//===-- llvm/Support/APInt.h - For Arbitrary Precision Integer -*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file was developed by Sheng Zhou and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integral // constant values. // //===----------------------------------------------------------------------===// #ifndef LLVM_APINT_H #define LLVM_APINT_H #include "llvm/Support/DataTypes.h" #include #include namespace llvm { /// Forward declaration. class APInt; namespace APIntOps { APInt udiv(const APInt& LHS, const APInt& RHS); APInt urem(const APInt& LHS, const APInt& RHS); } //===----------------------------------------------------------------------===// // APInt Class //===----------------------------------------------------------------------===// /// APInt - This class represents arbitrary precision constant integral values. /// It is a functional replacement for common case unsigned integer type like /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width /// integer sizes and large integer value types such as 3-bits, 15-bits, or more /// than 64-bits of precision. APInt provides a variety of arithmetic operators /// and methods to manipulate integer values of any bit-width. It supports both /// the typical integer arithmetic and comparison operations as well as bitwise /// manipulation. /// /// The class has several invariants worth noting: /// * All bit, byte, and word positions are zero-based. /// * Once the bit width is set, it doesn't change except by the Truncate, /// SignExtend, or ZeroExtend operations. /// * All binary operators must be on APInt instances of the same bit width. /// Attempting to use these operators on instances with different bit /// widths will yield an assertion. /// * The value is stored canonically as an unsigned value. For operations /// where it makes a difference, there are both signed and unsigned variants /// of the operation. For example, sdiv and udiv. However, because the bit /// widths must be the same, operations such as Mul and Add produce the same /// results regardless of whether the values are interpreted as signed or /// not. /// * In general, the class tries to follow the style of computation that LLVM /// uses in its IR. This simplifies its use for LLVM. /// /// @brief Class for arbitrary precision integers. class APInt { unsigned BitWidth; ///< The number of bits in this APInt. /// This union is used to store the integer value. When the /// integer bit-width <= 64, it uses VAL; /// otherwise it uses the pVal. union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; /// This enum is just used to hold a constant we needed for APInt. enum { APINT_BITS_PER_WORD = sizeof(uint64_t) * 8 }; /// Here one word's bitwidth equals to that of uint64_t. /// @returns the number of words to hold the integer value of this APInt. /// @brief Get the number of words. inline unsigned getNumWords() const { return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; } /// @returns true if the number of bits <= 64, false otherwise. /// @brief Determine if this APInt just has one word to store value. inline bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } /// @returns the word position for the specified bit position. static inline unsigned whichWord(unsigned bitPosition) { return bitPosition / APINT_BITS_PER_WORD; } /// @returns the byte position for the specified bit position. static inline unsigned whichByte(unsigned bitPosition) { return (bitPosition % APINT_BITS_PER_WORD) / 8; } /// @returns the bit position in a word for the specified bit position /// in APInt. static inline unsigned whichBit(unsigned bitPosition) { return bitPosition % APINT_BITS_PER_WORD; } /// @returns a uint64_t type integer with just bit position at /// "whichBit(bitPosition)" setting, others zero. static inline uint64_t maskBit(unsigned bitPosition) { return (static_cast(1)) << whichBit(bitPosition); } /// This method is used internally to clear the to "N" bits that are not used /// by the APInt. This is needed after a word is assigned a value to ensure /// that those bits are zero'd out. /// @brief Clear high order bits inline void clearUnusedBits() { if (isSingleWord()) VAL &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth); else pVal[getNumWords() - 1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - (whichBit(BitWidth - 1) + 1)); } /// @returns the corresponding word for the specified bit position. inline uint64_t& getWord(unsigned bitPosition) { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// @returns the corresponding word for the specified bit position. /// This is a constant version. inline uint64_t getWord(unsigned bitPosition) const { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// @brief Converts a char array into an integer. void fromString(unsigned numBits, const char *StrStart, unsigned slen, uint8_t radix); public: /// @brief Create a new APInt of numBits bit-width, and initialized as val. APInt(unsigned numBits, uint64_t val); /// @brief Create a new APInt of numBits bit-width, and initialized as /// bigVal[]. APInt(unsigned numBits, unsigned numWords, uint64_t bigVal[]); /// @brief Create a new APInt by translating the string represented /// integer value. APInt(unsigned numBits, const std::string& Val, uint8_t radix); /// @brief Create a new APInt by translating the char array represented /// integer value. APInt(unsigned numBits, const char StrStart[], unsigned slen, uint8_t radix); /// @brief Copy Constructor. APInt(const APInt& API); /// @brief Destructor. ~APInt(); /// @brief Copy assignment operator. APInt& operator=(const APInt& RHS); /// Assigns an integer value to the APInt. /// @brief Assignment operator. APInt& operator=(uint64_t RHS); /// Increments the APInt by one. /// @brief Postfix increment operator. inline const APInt operator++(int) { APInt API(*this); ++(*this); return API; } /// Increments the APInt by one. /// @brief Prefix increment operator. APInt& operator++(); /// Decrements the APInt by one. /// @brief Postfix decrement operator. inline const APInt operator--(int) { APInt API(*this); --(*this); return API; } /// Decrements the APInt by one. /// @brief Prefix decrement operator. APInt& operator--(); /// Performs bitwise AND operation on this APInt and the given APInt& RHS, /// assigns the result to this APInt. /// @brief Bitwise AND assignment operator. APInt& operator&=(const APInt& RHS); /// Performs bitwise OR operation on this APInt and the given APInt& RHS, /// assigns the result to this APInt. /// @brief Bitwise OR assignment operator. APInt& operator|=(const APInt& RHS); /// Performs bitwise XOR operation on this APInt and the given APInt& RHS, /// assigns the result to this APInt. /// @brief Bitwise XOR assignment operator. APInt& operator^=(const APInt& RHS); /// Performs a bitwise complement operation on this APInt. /// @brief Bitwise complement operator. APInt operator~() const; /// Multiplies this APInt by the given APInt& RHS and /// assigns the result to this APInt. /// @brief Multiplication assignment operator. APInt& operator*=(const APInt& RHS); /// Adds this APInt by the given APInt& RHS and /// assigns the result to this APInt. /// @brief Addition assignment operator. APInt& operator+=(const APInt& RHS); /// Subtracts this APInt by the given APInt &RHS and /// assigns the result to this APInt. /// @brief Subtraction assignment operator. APInt& operator-=(const APInt& RHS); /// Performs bitwise AND operation on this APInt and /// the given APInt& RHS. /// @brief Bitwise AND operator. APInt operator&(const APInt& RHS) const; /// Performs bitwise OR operation on this APInt and the given APInt& RHS. /// @brief Bitwise OR operator. APInt operator|(const APInt& RHS) const; /// Performs bitwise XOR operation on this APInt and the given APInt& RHS. /// @brief Bitwise XOR operator. APInt operator^(const APInt& RHS) const; /// Performs logical negation operation on this APInt. /// @brief Logical negation operator. bool operator !() const; /// Multiplies this APInt by the given APInt& RHS. /// @brief Multiplication operator. APInt operator*(const APInt& RHS) const; /// Adds this APInt by the given APInt& RHS. /// @brief Addition operator. APInt operator+(const APInt& RHS) const; /// Subtracts this APInt by the given APInt& RHS /// @brief Subtraction operator. APInt operator-(const APInt& RHS) const; /// @brief Unary negation operator inline APInt operator-() const { return APInt(BitWidth, 0) - (*this); } /// @brief Array-indexing support. bool operator[](unsigned bitPosition) const; /// Compare this APInt with the given APInt& RHS /// for the validity of the equality relationship. /// @brief Equality operator. bool operator==(const APInt& RHS) const; /// Compare this APInt with the given uint64_t value /// for the validity of the equality relationship. /// @brief Equality operator. bool operator==(uint64_t Val) const; /// Compare this APInt with the given APInt& RHS /// for the validity of the inequality relationship. /// @brief Inequality operator. inline bool operator!=(const APInt& RHS) const { return !((*this) == RHS); } /// Compare this APInt with the given uint64_t value /// for the validity of the inequality relationship. /// @brief Inequality operator. inline bool operator!=(uint64_t Val) const { return !((*this) == Val); } /// @brief Equality comparison bool eq(const APInt &RHS) const { return (*this) == RHS; } /// @brief Inequality comparison bool ne(const APInt &RHS) const { return !((*this) == RHS); } /// @brief Unsigned less than comparison bool ult(const APInt& RHS) const; /// @brief Signed less than comparison bool slt(const APInt& RHS) const; /// @brief Unsigned less or equal comparison bool ule(const APInt& RHS) const { return ult(RHS) || eq(RHS); } /// @brief Signed less or equal comparison bool sle(const APInt& RHS) const { return slt(RHS) || eq(RHS); } /// @brief Unsigned greather than comparison bool ugt(const APInt& RHS) const { return !ult(RHS) && !eq(RHS); } /// @brief Signed greather than comparison bool sgt(const APInt& RHS) const { return !slt(RHS) && !eq(RHS); } /// @brief Unsigned greater or equal comparison bool uge(const APInt& RHS) const { return !ult(RHS); } /// @brief Signed greather or equal comparison bool sge(const APInt& RHS) const { return !slt(RHS); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt ashr(unsigned shiftAmt) const; /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt lshr(unsigned shiftAmt) const; /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt shl(unsigned shiftAmt) const; /// Signed divide this APInt by APInt RHS. /// @brief Signed division function for APInt. inline APInt sdiv(const APInt& RHS) const { bool isNegativeLHS = (*this)[BitWidth - 1]; bool isNegativeRHS = RHS[RHS.BitWidth - 1]; APInt API = APIntOps::udiv( isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS); return isNegativeLHS != isNegativeRHS ? -API : API;; } /// Unsigned divide this APInt by APInt RHS. /// @brief Unsigned division function for APInt. APInt udiv(const APInt& RHS) const; /// Signed remainder operation on APInt. /// @brief Function for signed remainder operation. inline APInt srem(const APInt& RHS) const { bool isNegativeLHS = (*this)[BitWidth - 1]; bool isNegativeRHS = RHS[RHS.BitWidth - 1]; APInt API = APIntOps::urem( isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS); return isNegativeLHS ? -API : API; } /// Unsigned remainder operation on APInt. /// @brief Function for unsigned remainder operation. APInt urem(const APInt& RHS) const; /// Truncate the APInt to a specified width. It is an error to specify a width /// that is greater than or equal to the current width. /// @brief Truncate to new width. void trunc(unsigned width); /// This operation sign extends the APInt to a new width. If the high order /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. /// It is an error to specify a width that is less than or equal to the /// current width. /// @brief Sign extend to a new width. void sext(unsigned width); /// This operation zero extends the APInt to a new width. Thie high order bits /// are filled with 0 bits. It is an error to specify a width that is less /// than or equal to the current width. /// @brief Zero extend to a new width. void zext(unsigned width); /// @brief Set every bit to 1. APInt& set(); /// Set the given bit to 1 whose position is given as "bitPosition". /// @brief Set a given bit to 1. APInt& set(unsigned bitPosition); /// @brief Set every bit to 0. APInt& clear(); /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. APInt& clear(unsigned bitPosition); /// @brief Toggle every bit to its opposite value. APInt& flip(); /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. APInt& flip(unsigned bitPosition); /// This function returns the number of active bits which is defined as the /// bit width minus the number of leading zeros. This is used in several /// computations to see how "wide" the value is. /// @brief Compute the number of active bits in the value inline unsigned getActiveBits() const { return getNumWords() * APINT_BITS_PER_WORD - countLeadingZeros(); } /// @returns a uint64_t value from this APInt. If this APInt contains a single /// word, just returns VAL, otherwise pVal[0]. inline uint64_t getValue(bool isSigned = false) const { if (isSingleWord()) return isSigned ? int64_t(VAL << (64 - BitWidth)) >> (64 - BitWidth) : VAL; unsigned n = getActiveBits(); if (n <= 64) return pVal[0]; assert(0 && "This APInt's bitwidth > 64"); } /// @returns the largest value for an APInt of the specified bit-width and /// if isSign == true, it should be largest signed value, otherwise largest /// unsigned value. /// @brief Gets max value of the APInt with bitwidth <= 64. static APInt getMaxValue(unsigned numBits, bool isSign); /// @returns the smallest value for an APInt of the given bit-width and /// if isSign == true, it should be smallest signed value, otherwise zero. /// @brief Gets min value of the APInt with bitwidth <= 64. static APInt getMinValue(unsigned numBits, bool isSign); /// @returns the all-ones value for an APInt of the specified bit-width. /// @brief Get the all-ones value. static APInt getAllOnesValue(unsigned numBits); /// @returns the '0' value for an APInt of the specified bit-width. /// @brief Get the '0' value. static APInt getNullValue(unsigned numBits); /// This converts the APInt to a boolean valy as a test against zero. /// @brief Boolean conversion function. inline bool getBoolValue() const { return countLeadingZeros() != BitWidth; } /// @returns a character interpretation of the APInt. std::string toString(uint8_t radix = 10) const; /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the low bits and right shift to the least significant bit. /// @returns the high "numBits" bits of this APInt. APInt getHiBits(unsigned numBits) const; /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the high bits. /// @returns the low "numBits" bits of this APInt. APInt getLoBits(unsigned numBits) const; /// @returns true if the argument APInt value is a power of two > 0. bool isPowerOf2() const; /// @returns the number of zeros from the most significant bit to the first /// one bits. unsigned countLeadingZeros() const; /// @returns the number of zeros from the least significant bit to the first /// one bit. unsigned countTrailingZeros() const; /// @returns the number of set bits. unsigned countPopulation() const; /// @returns the total number of bits. inline unsigned getBitWidth() const { return BitWidth; } /// @brief Check if this APInt has a N-bits integer value. inline bool isIntN(unsigned N) const { assert(N && "N == 0 ???"); if (isSingleWord()) { return VAL == (VAL & (~0ULL >> (64 - N))); } else { APInt Tmp(N, getNumWords(), pVal); return Tmp == (*this); } } /// @returns a byte-swapped representation of this APInt Value. APInt byteSwap() const; /// @returns the floor log base 2 of this APInt. inline unsigned logBase2() const { return getNumWords() * APINT_BITS_PER_WORD - 1 - countLeadingZeros(); } /// @brief Converts this APInt to a double value. double roundToDouble(bool isSigned = false) const; }; namespace APIntOps { /// @brief Check if the specified APInt has a N-bits integer value. inline bool isIntN(unsigned N, const APInt& APIVal) { return APIVal.isIntN(N); } /// @returns true if the argument APInt value is a sequence of ones /// starting at the least significant bit with the remainder zero. inline const bool isMask(unsigned numBits, const APInt& APIVal) { return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0; } /// @returns true if the argument APInt value contains a sequence of ones /// with the remainder zero. inline const bool isShiftedMask(unsigned numBits, const APInt& APIVal) { return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal); } /// @returns a byte-swapped representation of the specified APInt Value. inline APInt byteSwap(const APInt& APIVal) { return APIVal.byteSwap(); } /// @returns the floor log base 2 of the specified APInt value. inline unsigned logBase2(const APInt& APIVal) { return APIVal.logBase2(); } /// @returns the greatest common divisor of the two values /// using Euclid's algorithm. APInt GreatestCommonDivisor(const APInt& API1, const APInt& API2); /// @brief Converts the given APInt to a double value. inline double RoundAPIntToDouble(const APInt& APIVal, bool isSigned = false) { return APIVal.roundToDouble(isSigned); } /// @brief Converts the given APInt to a float vlalue. inline float RoundAPIntToFloat(const APInt& APIVal) { return float(RoundAPIntToDouble(APIVal)); } /// @brief Converts the given double value into a APInt. APInt RoundDoubleToAPInt(double Double); /// @brief Converts the given float value into a APInt. inline APInt RoundFloatToAPInt(float Float) { return RoundDoubleToAPInt(double(Float)); } /// Arithmetic right-shift the APInt by shiftAmt. /// @brief Arithmetic right-shift function. inline APInt ashr(const APInt& LHS, unsigned shiftAmt) { return LHS.ashr(shiftAmt); } /// Logical right-shift the APInt by shiftAmt. /// @brief Logical right-shift function. inline APInt lshr(const APInt& LHS, unsigned shiftAmt) { return LHS.lshr(shiftAmt); } /// Left-shift the APInt by shiftAmt. /// @brief Left-shift function. inline APInt shl(const APInt& LHS, unsigned shiftAmt) { return LHS.shl(shiftAmt); } /// Signed divide APInt LHS by APInt RHS. /// @brief Signed division function for APInt. inline APInt sdiv(const APInt& LHS, const APInt& RHS) { return LHS.sdiv(RHS); } /// Unsigned divide APInt LHS by APInt RHS. /// @brief Unsigned division function for APInt. inline APInt udiv(const APInt& LHS, const APInt& RHS) { return LHS.udiv(RHS); } /// Signed remainder operation on APInt. /// @brief Function for signed remainder operation. inline APInt srem(const APInt& LHS, const APInt& RHS) { return LHS.srem(RHS); } /// Unsigned remainder operation on APInt. /// @brief Function for unsigned remainder operation. inline APInt urem(const APInt& LHS, const APInt& RHS) { return LHS.urem(RHS); } /// Performs multiplication on APInt values. /// @brief Function for multiplication operation. inline APInt mul(const APInt& LHS, const APInt& RHS) { return LHS * RHS; } /// Performs addition on APInt values. /// @brief Function for addition operation. inline APInt add(const APInt& LHS, const APInt& RHS) { return LHS + RHS; } /// Performs subtraction on APInt values. /// @brief Function for subtraction operation. inline APInt sub(const APInt& LHS, const APInt& RHS) { return LHS - RHS; } /// Performs bitwise AND operation on APInt LHS and /// APInt RHS. /// @brief Bitwise AND function for APInt. inline APInt And(const APInt& LHS, const APInt& RHS) { return LHS & RHS; } /// Performs bitwise OR operation on APInt LHS and APInt RHS. /// @brief Bitwise OR function for APInt. inline APInt Or(const APInt& LHS, const APInt& RHS) { return LHS | RHS; } /// Performs bitwise XOR operation on APInt. /// @brief Bitwise XOR function for APInt. inline APInt Xor(const APInt& LHS, const APInt& RHS) { return LHS ^ RHS; } /// Performs a bitwise complement operation on APInt. /// @brief Bitwise complement function. inline APInt Not(const APInt& APIVal) { return ~APIVal; } } // End of APIntOps namespace } // End of llvm namespace #endif