//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "spiller" #include "Spiller.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; Spiller::~Spiller() {} namespace { /// Utility class for spillers. class SpillerBase : public Spiller { protected: MachineFunction *mf; LiveIntervals *lis; LiveStacks *ls; MachineFrameInfo *mfi; MachineRegisterInfo *mri; const TargetInstrInfo *tii; VirtRegMap *vrm; /// Construct a spiller base. SpillerBase(MachineFunction *mf, LiveIntervals *lis, LiveStacks *ls, VirtRegMap *vrm) : mf(mf), lis(lis), ls(ls), vrm(vrm) { mfi = mf->getFrameInfo(); mri = &mf->getRegInfo(); tii = mf->getTarget().getInstrInfo(); } /// Ensures there is space before the given machine instruction, returns the /// instruction's new number. MachineInstrIndex makeSpaceBefore(MachineInstr *mi) { if (!lis->hasGapBeforeInstr(lis->getInstructionIndex(mi))) { lis->scaleNumbering(2); ls->scaleNumbering(2); } MachineInstrIndex miIdx = lis->getInstructionIndex(mi); assert(lis->hasGapBeforeInstr(miIdx)); return miIdx; } /// Ensure there is space after the given machine instruction, returns the /// instruction's new number. MachineInstrIndex makeSpaceAfter(MachineInstr *mi) { if (!lis->hasGapAfterInstr(lis->getInstructionIndex(mi))) { lis->scaleNumbering(2); ls->scaleNumbering(2); } MachineInstrIndex miIdx = lis->getInstructionIndex(mi); assert(lis->hasGapAfterInstr(miIdx)); return miIdx; } /// Insert a store of the given vreg to the given stack slot immediately /// after the given instruction. Returns the base index of the inserted /// instruction. The caller is responsible for adding an appropriate /// LiveInterval to the LiveIntervals analysis. MachineInstrIndex insertStoreAfter(MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineBasicBlock::iterator nextInstItr(next(mi)); MachineInstrIndex miIdx = makeSpaceAfter(mi); tii->storeRegToStackSlot(*mi->getParent(), nextInstItr, vreg, true, ss, trc); MachineBasicBlock::iterator storeInstItr(next(mi)); MachineInstr *storeInst = &*storeInstItr; MachineInstrIndex storeInstIdx = lis->getNextIndex(miIdx); assert(lis->getInstructionFromIndex(storeInstIdx) == 0 && "Store inst index already in use."); lis->InsertMachineInstrInMaps(storeInst, storeInstIdx); return storeInstIdx; } /// Insert a store of the given vreg to the given stack slot immediately /// before the given instructnion. Returns the base index of the inserted /// Instruction. MachineInstrIndex insertStoreBefore(MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineInstrIndex miIdx = makeSpaceBefore(mi); tii->storeRegToStackSlot(*mi->getParent(), mi, vreg, true, ss, trc); MachineBasicBlock::iterator storeInstItr(prior(mi)); MachineInstr *storeInst = &*storeInstItr; MachineInstrIndex storeInstIdx = lis->getPrevIndex(miIdx); assert(lis->getInstructionFromIndex(storeInstIdx) == 0 && "Store inst index already in use."); lis->InsertMachineInstrInMaps(storeInst, storeInstIdx); return storeInstIdx; } void insertStoreAfterInstOnInterval(LiveInterval *li, MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineInstrIndex storeInstIdx = insertStoreAfter(mi, ss, vreg, trc); MachineInstrIndex start = lis->getDefIndex(lis->getInstructionIndex(mi)), end = lis->getUseIndex(storeInstIdx); VNInfo *vni = li->getNextValue(storeInstIdx, 0, true, lis->getVNInfoAllocator()); vni->addKill(storeInstIdx); DEBUG(errs() << " Inserting store range: [" << start << ", " << end << ")\n"); LiveRange lr(start, end, vni); li->addRange(lr); } /// Insert a load of the given vreg from the given stack slot immediately /// after the given instruction. Returns the base index of the inserted /// instruction. The caller is responsibel for adding/removing an appropriate /// range vreg's LiveInterval. MachineInstrIndex insertLoadAfter(MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineBasicBlock::iterator nextInstItr(next(mi)); MachineInstrIndex miIdx = makeSpaceAfter(mi); tii->loadRegFromStackSlot(*mi->getParent(), nextInstItr, vreg, ss, trc); MachineBasicBlock::iterator loadInstItr(next(mi)); MachineInstr *loadInst = &*loadInstItr; MachineInstrIndex loadInstIdx = lis->getNextIndex(miIdx); assert(lis->getInstructionFromIndex(loadInstIdx) == 0 && "Store inst index already in use."); lis->InsertMachineInstrInMaps(loadInst, loadInstIdx); return loadInstIdx; } /// Insert a load of the given vreg from the given stack slot immediately /// before the given instruction. Returns the base index of the inserted /// instruction. The caller is responsible for adding an appropriate /// LiveInterval to the LiveIntervals analysis. MachineInstrIndex insertLoadBefore(MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineInstrIndex miIdx = makeSpaceBefore(mi); tii->loadRegFromStackSlot(*mi->getParent(), mi, vreg, ss, trc); MachineBasicBlock::iterator loadInstItr(prior(mi)); MachineInstr *loadInst = &*loadInstItr; MachineInstrIndex loadInstIdx = lis->getPrevIndex(miIdx); assert(lis->getInstructionFromIndex(loadInstIdx) == 0 && "Load inst index already in use."); lis->InsertMachineInstrInMaps(loadInst, loadInstIdx); return loadInstIdx; } void insertLoadBeforeInstOnInterval(LiveInterval *li, MachineInstr *mi, unsigned ss, unsigned vreg, const TargetRegisterClass *trc) { MachineInstrIndex loadInstIdx = insertLoadBefore(mi, ss, vreg, trc); MachineInstrIndex start = lis->getDefIndex(loadInstIdx), end = lis->getUseIndex(lis->getInstructionIndex(mi)); VNInfo *vni = li->getNextValue(loadInstIdx, 0, true, lis->getVNInfoAllocator()); vni->addKill(lis->getInstructionIndex(mi)); DEBUG(errs() << " Intserting load range: [" << start << ", " << end << ")\n"); LiveRange lr(start, end, vni); li->addRange(lr); } /// Add spill ranges for every use/def of the live interval, inserting loads /// immediately before each use, and stores after each def. No folding is /// attempted. std::vector<LiveInterval*> trivialSpillEverywhere(LiveInterval *li) { DEBUG(errs() << "Spilling everywhere " << *li << "\n"); assert(li->weight != HUGE_VALF && "Attempting to spill already spilled value."); assert(!li->isStackSlot() && "Trying to spill a stack slot."); DEBUG(errs() << "Trivial spill everywhere of reg" << li->reg << "\n"); std::vector<LiveInterval*> added; const TargetRegisterClass *trc = mri->getRegClass(li->reg); unsigned ss = vrm->assignVirt2StackSlot(li->reg); for (MachineRegisterInfo::reg_iterator regItr = mri->reg_begin(li->reg); regItr != mri->reg_end();) { MachineInstr *mi = &*regItr; DEBUG(errs() << " Processing " << *mi); do { ++regItr; } while (regItr != mri->reg_end() && (&*regItr == mi)); SmallVector<unsigned, 2> indices; bool hasUse = false; bool hasDef = false; for (unsigned i = 0; i != mi->getNumOperands(); ++i) { MachineOperand &op = mi->getOperand(i); if (!op.isReg() || op.getReg() != li->reg) continue; hasUse |= mi->getOperand(i).isUse(); hasDef |= mi->getOperand(i).isDef(); indices.push_back(i); } unsigned newVReg = mri->createVirtualRegister(trc); vrm->grow(); vrm->assignVirt2StackSlot(newVReg, ss); LiveInterval *newLI = &lis->getOrCreateInterval(newVReg); newLI->weight = HUGE_VALF; for (unsigned i = 0; i < indices.size(); ++i) { mi->getOperand(indices[i]).setReg(newVReg); if (mi->getOperand(indices[i]).isUse()) { mi->getOperand(indices[i]).setIsKill(true); } } assert(hasUse || hasDef); if (hasUse) { insertLoadBeforeInstOnInterval(newLI, mi, ss, newVReg, trc); } if (hasDef) { insertStoreAfterInstOnInterval(newLI, mi, ss, newVReg, trc); } added.push_back(newLI); } return added; } }; /// Spills any live range using the spill-everywhere method with no attempt at /// folding. class TrivialSpiller : public SpillerBase { public: TrivialSpiller(MachineFunction *mf, LiveIntervals *lis, LiveStacks *ls, VirtRegMap *vrm) : SpillerBase(mf, lis, ls, vrm) {} std::vector<LiveInterval*> spill(LiveInterval *li) { return trivialSpillEverywhere(li); } std::vector<LiveInterval*> intraBlockSplit(LiveInterval *li, VNInfo *valno) { std::vector<LiveInterval*> spillIntervals; if (!valno->isDefAccurate() && !valno->isPHIDef()) { // Early out for values which have no well defined def point. return spillIntervals; } // Ok.. we should be able to proceed... const TargetRegisterClass *trc = mri->getRegClass(li->reg); unsigned ss = vrm->assignVirt2StackSlot(li->reg); vrm->grow(); vrm->assignVirt2StackSlot(li->reg, ss); MachineInstr *mi = 0; MachineInstrIndex storeIdx = MachineInstrIndex(); if (valno->isDefAccurate()) { // If we have an accurate def we can just grab an iterator to the instr // after the def. mi = lis->getInstructionFromIndex(valno->def); storeIdx = lis->getDefIndex(insertStoreAfter(mi, ss, li->reg, trc)); } else { // if we get here we have a PHI def. mi = &lis->getMBBFromIndex(valno->def)->front(); storeIdx = lis->getDefIndex(insertStoreBefore(mi, ss, li->reg, trc)); } MachineBasicBlock *defBlock = mi->getParent(); MachineInstrIndex loadIdx = MachineInstrIndex(); // Now we need to find the load... MachineBasicBlock::iterator useItr(mi); for (; !useItr->readsRegister(li->reg); ++useItr) {} if (useItr != defBlock->end()) { MachineInstr *loadInst = useItr; loadIdx = lis->getUseIndex(insertLoadBefore(loadInst, ss, li->reg, trc)); } else { MachineInstr *loadInst = &defBlock->back(); loadIdx = lis->getUseIndex(insertLoadAfter(loadInst, ss, li->reg, trc)); } li->removeRange(storeIdx, loadIdx, true); return spillIntervals; } }; } llvm::Spiller* llvm::createSpiller(MachineFunction *mf, LiveIntervals *lis, LiveStacks *ls, VirtRegMap *vrm) { return new TrivialSpiller(mf, lis, ls, vrm); }