//===-- X86IntelAsmPrinter.cpp - Convert X86 LLVM code to Intel assembly --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to Intel format assembly language. // This printer is the output mechanism used by `llc'. // //===----------------------------------------------------------------------===// #include "X86IntelAsmPrinter.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/Mangler.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86IntelAsmPrinter::runOnMachineFunction(MachineFunction &MF) { if (forDarwin) { // Let PassManager know we need debug information and relay // the MachineDebugInfo address on to DwarfWriter. DW.SetDebugInfo(&getAnalysis()); } SetupMachineFunction(MF); O << "\n\n"; if (forDarwin) { // Emit pre-function debug information. DW.BeginFunction(MF); } // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. SwitchSection("\t.text\n", MF.getFunction()); EmitAlignment(4); O << "\t.globl\t" << CurrentFnName << "\n"; if (HasDotTypeDotSizeDirective) O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block if there are any predecessors. if (I->pred_begin() != I->pred_end()) O << PrivateGlobalPrefix << "BB" << CurrentFnName << "_" << I->getNumber() << ":\t" << CommentString << " " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } if (forDarwin) { // Emit post-function debug information. DW.EndFunction(MF); } // We didn't modify anything. return false; } void X86IntelAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) { unsigned char value = MI->getOperand(Op).getImmedValue(); assert(value <= 7 && "Invalid ssecc argument!"); switch (value) { case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; } } void X86IntelAsmPrinter::printOp(const MachineOperand &MO, const char *Modifier) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << PrivateGlobalPrefix << "BB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber () << "\t# " << MBBOp->getBasicBlock ()->getName (); return; } case MachineOperand::MO_PCRelativeDisp: assert(0 && "Shouldn't use addPCDisp() when building X86 MachineInstrs"); abort (); return; case MachineOperand::MO_ConstantPoolIndex: { bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp) O << "OFFSET "; O << "[" << PrivateGlobalPrefix << "CPI" << getFunctionNumber() << "_" << MO.getConstantPoolIndex(); if (forDarwin && TM.getRelocationModel() == Reloc::PIC) O << "-\"L" << getFunctionNumber() << "$pb\""; int Offset = MO.getOffset(); if (Offset > 0) O << " + " << Offset; else if (Offset < 0) O << Offset; O << "]"; return; } case MachineOperand::MO_GlobalAddress: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp && !isCallOp) O << "OFFSET "; if (forDarwin && TM.getRelocationModel() != Reloc::Static) { GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); if (!isMemOp && !isCallOp) O << '$'; // Link-once, External, or Weakly-linked global variables need // non-lazily-resolved stubs if (GV->isExternal() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()) { // Dynamically-resolved functions need a stub for the function. if (isCallOp && isa(GV) && cast(GV)->isExternal()) { FnStubs.insert(Name); O << "L" << Name << "$stub"; } else { GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; } } else { O << Mang->getValueName(GV); } if (!isCallOp && TM.getRelocationModel() == Reloc::PIC) O << "-\"L" << getFunctionNumber() << "$pb\""; } else O << Mang->getValueName(MO.getGlobal()); int Offset = MO.getOffset(); if (Offset > 0) O << " + " << Offset; else if (Offset < 0) O << Offset; return; } case MachineOperand::MO_ExternalSymbol: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); if (isCallOp && forDarwin && TM.getRelocationModel() != Reloc::Static) { std::string Name(GlobalPrefix); Name += MO.getSymbolName(); FnStubs.insert(Name); O << "L" << Name << "$stub"; return; } if (!isCallOp) O << "OFFSET "; O << GlobalPrefix << MO.getSymbolName(); return; } default: O << ""; return; } } void X86IntelAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op){ assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); if (BaseReg.isFrameIndex()) { O << "[frame slot #" << BaseReg.getFrameIndex(); if (DispSpec.getImmedValue()) O << " + " << DispSpec.getImmedValue(); O << "]"; return; } O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(BaseReg, "mem"); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(IndexReg); NeedPlus = true; } if (DispSpec.isGlobalAddress() || DispSpec.isConstantPoolIndex()) { if (NeedPlus) O << " + "; printOp(DispSpec, "mem"); } else { int DispVal = DispSpec.getImmedValue(); if (DispVal || (!BaseReg.getReg() && !IndexReg.getReg())) { if (NeedPlus) if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } O << DispVal; } } O << "]"; } void X86IntelAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) { O << "\"L" << getFunctionNumber() << "$pb\"\n"; O << "\"L" << getFunctionNumber() << "$pb\":"; } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void X86IntelAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. printInstruction(MI); } bool X86IntelAsmPrinter::doInitialization(Module &M) { X86SharedAsmPrinter::doInitialization(M); // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. // // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an // instruction as a reference to the register named sp, and if you try to // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased // before being looked up in the symbol table. This creates spurious // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' // mode, and decorate all register names with percent signs. O << "\t.intel_syntax\n"; return false; } // Include the auto-generated portion of the assembly writer. #include "X86GenAsmWriter1.inc"