//===-- ARMWinEHPrinter.cpp - Windows on ARM EH Data Printer ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Windows on ARM uses a series of serialised data structures (RuntimeFunction) // to create a table of information for unwinding. In order to conserve space, // there are two different ways that this data is represented. // // For functions with canonical forms for the prologue and epilogue, the data // can be stored in a "packed" form. In this case, the data is packed into the // RuntimeFunction's remaining 30-bits and can fully describe the entire frame. // // +---------------------------------------+ // | Function Entry Address | // +---------------------------------------+ // | Packed Form Data | // +---------------------------------------+ // // This layout is parsed by Decoder::dumpPackedEntry. No unwind bytecode is // associated with such a frame as they can be derived from the provided data. // The decoder does not synthesize this data as it is unnecessary for the // purposes of validation, with the synthesis being required only by a proper // unwinder. // // For functions that are large or do not match canonical forms, the data is // split up into two portions, with the actual data residing in the "exception // data" table (.xdata) with a reference to the entry from the "procedure data" // (.pdata) entry. // // The exception data contains information about the frame setup, all of the // epilouge scopes (for functions for which there are multiple exit points) and // the associated exception handler. Additionally, the entry contains byte-code // describing how to unwind the function (c.f. Decoder::decodeOpcodes). // // +---------------------------------------+ // | Function Entry Address | // +---------------------------------------+ // | Exception Data Entry Address | // +---------------------------------------+ // // This layout is parsed by Decoder::dumpUnpackedEntry. Such an entry must // first resolve the exception data entry address. This structure // (ExceptionDataRecord) has a variable sized header // (c.f. ARM::WinEH::HeaderWords) and encodes most of the same information as // the packed form. However, because this information is insufficient to // synthesize the unwinding, there are associated unwinding bytecode which make // up the bulk of the Decoder. // // The decoder itself is table-driven, using the first byte to determine the // opcode and dispatching to the associated printing routine. The bytecode // itself is a variable length instruction encoding that can fully describe the // state of the stack and the necessary operations for unwinding to the // beginning of the frame. // // The byte-code maintains a 1-1 instruction mapping, indicating both the width // of the instruction (Thumb2 instructions are variable length, 16 or 32 bits // wide) allowing the program to unwind from any point in the prologue, body, or // epilogue of the function. #include "ARMWinEHPrinter.h" #include "Error.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ARMWinEH.h" #include "llvm/Support/Format.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support; namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const ARM::WinEH::ReturnType &RT) { switch (RT) { case ARM::WinEH::ReturnType::RT_POP: OS << "pop {pc}"; break; case ARM::WinEH::ReturnType::RT_B: OS << "b target"; break; case ARM::WinEH::ReturnType::RT_BW: OS << "b.w target"; break; case ARM::WinEH::ReturnType::RT_NoEpilogue: OS << "(no epilogue)"; break; } return OS; } } static std::string formatSymbol(StringRef Name, uint64_t Address, uint64_t Offset = 0) { std::string Buffer; raw_string_ostream OS(Buffer); if (!Name.empty()) OS << Name << " "; if (Offset) OS << format("+0x%X (0x%" PRIX64 ")", Offset, Address); else if (!Name.empty()) OS << format("(0x%" PRIX64 ")", Address); else OS << format("0x%" PRIX64, Address); return OS.str(); } namespace llvm { namespace ARM { namespace WinEH { const size_t Decoder::PDataEntrySize = sizeof(RuntimeFunction); // TODO name the uops more appropriately const Decoder::RingEntry Decoder::Ring[] = { { 0x80, 0x00, &Decoder::opcode_0xxxxxxx }, // UOP_STACK_FREE (16-bit) { 0xc0, 0x80, &Decoder::opcode_10Lxxxxx }, // UOP_POP (32-bit) { 0xf0, 0xc0, &Decoder::opcode_1100xxxx }, // UOP_STACK_SAVE (16-bit) { 0xf8, 0xd0, &Decoder::opcode_11010Lxx }, // UOP_POP (16-bit) { 0xf8, 0xd8, &Decoder::opcode_11011Lxx }, // UOP_POP (32-bit) { 0xf8, 0xe0, &Decoder::opcode_11100xxx }, // UOP_VPOP (32-bit) { 0xfc, 0xe8, &Decoder::opcode_111010xx }, // UOP_STACK_FREE (32-bit) { 0xfe, 0xec, &Decoder::opcode_1110110L }, // UOP_POP (16-bit) { 0xff, 0xee, &Decoder::opcode_11101110 }, // UOP_MICROSOFT_SPECIFIC (16-bit) // UOP_PUSH_MACHINE_FRAME // UOP_PUSH_CONTEXT // UOP_PUSH_TRAP_FRAME // UOP_REDZONE_RESTORE_LR { 0xff, 0xef, &Decoder::opcode_11101111 }, // UOP_LDRPC_POSTINC (32-bit) { 0xff, 0xf5, &Decoder::opcode_11110101 }, // UOP_VPOP (32-bit) { 0xff, 0xf6, &Decoder::opcode_11110110 }, // UOP_VPOP (32-bit) { 0xff, 0xf7, &Decoder::opcode_11110111 }, // UOP_STACK_RESTORE (16-bit) { 0xff, 0xf8, &Decoder::opcode_11111000 }, // UOP_STACK_RESTORE (16-bit) { 0xff, 0xf9, &Decoder::opcode_11111001 }, // UOP_STACK_RESTORE (32-bit) { 0xff, 0xfa, &Decoder::opcode_11111010 }, // UOP_STACK_RESTORE (32-bit) { 0xff, 0xfb, &Decoder::opcode_11111011 }, // UOP_NOP (16-bit) { 0xff, 0xfc, &Decoder::opcode_11111100 }, // UOP_NOP (32-bit) { 0xff, 0xfd, &Decoder::opcode_11111101 }, // UOP_NOP (16-bit) / END { 0xff, 0xfe, &Decoder::opcode_11111110 }, // UOP_NOP (32-bit) / END { 0xff, 0xff, &Decoder::opcode_11111111 }, // UOP_END }; void Decoder::printRegisters(const std::pair &RegisterMask) { static const char * const GPRRegisterNames[16] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "ip", "sp", "lr", "pc", }; const uint16_t GPRMask = std::get<0>(RegisterMask); const uint16_t VFPMask = std::get<1>(RegisterMask); OS << '{'; bool Comma = false; for (unsigned RI = 0, RE = 11; RI < RE; ++RI) { if (GPRMask & (1 << RI)) { if (Comma) OS << ", "; OS << GPRRegisterNames[RI]; Comma = true; } } for (unsigned RI = 0, RE = 32; RI < RE; ++RI) { if (VFPMask & (1 << RI)) { if (Comma) OS << ", "; OS << "d" << unsigned(RI); Comma = true; } } for (unsigned RI = 11, RE = 16; RI < RE; ++RI) { if (GPRMask & (1 << RI)) { if (Comma) OS << ", "; OS << GPRRegisterNames[RI]; Comma = true; } } OS << '}'; } ErrorOr Decoder::getSectionContaining(const COFFObjectFile &COFF, uint64_t VA) { for (const auto &Section : COFF.sections()) { uint64_t Address = Section.getAddress(); uint64_t Size = Section.getSize(); if (VA >= Address && (VA - Address) <= Size) return Section; } return readobj_error::unknown_symbol; } ErrorOr Decoder::getSymbol(const COFFObjectFile &COFF, uint64_t VA, bool FunctionOnly) { for (const auto &Symbol : COFF.symbols()) { if (FunctionOnly) { SymbolRef::Type Type; if (std::error_code EC = Symbol.getType(Type)) return EC; if (Type != SymbolRef::ST_Function) continue; } uint64_t Address; if (std::error_code EC = Symbol.getAddress(Address)) return EC; if (Address == VA) return Symbol; } return readobj_error::unknown_symbol; } ErrorOr Decoder::getRelocatedSymbol(const COFFObjectFile &, const SectionRef &Section, uint64_t Offset) { for (const auto &Relocation : Section.relocations()) { uint64_t RelocationOffset; if (auto Error = Relocation.getOffset(RelocationOffset)) return Error; if (RelocationOffset == Offset) return *Relocation.getSymbol(); } return readobj_error::unknown_symbol; } bool Decoder::opcode_0xxxxxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint8_t Imm = OC[Offset] & 0x7f; SW.startLine() << format("0x%02x ; %s sp, #(%u * 4)\n", OC[Offset], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset; return false; } bool Decoder::opcode_10Lxxxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x20) >> 5; uint16_t RegisterMask = (Link << (Prologue ? 14 : 15)) | ((OC[Offset + 0] & 0x1f) << 8) | ((OC[Offset + 1] & 0xff) << 0); assert((~RegisterMask & (1 << 13)) && "sp must not be set"); assert((~RegisterMask & (1 << (Prologue ? 15 : 14))) && "pc must not be set"); SW.startLine() << format("0x%02x 0x%02x ; %s.w ", OC[Offset + 0], OC[Offset + 1], Prologue ? "push" : "pop"); printRegisters(std::make_pair(RegisterMask, 0)); OS << '\n'; ++Offset, ++Offset; return false; } bool Decoder::opcode_1100xxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { if (Prologue) SW.startLine() << format("0x%02x ; mov r%u, sp\n", OC[Offset], OC[Offset] & 0xf); else SW.startLine() << format("0x%02x ; mov sp, r%u\n", OC[Offset], OC[Offset] & 0xf); ++Offset; return false; } bool Decoder::opcode_11010Lxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x4) >> 3; unsigned Count = (OC[Offset] & 0x3); uint16_t GPRMask = (Link << (Prologue ? 14 : 15)) | (((1 << (Count + 1)) - 1) << 4); SW.startLine() << format("0x%02x ; %s ", OC[Offset], Prologue ? "push" : "pop"); printRegisters(std::make_pair(GPRMask, 0)); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_11011Lxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x4) >> 2; unsigned Count = (OC[Offset] & 0x3) + 4; uint16_t GPRMask = (Link << (Prologue ? 14 : 15)) | (((1 << (Count + 1)) - 1) << 4); SW.startLine() << format("0x%02x ; %s.w ", OC[Offset], Prologue ? "push" : "pop"); printRegisters(std::make_pair(GPRMask, 0)); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_11100xxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned High = (OC[Offset] & 0x7); uint32_t VFPMask = (((1 << (High + 1)) - 1) << 8); SW.startLine() << format("0x%02x ; %s ", OC[Offset], Prologue ? "vpush" : "vpop"); printRegisters(std::make_pair(0, VFPMask)); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_111010xx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint16_t Imm = ((OC[Offset + 0] & 0x03) << 8) | ((OC[Offset + 1] & 0xff) << 0); SW.startLine() << format("0x%02x 0x%02x ; %s.w sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset, ++Offset; return false; } bool Decoder::opcode_1110110L(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint8_t GPRMask = ((OC[Offset + 0] & 0x01) << (Prologue ? 14 : 15)) | ((OC[Offset + 1] & 0xff) << 0); SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "push" : "pop"); printRegisters(std::make_pair(GPRMask, 0)); OS << '\n'; ++Offset, ++Offset; return false; } bool Decoder::opcode_11101110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { assert(!Prologue && "may not be used in prologue"); if (OC[Offset + 1] & 0xf0) SW.startLine() << format("0x%02x 0x%02x ; reserved\n", OC[Offset + 0], OC[Offset + 1]); else SW.startLine() << format("0x%02x 0x%02x ; microsoft-specific (type: %u)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] & 0x0f); ++Offset, ++Offset; return false; } bool Decoder::opcode_11101111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { assert(!Prologue && "may not be used in prologue"); if (OC[Offset + 1] & 0xf0) SW.startLine() << format("0x%02x 0x%02x ; reserved\n", OC[Offset + 0], OC[Offset + 1]); else SW.startLine() << format("0x%02x 0x%02x ; ldr.w lr, [sp], #%u\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] << 2); ++Offset, ++Offset; return false; } bool Decoder::opcode_11110101(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Start = (OC[Offset + 1] & 0xf0) >> 4; unsigned End = (OC[Offset + 1] & 0x0f) >> 0; uint32_t VFPMask = ((1 << (End - Start)) - 1) << Start; SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "vpush" : "vpop"); printRegisters(std::make_pair(0, VFPMask)); OS << '\n'; ++Offset, ++Offset; return false; } bool Decoder::opcode_11110110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Start = (OC[Offset + 1] & 0xf0) >> 4; unsigned End = (OC[Offset + 1] & 0x0f) >> 0; uint32_t VFPMask = ((1 << (End - Start)) - 1) << 16; SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "vpush" : "vpop"); printRegisters(std::make_pair(0, VFPMask)); OS << '\n'; ++Offset, ++Offset; return false; } bool Decoder::opcode_11110111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset, ++Offset, ++Offset; return false; } bool Decoder::opcode_11111000(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset, ++Offset, ++Offset, ++Offset; return false; } bool Decoder::opcode_11111001(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset, ++Offset, ++Offset; return false; } bool Decoder::opcode_11111010(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset, ++Offset, ++Offset, ++Offset; return false; } bool Decoder::opcode_11111011(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; nop\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_11111100(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; nop.w\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_11111101(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; b\n", OC[Offset]); ++Offset; return true; } bool Decoder::opcode_11111110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; b.w\n", OC[Offset]); ++Offset; return true; } bool Decoder::opcode_11111111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { ++Offset; return true; } void Decoder::decodeOpcodes(ArrayRef Opcodes, unsigned Offset, bool Prologue) { assert((!Prologue || Offset == 0) && "prologue should always use offset 0"); bool Terminated = false; for (unsigned OI = Offset, OE = Opcodes.size(); !Terminated && OI < OE; ) { for (unsigned DI = 0;; ++DI) { if ((Opcodes[OI] & Ring[DI].Mask) == Ring[DI].Value) { Terminated = (this->*Ring[DI].Routine)(Opcodes.data(), OI, 0, Prologue); break; } assert(DI < array_lengthof(Ring) && "unhandled opcode"); } } } bool Decoder::dumpXDataRecord(const COFFObjectFile &COFF, const SectionRef &Section, uint64_t FunctionAddress, uint64_t VA) { ArrayRef Contents; if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents)) return false; uint64_t SectionVA = Section.getAddress(); uint64_t Offset = VA - SectionVA; const ulittle32_t *Data = reinterpret_cast(Contents.data() + Offset); const ExceptionDataRecord XData(Data); DictScope XRS(SW, "ExceptionData"); SW.printNumber("FunctionLength", XData.FunctionLength() << 1); SW.printNumber("Version", XData.Vers()); SW.printBoolean("ExceptionData", XData.X()); SW.printBoolean("EpiloguePacked", XData.E()); SW.printBoolean("Fragment", XData.F()); SW.printNumber(XData.E() ? "EpilogueOffset" : "EpilogueScopes", XData.EpilogueCount()); SW.printNumber("ByteCodeLength", static_cast(XData.CodeWords() * sizeof(uint32_t))); if (XData.E()) { ArrayRef UC = XData.UnwindByteCode(); if (!XData.F()) { ListScope PS(SW, "Prologue"); decodeOpcodes(UC, 0, /*Prologue=*/true); } if (XData.EpilogueCount()) { ListScope ES(SW, "Epilogue"); decodeOpcodes(UC, XData.EpilogueCount(), /*Prologue=*/false); } } else { ArrayRef EpilogueScopes = XData.EpilogueScopes(); ListScope ESS(SW, "EpilogueScopes"); for (const EpilogueScope ES : EpilogueScopes) { DictScope ESES(SW, "EpilogueScope"); SW.printNumber("StartOffset", ES.EpilogueStartOffset()); SW.printNumber("Condition", ES.Condition()); SW.printNumber("EpilogueStartIndex", ES.EpilogueStartIndex()); ListScope Opcodes(SW, "Opcodes"); decodeOpcodes(XData.UnwindByteCode(), ES.EpilogueStartIndex(), /*Prologue=*/false); } } if (XData.X()) { const uint32_t Address = XData.ExceptionHandlerRVA(); const uint32_t Parameter = XData.ExceptionHandlerParameter(); const size_t HandlerOffset = HeaderWords(XData) + (XData.E() ? 0 : XData.EpilogueCount()) + XData.CodeWords(); ErrorOr Symbol = getRelocatedSymbol(COFF, Section, HandlerOffset * sizeof(uint32_t)); if (!Symbol) Symbol = getSymbol(COFF, Address, /*FunctionOnly=*/true); StringRef Name; if (Symbol) Symbol->getName(Name); ListScope EHS(SW, "ExceptionHandler"); SW.printString("Routine", formatSymbol(Name, Address)); SW.printHex("Parameter", Parameter); } return true; } bool Decoder::dumpUnpackedEntry(const COFFObjectFile &COFF, const SectionRef Section, uint64_t Offset, unsigned Index, const RuntimeFunction &RF) { assert(RF.Flag() == RuntimeFunctionFlag::RFF_Unpacked && "packed entry cannot be treated as an unpacked entry"); ErrorOr Function = getRelocatedSymbol(COFF, Section, Offset); if (!Function) Function = getSymbol(COFF, RF.BeginAddress, /*FunctionOnly=*/true); ErrorOr XDataRecord = getRelocatedSymbol(COFF, Section, Offset + 4); if (!XDataRecord) XDataRecord = getSymbol(COFF, RF.ExceptionInformationRVA()); if (!RF.BeginAddress && !Function) return false; if (!RF.UnwindData && !XDataRecord) return false; StringRef FunctionName; uint64_t FunctionAddress; if (Function) { Function->getName(FunctionName); Function->getAddress(FunctionAddress); } else { const pe32_header *PEHeader; if (COFF.getPE32Header(PEHeader)) return false; FunctionAddress = PEHeader->ImageBase + RF.BeginAddress; } SW.printString("Function", formatSymbol(FunctionName, FunctionAddress)); if (XDataRecord) { StringRef Name; uint64_t Address; XDataRecord->getName(Name); XDataRecord->getAddress(Address); SW.printString("ExceptionRecord", formatSymbol(Name, Address)); section_iterator SI = COFF.section_end(); if (XDataRecord->getSection(SI)) return false; return dumpXDataRecord(COFF, *SI, FunctionAddress, Address); } else { const pe32_header *PEHeader; if (COFF.getPE32Header(PEHeader)) return false; uint64_t Address = PEHeader->ImageBase + RF.ExceptionInformationRVA(); SW.printString("ExceptionRecord", formatSymbol("", Address)); ErrorOr Section = getSectionContaining(COFF, RF.ExceptionInformationRVA()); if (!Section) return false; return dumpXDataRecord(COFF, *Section, FunctionAddress, RF.ExceptionInformationRVA()); } } bool Decoder::dumpPackedEntry(const object::COFFObjectFile &COFF, const SectionRef Section, uint64_t Offset, unsigned Index, const RuntimeFunction &RF) { assert((RF.Flag() == RuntimeFunctionFlag::RFF_Packed || RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment) && "unpacked entry cannot be treated as a packed entry"); ErrorOr Function = getRelocatedSymbol(COFF, Section, Offset); if (!Function) Function = getSymbol(COFF, RF.BeginAddress, /*FunctionOnly=*/true); StringRef FunctionName; uint64_t FunctionAddress; if (Function) { Function->getName(FunctionName); Function->getAddress(FunctionAddress); } else { const pe32_header *PEHeader; if (COFF.getPE32Header(PEHeader)) return false; FunctionAddress = PEHeader->ImageBase + RF.BeginAddress; } SW.printString("Function", formatSymbol(FunctionName, FunctionAddress)); SW.printBoolean("Fragment", RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment); SW.printNumber("FunctionLength", RF.FunctionLength()); SW.startLine() << "ReturnType: " << RF.Ret() << '\n'; SW.printBoolean("HomedParameters", RF.H()); SW.startLine() << "SavedRegisters: "; printRegisters(SavedRegisterMask(RF)); OS << '\n'; SW.printNumber("StackAdjustment", StackAdjustment(RF) << 2); return true; } bool Decoder::dumpProcedureDataEntry(const COFFObjectFile &COFF, const SectionRef Section, unsigned Index, ArrayRef Contents) { uint64_t Offset = PDataEntrySize * Index; const ulittle32_t *Data = reinterpret_cast(Contents.data() + Offset); const RuntimeFunction Entry(Data); DictScope RFS(SW, "RuntimeFunction"); if (Entry.Flag() == RuntimeFunctionFlag::RFF_Unpacked) return dumpUnpackedEntry(COFF, Section, Offset, Index, Entry); return dumpPackedEntry(COFF, Section, Offset, Index, Entry); } void Decoder::dumpProcedureData(const COFFObjectFile &COFF, const SectionRef Section) { ArrayRef Contents; if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents)) return; if (Contents.size() % PDataEntrySize) { errs() << ".pdata content is not " << PDataEntrySize << "-byte aligned\n"; return; } for (unsigned EI = 0, EE = Contents.size() / PDataEntrySize; EI < EE; ++EI) if (!dumpProcedureDataEntry(COFF, Section, EI, Contents)) break; } std::error_code Decoder::dumpProcedureData(const COFFObjectFile &COFF) { for (const auto &Section : COFF.sections()) { StringRef SectionName; if (std::error_code EC = COFF.getSectionName(COFF.getCOFFSection(Section), SectionName)) return EC; if (SectionName.startswith(".pdata")) dumpProcedureData(COFF, Section); } return std::error_code(); } } } }