseMemory() { unhandled_.clear(); active_.clear(); inactive_.clear(); fixed_.clear(); handled_.clear(); } bool RA::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); li_ = &getAnalysis(); if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_)); vrm_.reset(new VirtRegMap(*mf_)); if (!spiller_.get()) spiller_.reset(createSpiller()); initIntervalSets(li_->getIntervals()); linearScan(); spiller_->runOnMachineFunction(*mf_, *vrm_); return true; } void RA::linearScan() { // linear scan algorithm DEBUG(std::cerr << "********** LINEAR SCAN **********\n"); DEBUG(std::cerr << "********** Function: " << mf_->getFunction()->getName() << '\n'); DEBUG(printIntervals("unhandled", unhandled_.begin(), unhandled_.end())); DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end())); DEBUG(printIntervals("active", active_.begin(), active_.end())); DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); while (!unhandled_.empty() || !fixed_.empty()) { // pick the interval with the earliest start point IntervalPtrs::value_type cur; if (fixed_.empty()) { cur = unhandled_.front(); unhandled_.pop_front(); } else if (unhandled_.empty()) { cur = fixed_.front(); fixed_.pop_front(); } else if (unhandled_.front()->start() < fixed_.front()->start()) { cur = unhandled_.front(); unhandled_.pop_front(); } else { cur = fixed_.front(); fixed_.pop_front(); } DEBUG(std::cerr << "\n*** CURRENT ***: " << *cur << '\n'); processActiveIntervals(cur); processInactiveIntervals(cur); // if this register is fixed we are done if (MRegisterInfo::isPhysicalRegister(cur->reg)) { prt_->addRegUse(cur->reg); active_.push_back(cur); handled_.push_back(cur); } // otherwise we are allocating a virtual register. try to find // a free physical register or spill an interval in order to // assign it one (we could spill the current though). else { assignRegOrStackSlotAtInterval(cur); } DEBUG(printIntervals("active", active_.begin(), active_.end())); DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); // DEBUG(verifyAssignment()); } // expire any remaining active intervals for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { unsigned reg = (*i)->reg; DEBUG(std::cerr << "\tinterval " << **i << " expired\n"); if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); prt_->delRegUse(reg); } DEBUG(std::cerr << *vrm_); } void RA::initIntervalSets(LiveIntervals::Intervals& li) { assert(unhandled_.empty() && fixed_.empty() && active_.empty() && inactive_.empty() && "interval sets should be empty on initialization"); for (LiveIntervals::Intervals::iterator i = li.begin(), e = li.end(); i != e; ++i) { if (MRegisterInfo::isPhysicalRegister(i->reg)) fixed_.push_back(&*i); else unhandled_.push_back(&*i); } } void RA::processActiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing active intervals:\n"); for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) { unsigned reg = (*i)->reg; // remove expired intervals if ((*i)->expiredAt(cur->start())) { DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); prt_->delRegUse(reg); // remove from active i = active_.erase(i); } // move inactive intervals to inactive list else if (!(*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\tinterval " << **i << " inactive\n"); if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); prt_->delRegUse(reg); // add to inactive inactive_.push_back(*i); // remove from active i = active_.erase(i); } else { ++i; } } } void RA::processInactiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing inactive intervals:\n"); for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) { unsigned reg = (*i)->reg; // remove expired intervals if ((*i)->expiredAt(cur->start())) { DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); // remove from inactive i = inactive_.erase(i); } // move re-activated intervals in active list else if ((*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\tinterval " << **i << " active\n"); if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); prt_->addRegUse(reg); // add to active active_.push_back(*i); // remove from inactive i = inactive_.erase(i); } else { ++i; } } } void RA::updateSpillWeights(unsigned reg, SpillWeights::value_type weight) { spillWeights_[reg] += weight; for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) spillWeights_[*as] += weight; } void RA::assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tallocating current interval: "); PhysRegTracker backupPrt = *prt_; spillWeights_.assign(mri_->getNumRegs(), 0.0); // for each interval in active update spill weights for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); i != e; ++i) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); updateSpillWeights(reg, (*i)->weight); } // for every interval in inactive we overlap with, mark the // register as not free and update spill weights for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { if (cur->overlaps(**i)) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); prt_->addRegUse(reg); updateSpillWeights(reg, (*i)->weight); } } // for every interval in fixed we overlap with, // mark the register as not free and update spill weights for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end(); i != e; ++i) { if (cur->overlaps(**i)) { unsigned reg = (*i)->reg; prt_->addRegUse(reg); updateSpillWeights(reg, (*i)->weight); } } unsigned physReg = getFreePhysReg(cur); // restore the physical register tracker *prt_ = backupPrt; // if we find a free register, we are done: assign this virtual to // the free physical register and add this interval to the active // list. if (physReg) { DEBUG(std::cerr << mri_->getName(physReg) << '\n'); vrm_->assignVirt2Phys(cur->reg, physReg); prt_->addRegUse(physReg); active_.push_back(cur); handled_.push_back(cur); return; } DEBUG(std::cerr << "no free registers\n"); DEBUG(std::cerr << "\tassigning stack slot at interval "<< *cur << ":\n"); float minWeight = std::numeric_limits::infinity(); unsigned minReg = 0; const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (minWeight > spillWeights_[reg]) { minWeight = spillWeights_[reg]; minReg = reg; } } DEBUG(std::cerr << "\t\tregister with min weight: " << mri_->getName(minReg) << " (" << minWeight << ")\n"); // if the current has the minimum weight, we need to modify it, // push it back in unhandled and let the linear scan algorithm run // again if (cur->weight <= minWeight) { DEBUG(std::cerr << "\t\t\tspilling(c): " << *cur << '\n';); int slot = vrm_->assignVirt2StackSlot(cur->reg); li_->updateSpilledInterval(*cur, *vrm_, slot); // if we didn't eliminate the interval find where to add it // back to unhandled. We need to scan since unhandled are // sorted on earliest start point and we may have changed our // start point. if (!cur->empty()) { IntervalPtrs::iterator it = unhandled_.begin(); while (it != unhandled_.end() && (*it)->start() < cur->start()) ++it; unhandled_.insert(it, cur); } return; } // push the current interval back to unhandled since we are going // to re-run at least this iteration. Since we didn't modify it it // should go back right in the front of the list unhandled_.push_front(cur); // otherwise we spill all intervals aliasing the register with // minimum weight, rollback to the interval with the earliest // start point and let the linear scan algorithm run again assert(MRegisterInfo::isPhysicalRegister(minReg) && "did not choose a register to spill?"); std::vector toSpill(mri_->getNumRegs(), false); toSpill[minReg] = true; for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as) toSpill[*as] = true; unsigned earliestStart = cur->start(); for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg) && toSpill[vrm_->getPhys(reg)] && cur->overlaps(**i)) { DEBUG(std::cerr << "\t\t\tspilling(a): " << **i << '\n'); earliestStart = std::min(earliestStart, (*i)->start()); int slot = vrm_->assignVirt2StackSlot((*i)->reg); li_->updateSpilledInterval(**i, *vrm_, slot); } } for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg) && toSpill[vrm_->getPhys(reg)] && cur->overlaps(**i)) { DEBUG(std::cerr << "\t\t\tspilling(i): " << **i << '\n'); earliestStart = std::min(earliestStart, (*i)->start()); int slot = vrm_->assignVirt2StackSlot((*i)->reg); li_->updateSpilledInterval(**i, *vrm_, slot); } } DEBUG(std::cerr << "\t\trolling back to: " << earliestStart << '\n'); // scan handled in reverse order and undo each one, restoring the // state of unhandled and fixed while (!handled_.empty()) { IntervalPtrs::value_type i = handled_.back(); // if this interval starts before t we are done if (!i->empty() && i->start() < earliestStart) break; DEBUG(std::cerr << "\t\t\tundo changes for: " << *i << '\n'); handled_.pop_back(); IntervalPtrs::iterator it; if ((it = find(active_.begin(), active_.end(), i)) != active_.end()) { active_.erase(it); if (MRegisterInfo::isPhysicalRegister(i->reg)) { fixed_.push_front(i); prt_->delRegUse(i->reg); } else { prt_->delRegUse(vrm_->getPhys(i->reg)); vrm_->clearVirt(i->reg); if (i->spilled()) { if (!i->empty()) { IntervalPtrs::iterator it = unhandled_.begin(); while (it != unhandled_.end() && (*it)->start() < i->start()) ++it; unhandled_.insert(it, i); } } else unhandled_.push_front(i); } } else if ((it = find(inactive_.begin(), inactive_.end(), i)) != inactive_.end()) { inactive_.erase(it); if (MRegisterInfo::isPhysicalRegister(i->reg)) fixed_.push_front(i); else { vrm_->clearVirt(i->reg); if (i->spilled()) { if (!i->empty()) { IntervalPtrs::iterator it = unhandled_.begin(); while (it != unhandled_.end() && (*it)->start() < i->start()) ++it; unhandled_.insert(it, i); } } else unhandled_.push_front(i); } } else { if (MRegisterInfo::isPhysicalRegister(i->reg)) fixed_.push_front(i); else { vrm_->clearVirt(i->reg); unhandled_.push_front(i); } } } // scan the rest and undo each interval that expired after t and // insert it in active (the next iteration of the algorithm will // put it in inactive if required) IntervalPtrs::iterator i = handled_.begin(), e = handled_.end(); for (; i != e; ++i) { if (!(*i)->expiredAt(earliestStart) && (*i)->expiredAt(cur->start())) { DEBUG(std::cerr << "\t\t\tundo changes for: " << **i << '\n'); active_.push_back(*i); if (MRegisterInfo::isPhysicalRegister((*i)->reg)) prt_->addRegUse((*i)->reg); else prt_->addRegUse(vrm_->getPhys((*i)->reg)); } } } unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur) { const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (prt_->isRegAvail(reg)) return reg; } return 0; } FunctionPass* llvm::createLinearScanRegisterAllocator() { return new RA(); }