//===- MCExpr.h - Assembly Level Expressions --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCEXPR_H #define LLVM_MC_MCEXPR_H #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataTypes.h" namespace llvm { class MCAsmInfo; class MCAsmLayout; class MCAssembler; class MCContext; class MCFixup; class MCSection; class MCSectionData; class MCStreamer; class MCSymbol; class MCValue; class raw_ostream; class StringRef; typedef DenseMap SectionAddrMap; /// \brief Base class for the full range of assembler expressions which are /// needed for parsing. class MCExpr { public: enum ExprKind { Binary, ///< Binary expressions. Constant, ///< Constant expressions. SymbolRef, ///< References to labels and assigned expressions. Unary, ///< Unary expressions. Target ///< Target specific expression. }; private: ExprKind Kind; MCExpr(const MCExpr&) = delete; void operator=(const MCExpr&) = delete; bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs) const; bool evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet) const; protected: explicit MCExpr(ExprKind Kind) : Kind(Kind) {} bool EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const MCFixup *Fixup, const SectionAddrMap *Addrs, bool InSet) const; public: /// \name Accessors /// @{ ExprKind getKind() const { return Kind; } /// @} /// \name Utility Methods /// @{ void print(raw_ostream &OS) const; void dump() const; /// @} /// \name Expression Evaluation /// @{ /// \brief Try to evaluate the expression to an absolute value. /// /// \param Res - The absolute value, if evaluation succeeds. /// \param Layout - The assembler layout object to use for evaluating symbol /// values. If not given, then only non-symbolic expressions will be /// evaluated. /// \return - True on success. bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout, const SectionAddrMap &Addrs) const; bool EvaluateAsAbsolute(int64_t &Res) const; bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const; bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout) const; bool evaluateKnownAbsolute(int64_t &Res, const MCAsmLayout &Layout) const; /// \brief Try to evaluate the expression to a relocatable value, i.e. an /// expression of the fixed form (a - b + constant). /// /// \param Res - The relocatable value, if evaluation succeeds. /// \param Layout - The assembler layout object to use for evaluating values. /// \param Fixup - The Fixup object if available. /// \return - True on success. bool EvaluateAsRelocatable(MCValue &Res, const MCAsmLayout *Layout, const MCFixup *Fixup) const; /// \brief Try to evaluate the expression to the form (a - b + constant) where /// neither a nor b are variables. /// /// This is a more aggressive variant of EvaluateAsRelocatable. The intended /// use is for when relocations are not available, like the .size directive. bool evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const; /// \brief Find the "associated section" for this expression, which is /// currently defined as the absolute section for constants, or /// otherwise the section associated with the first defined symbol in the /// expression. const MCSection *FindAssociatedSection() const; /// @} }; inline raw_ostream &operator<<(raw_ostream &OS, const MCExpr &E) { E.print(OS); return OS; } //// \brief Represent a constant integer expression. class MCConstantExpr : public MCExpr { int64_t Value; explicit MCConstantExpr(int64_t Value) : MCExpr(MCExpr::Constant), Value(Value) {} public: /// \name Construction /// @{ static const MCConstantExpr *Create(int64_t Value, MCContext &Ctx); /// @} /// \name Accessors /// @{ int64_t getValue() const { return Value; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Constant; } }; /// \brief Represent a reference to a symbol from inside an expression. /// /// A symbol reference in an expression may be a use of a label, a use of an /// assembler variable (defined constant), or constitute an implicit definition /// of the symbol as external. class MCSymbolRefExpr : public MCExpr { public: enum VariantKind { VK_None, VK_Invalid, VK_GOT, VK_GOTOFF, VK_GOTPCREL, VK_GOTTPOFF, VK_INDNTPOFF, VK_NTPOFF, VK_GOTNTPOFF, VK_PLT, VK_TLSGD, VK_TLSLD, VK_TLSLDM, VK_TPOFF, VK_DTPOFF, VK_TLVP, // Mach-O thread local variable relocations VK_TLVPPAGE, VK_TLVPPAGEOFF, VK_PAGE, VK_PAGEOFF, VK_GOTPAGE, VK_GOTPAGEOFF, VK_SECREL, VK_SIZE, // symbol@SIZE VK_WEAKREF, // The link between the symbols in .weakref foo, bar VK_ARM_NONE, VK_ARM_TARGET1, VK_ARM_TARGET2, VK_ARM_PREL31, VK_ARM_SBREL, // symbol(sbrel) VK_ARM_TLSLDO, // symbol(tlsldo) VK_ARM_TLSCALL, // symbol(tlscall) VK_ARM_TLSDESC, // symbol(tlsdesc) VK_ARM_TLSDESCSEQ, VK_PPC_LO, // symbol@l VK_PPC_HI, // symbol@h VK_PPC_HA, // symbol@ha VK_PPC_HIGHER, // symbol@higher VK_PPC_HIGHERA, // symbol@highera VK_PPC_HIGHEST, // symbol@highest VK_PPC_HIGHESTA, // symbol@highesta VK_PPC_GOT_LO, // symbol@got@l VK_PPC_GOT_HI, // symbol@got@h VK_PPC_GOT_HA, // symbol@got@ha VK_PPC_TOCBASE, // symbol@tocbase VK_PPC_TOC, // symbol@toc VK_PPC_TOC_LO, // symbol@toc@l VK_PPC_TOC_HI, // symbol@toc@h VK_PPC_TOC_HA, // symbol@toc@ha VK_PPC_DTPMOD, // symbol@dtpmod VK_PPC_TPREL, // symbol@tprel VK_PPC_TPREL_LO, // symbol@tprel@l VK_PPC_TPREL_HI, // symbol@tprel@h VK_PPC_TPREL_HA, // symbol@tprel@ha VK_PPC_TPREL_HIGHER, // symbol@tprel@higher VK_PPC_TPREL_HIGHERA, // symbol@tprel@highera VK_PPC_TPREL_HIGHEST, // symbol@tprel@highest VK_PPC_TPREL_HIGHESTA, // symbol@tprel@highesta VK_PPC_DTPREL, // symbol@dtprel VK_PPC_DTPREL_LO, // symbol@dtprel@l VK_PPC_DTPREL_HI, // symbol@dtprel@h VK_PPC_DTPREL_HA, // symbol@dtprel@ha VK_PPC_DTPREL_HIGHER, // symbol@dtprel@higher VK_PPC_DTPREL_HIGHERA, // symbol@dtprel@highera VK_PPC_DTPREL_HIGHEST, // symbol@dtprel@highest VK_PPC_DTPREL_HIGHESTA,// symbol@dtprel@highesta VK_PPC_GOT_TPREL, // symbol@got@tprel VK_PPC_GOT_TPREL_LO, // symbol@got@tprel@l VK_PPC_GOT_TPREL_HI, // symbol@got@tprel@h VK_PPC_GOT_TPREL_HA, // symbol@got@tprel@ha VK_PPC_GOT_DTPREL, // symbol@got@dtprel VK_PPC_GOT_DTPREL_LO, // symbol@got@dtprel@l VK_PPC_GOT_DTPREL_HI, // symbol@got@dtprel@h VK_PPC_GOT_DTPREL_HA, // symbol@got@dtprel@ha VK_PPC_TLS, // symbol@tls VK_PPC_GOT_TLSGD, // symbol@got@tlsgd VK_PPC_GOT_TLSGD_LO, // symbol@got@tlsgd@l VK_PPC_GOT_TLSGD_HI, // symbol@got@tlsgd@h VK_PPC_GOT_TLSGD_HA, // symbol@got@tlsgd@ha VK_PPC_TLSGD, // symbol@tlsgd VK_PPC_GOT_TLSLD, // symbol@got@tlsld VK_PPC_GOT_TLSLD_LO, // symbol@got@tlsld@l VK_PPC_GOT_TLSLD_HI, // symbol@got@tlsld@h VK_PPC_GOT_TLSLD_HA, // symbol@got@tlsld@ha VK_PPC_TLSLD, // symbol@tlsld VK_PPC_LOCAL, // symbol@local VK_Mips_GPREL, VK_Mips_GOT_CALL, VK_Mips_GOT16, VK_Mips_GOT, VK_Mips_ABS_HI, VK_Mips_ABS_LO, VK_Mips_TLSGD, VK_Mips_TLSLDM, VK_Mips_DTPREL_HI, VK_Mips_DTPREL_LO, VK_Mips_GOTTPREL, VK_Mips_TPREL_HI, VK_Mips_TPREL_LO, VK_Mips_GPOFF_HI, VK_Mips_GPOFF_LO, VK_Mips_GOT_DISP, VK_Mips_GOT_PAGE, VK_Mips_GOT_OFST, VK_Mips_HIGHER, VK_Mips_HIGHEST, VK_Mips_GOT_HI16, VK_Mips_GOT_LO16, VK_Mips_CALL_HI16, VK_Mips_CALL_LO16, VK_Mips_PCREL_HI16, VK_Mips_PCREL_LO16, VK_COFF_IMGREL32, // symbol@imgrel (image-relative) VK_Hexagon_PCREL, VK_Hexagon_LO16, VK_Hexagon_HI16, VK_Hexagon_GPREL, VK_Hexagon_GD_GOT, VK_Hexagon_LD_GOT, VK_Hexagon_GD_PLT, VK_Hexagon_LD_PLT, VK_Hexagon_IE, VK_Hexagon_IE_GOT, VK_TPREL, VK_DTPREL }; private: /// The symbol reference modifier. const unsigned Kind : 16; /// Specifies how the variant kind should be printed. const unsigned UseParensForSymbolVariant : 1; // FIXME: Remove this bit. const unsigned HasSubsectionsViaSymbols : 1; /// The symbol being referenced. const MCSymbol *Symbol; explicit MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind, const MCAsmInfo *MAI); public: /// \name Construction /// @{ static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, MCContext &Ctx) { return MCSymbolRefExpr::Create(Symbol, VK_None, Ctx); } static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, VariantKind Kind, MCContext &Ctx); static const MCSymbolRefExpr *Create(StringRef Name, VariantKind Kind, MCContext &Ctx); /// @} /// \name Accessors /// @{ const MCSymbol &getSymbol() const { return *Symbol; } VariantKind getKind() const { return static_cast(Kind); } void printVariantKind(raw_ostream &OS) const; bool hasSubsectionsViaSymbols() const { return HasSubsectionsViaSymbols; } /// @} /// \name Static Utility Functions /// @{ static StringRef getVariantKindName(VariantKind Kind); static VariantKind getVariantKindForName(StringRef Name); /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::SymbolRef; } }; /// \brief Unary assembler expressions. class MCUnaryExpr : public MCExpr { public: enum Opcode { LNot, ///< Logical negation. Minus, ///< Unary minus. Not, ///< Bitwise negation. Plus ///< Unary plus. }; private: Opcode Op; const MCExpr *Expr; MCUnaryExpr(Opcode Op, const MCExpr *Expr) : MCExpr(MCExpr::Unary), Op(Op), Expr(Expr) {} public: /// \name Construction /// @{ static const MCUnaryExpr *Create(Opcode Op, const MCExpr *Expr, MCContext &Ctx); static const MCUnaryExpr *CreateLNot(const MCExpr *Expr, MCContext &Ctx) { return Create(LNot, Expr, Ctx); } static const MCUnaryExpr *CreateMinus(const MCExpr *Expr, MCContext &Ctx) { return Create(Minus, Expr, Ctx); } static const MCUnaryExpr *CreateNot(const MCExpr *Expr, MCContext &Ctx) { return Create(Not, Expr, Ctx); } static const MCUnaryExpr *CreatePlus(const MCExpr *Expr, MCContext &Ctx) { return Create(Plus, Expr, Ctx); } /// @} /// \name Accessors /// @{ /// \brief Get the kind of this unary expression. Opcode getOpcode() const { return Op; } /// \brief Get the child of this unary expression. const MCExpr *getSubExpr() const { return Expr; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Unary; } }; /// \brief Binary assembler expressions. class MCBinaryExpr : public MCExpr { public: enum Opcode { Add, ///< Addition. And, ///< Bitwise and. Div, ///< Signed division. EQ, ///< Equality comparison. GT, ///< Signed greater than comparison (result is either 0 or some ///< target-specific non-zero value) GTE, ///< Signed greater than or equal comparison (result is either 0 or ///< some target-specific non-zero value). LAnd, ///< Logical and. LOr, ///< Logical or. LT, ///< Signed less than comparison (result is either 0 or ///< some target-specific non-zero value). LTE, ///< Signed less than or equal comparison (result is either 0 or ///< some target-specific non-zero value). Mod, ///< Signed remainder. Mul, ///< Multiplication. NE, ///< Inequality comparison. Or, ///< Bitwise or. Shl, ///< Shift left. AShr, ///< Arithmetic shift right. LShr, ///< Logical shift right. Sub, ///< Subtraction. Xor ///< Bitwise exclusive or. }; private: Opcode Op; const MCExpr *LHS, *RHS; MCBinaryExpr(Opcode Op, const MCExpr *LHS, const MCExpr *RHS) : MCExpr(MCExpr::Binary), Op(Op), LHS(LHS), RHS(RHS) {} public: /// \name Construction /// @{ static const MCBinaryExpr *Create(Opcode Op, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx); static const MCBinaryExpr *CreateAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Add, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(And, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateDiv(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Div, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateEQ(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(EQ, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateGT(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(GT, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateGTE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(GTE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LAnd, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLOr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LOr, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLT(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LT, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLTE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LTE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateMod(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Mod, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateMul(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Mul, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateNE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(NE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateOr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Or, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateShl(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Shl, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateAShr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(AShr, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLShr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LShr, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Sub, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateXor(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Xor, LHS, RHS, Ctx); } /// @} /// \name Accessors /// @{ /// \brief Get the kind of this binary expression. Opcode getOpcode() const { return Op; } /// \brief Get the left-hand side expression of the binary operator. const MCExpr *getLHS() const { return LHS; } /// \brief Get the right-hand side expression of the binary operator. const MCExpr *getRHS() const { return RHS; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Binary; } }; /// \brief This is an extension point for target-specific MCExpr subclasses to /// implement. /// /// NOTE: All subclasses are required to have trivial destructors because /// MCExprs are bump pointer allocated and not destructed. class MCTargetExpr : public MCExpr { virtual void anchor(); protected: MCTargetExpr() : MCExpr(Target) {} virtual ~MCTargetExpr() {} public: virtual void PrintImpl(raw_ostream &OS) const = 0; virtual bool EvaluateAsRelocatableImpl(MCValue &Res, const MCAsmLayout *Layout, const MCFixup *Fixup) const = 0; virtual void visitUsedExpr(MCStreamer& Streamer) const = 0; virtual const MCSection *FindAssociatedSection() const = 0; virtual void fixELFSymbolsInTLSFixups(MCAssembler &) const = 0; static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Target; } }; } // end namespace llvm #endif