//===-- Value.cpp - Implement the Value class -----------------------------===// // // This file implements the Value, User, and SymTabValue classes. // //===----------------------------------------------------------------------===// #include "llvm/ValueHolderImpl.h" #include "llvm/InstrTypes.h" #include "llvm/SymbolTable.h" #include "llvm/SymTabValue.h" #include "llvm/DerivedTypes.h" #ifndef NDEBUG // Only in -g mode... #include "llvm/Assembly/Writer.h" #include using std::cerr; #endif #include //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline const Type *checkType(const Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return Ty; } Value::Value(const Type *ty, ValueTy vty, const std::string &name = "") : Name(name), Ty(checkType(ty), this) { VTy = vty; } Value::~Value() { #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out what is // still being referenced. The value in question should be printed as // a // if (Uses.begin() != Uses.end()) { cerr << "While deleting: " << this; for (use_const_iterator I = Uses.begin(); I != Uses.end(); ++I) cerr << "Use still stuck around after Def is destroyed:" << *I << "\n"; } #endif assert(Uses.begin() == Uses.end()); } void Value::replaceAllUsesWith(Value *D) { assert(D && "Value::replaceAllUsesWith() is invalid!"); assert(D != this && "V->replaceAllUsesWith(V) is NOT valid!"); assert(D->getType() == getType() && "replaceAllUses of value with new value of different type!"); while (!Uses.empty()) { User *Use = Uses.back(); #ifndef NDEBUG unsigned NumUses = Uses.size(); #endif Use->replaceUsesOfWith(this, D); #ifndef NDEBUG // only in -g mode... if (Uses.size() == NumUses) cerr << "Use: " << Use << "replace with: " << D; #endif assert(Uses.size() != NumUses && "Didn't remove definition!"); } } // refineAbstractType - This function is implemented because we use // potentially abstract types, and these types may be resolved to more // concrete types after we are constructed. For the value class, we simply // change Ty to point to the right type. :) // void Value::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { assert(Ty.get() == OldTy &&"Can't refine anything but my type!"); if (OldTy == NewTy && !OldTy->isAbstract()) Ty.removeUserFromConcrete(); Ty = NewTy; } void Value::killUse(User *i) { if (i == 0) return; use_iterator I = find(Uses.begin(), Uses.end(), i); assert(I != Uses.end() && "Use not in uses list!!"); Uses.erase(I); } User *Value::use_remove(use_iterator &I) { assert(I != Uses.end() && "Trying to remove the end of the use list!!!"); User *i = *I; I = Uses.erase(I); return i; } void Value::dump() const { cerr << this; } //===----------------------------------------------------------------------===// // User Class //===----------------------------------------------------------------------===// User::User(const Type *Ty, ValueTy vty, const std::string &name) : Value(Ty, vty, name) { } // replaceUsesOfWith - Replaces all references to the "From" definition with // references to the "To" definition. // void User::replaceUsesOfWith(Value *From, Value *To) { if (From == To) return; // Duh what? for (unsigned i = 0, E = getNumOperands(); i != E; ++i) if (getOperand(i) == From) { // Is This operand is pointing to oldval? // The side effects of this setOperand call include linking to // "To", adding "this" to the uses list of To, and // most importantly, removing "this" from the use list of "From". setOperand(i, To); // Fix it now... } } //===----------------------------------------------------------------------===// // SymTabValue Class //===----------------------------------------------------------------------===// SymTabValue::SymTabValue(Value *p) : ValueParent(p) { assert(ValueParent && "SymTavValue without parent!?!"); ParentSymTab = SymTab = 0; } SymTabValue::~SymTabValue() { delete SymTab; } void SymTabValue::setParentSymTab(SymbolTable *ST) { ParentSymTab = ST; if (SymTab) SymTab->setParentSymTab(ST); } SymbolTable *SymTabValue::getSymbolTableSure() { if (!SymTab) SymTab = new SymbolTable(ParentSymTab); return SymTab; } // hasSymbolTable() - Returns true if there is a symbol table allocated to // this object AND if there is at least one name in it! // bool SymTabValue::hasSymbolTable() const { if (!SymTab) return false; for (SymbolTable::const_iterator I = SymTab->begin(); I != SymTab->end(); ++I) { if (I->second.begin() != I->second.end()) return true; // Found nonempty type plane! } return false; }