//===-- MachOEmitter.cpp - Target-independent Mach-O Emitter code --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MachO.h" #include "MachOWriter.h" #include "MachOCodeEmitter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRelocation.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/OutputBuffer.h" #include //===----------------------------------------------------------------------===// // MachOCodeEmitter Implementation //===----------------------------------------------------------------------===// namespace llvm { MachOCodeEmitter::MachOCodeEmitter(MachOWriter &mow, MachOSection &mos) : ObjectCodeEmitter(&mos), MOW(mow), TM(MOW.TM) { is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; isLittleEndian = TM.getTargetData()->isLittleEndian(); TAI = TM.getTargetAsmInfo(); } /// startFunction - This callback is invoked when a new machine function is /// about to be emitted. void MachOCodeEmitter::startFunction(MachineFunction &MF) { const TargetData *TD = TM.getTargetData(); const Function *F = MF.getFunction(); // Align the output buffer to the appropriate alignment, power of 2. unsigned FnAlign = F->getAlignment(); unsigned TDAlign = TD->getPrefTypeAlignment(F->getType()); unsigned Align = Log2_32(std::max(FnAlign, TDAlign)); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); // Get the Mach-O Section that this function belongs in. MachOSection *MOS = MOW.getTextSection(); // Upgrade the section alignment if required. if (MOS->align < Align) MOS->align = Align; MOS->emitAlignment(Align); // Create symbol for function entry const GlobalValue *FuncV = MF.getFunction(); MachOSym FnSym(FuncV, MOW.Mang->getMangledName(FuncV), MOS->Index, TAI); FnSym.n_value = getCurrentPCOffset(); // add it to the symtab. MOW.SymbolTable.push_back(FnSym); } /// finishFunction - This callback is invoked after the function is completely /// finished. bool MachOCodeEmitter::finishFunction(MachineFunction &MF) { // Get the Mach-O Section that this function belongs in. MachOSection *MOS = MOW.getTextSection(); // Emit constant pool to appropriate section(s) emitConstantPool(MF.getConstantPool()); // Emit jump tables to appropriate section emitJumpTables(MF.getJumpTableInfo()); // If we have emitted any relocations to function-specific objects such as // basic blocks, constant pools entries, or jump tables, record their // addresses now so that we can rewrite them with the correct addresses // later. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; intptr_t Addr; if (MR.isBasicBlock()) { Addr = getMachineBasicBlockAddress(MR.getBasicBlock()); MR.setConstantVal(MOS->Index); MR.setResultPointer((void*)Addr); } else if (MR.isJumpTableIndex()) { Addr = getJumpTableEntryAddress(MR.getJumpTableIndex()); MR.setConstantVal(MOW.getJumpTableSection()->Index); MR.setResultPointer((void*)Addr); } else if (MR.isConstantPoolIndex()) { Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex()); MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]); MR.setResultPointer((void*)Addr); } else if (MR.isGlobalValue()) { // FIXME: This should be a set or something that uniques MOW.PendingGlobals.push_back(MR.getGlobalValue()); } else { llvm_unreachable("Unhandled relocation type"); } MOS->addRelocation(MR); } Relocations.clear(); // Clear per-function data structures. CPLocations.clear(); CPSections.clear(); JTLocations.clear(); MBBLocations.clear(); return false; } /// emitConstantPool - For each constant pool entry, figure out which section /// the constant should live in, allocate space for it, and emit it to the /// Section data buffer. void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; // FIXME: handle PIC codegen assert(TM.getRelocationModel() != Reloc::PIC_ && "PIC codegen not yet handled for mach-o jump tables!"); // Although there is no strict necessity that I am aware of, we will do what // gcc for OS X does and put each constant pool entry in a section of constant // objects of a certain size. That means that float constants go in the // literal4 section, and double objects go in literal8, etc. // // FIXME: revisit this decision if we ever do the "stick everything into one // "giant object for PIC" optimization. for (unsigned i = 0, e = CP.size(); i != e; ++i) { const Type *Ty = CP[i].getType(); unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty); MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal); OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian); CPLocations.push_back(Sec->size()); CPSections.push_back(Sec->Index); // Allocate space in the section for the global. // FIXME: need alignment? // FIXME: share between here and AddSymbolToSection? for (unsigned j = 0; j < Size; ++j) SecDataOut.outbyte(0); MachOWriter::InitMem(CP[i].Val.ConstVal, CPLocations[i], TM.getTargetData(), Sec); } } /// emitJumpTables - Emit all the jump tables for a given jump table info /// record to the appropriate section. void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; // FIXME: handle PIC codegen assert(TM.getRelocationModel() != Reloc::PIC_ && "PIC codegen not yet handled for mach-o jump tables!"); MachOSection *Sec = MOW.getJumpTableSection(); unsigned TextSecIndex = MOW.getTextSection()->Index; OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian); for (unsigned i = 0, e = JT.size(); i != e; ++i) { // For each jump table, record its offset from the start of the section, // reserve space for the relocations to the MBBs, and add the relocations. const std::vector &MBBs = JT[i].MBBs; JTLocations.push_back(Sec->size()); for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { MachineRelocation MR(MOW.GetJTRelocation(Sec->size(), MBBs[mi])); MR.setResultPointer((void *)JTLocations[i]); MR.setConstantVal(TextSecIndex); Sec->addRelocation(MR); SecDataOut.outaddr(0); } } } } // end namespace llvm