//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 SSE instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SSE specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2> ]>; def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>; def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; def X86pextrb : SDNode<"X86ISD::PEXTRB", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pextrw : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pinsrb : SDNode<"X86ISD::PINSRB", SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86pinsrw : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86insrtps : SDNode<"X86ISD::INSERTPS", SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, SDTCisVT<2, f32>, SDTCisPtrTy<3>]>>; //===----------------------------------------------------------------------===// // SSE 'Special' Instructions //===----------------------------------------------------------------------===// let isImplicitDef = 1 in { def IMPLICIT_DEF_VR128 : I<0, Pseudo, (outs VR128:$dst), (ins), "#IMPLICIT_DEF $dst", [(set VR128:$dst, (v4f32 (undef)))]>, Requires<[HasSSE1]>; def IMPLICIT_DEF_FR32 : I<0, Pseudo, (outs FR32:$dst), (ins), "#IMPLICIT_DEF $dst", [(set FR32:$dst, (undef))]>, Requires<[HasSSE1]>; def IMPLICIT_DEF_FR64 : I<0, Pseudo, (outs FR64:$dst), (ins), "#IMPLICIT_DEF $dst", [(set FR64:$dst, (undef))]>, Requires<[HasSSE2]>; } //===----------------------------------------------------------------------===// // SSE Complex Patterns //===----------------------------------------------------------------------===// // These are 'extloads' from a scalar to the low element of a vector, zeroing // the top elements. These are used for the SSE 'ss' and 'sd' instruction // forms. def sse_load_f32 : ComplexPattern; def sse_load_f64 : ComplexPattern; def ssmem : Operand { let PrintMethod = "printf32mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm); } def sdmem : Operand { let PrintMethod = "printf64mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm); } //===----------------------------------------------------------------------===// // SSE pattern fragments //===----------------------------------------------------------------------===// def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>; def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; // Like 'store', but always requires vector alignment. def alignedstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return !ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED && ST->getAlignment() >= 16; return false; }]>; // Like 'load', but always requires vector alignment. def alignedload : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::NON_EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getAlignment() >= 16; return false; }]>; def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32 (alignedload node:$ptr))>; def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64 (alignedload node:$ptr))>; def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>; def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>; def alignedloadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (alignedload node:$ptr))>; def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>; // Like 'load', but uses special alignment checks suitable for use in // memory operands in most SSE instructions, which are required to // be naturally aligned on some targets but not on others. // FIXME: Actually implement support for targets that don't require the // alignment. This probably wants a subtarget predicate. def memop : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::NON_EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getAlignment() >= 16; return false; }]>; def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>; def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>; // SSSE3 uses MMX registers for some instructions. They aren't aligned on a // 16-byte boundary. // FIXME: 8 byte alignment for mmx reads is not required def memop64 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::NON_EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getAlignment() >= 8; return false; }]>; def memopv8i8 : PatFrag<(ops node:$ptr), (v8i8 (memop64 node:$ptr))>; def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>; def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>; def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>; def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; def fp32imm0 : PatLeaf<(f32 fpimm), [{ return N->isExactlyValue(+0.0); }]>; def PSxLDQ_imm : SDNodeXForm> 3 return getI32Imm(N->getValue() >> 3); }]>; // SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*, // SHUFP* etc. imm. def SHUFFLE_get_shuf_imm : SDNodeXForm; // SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to // PSHUFHW imm. def SHUFFLE_get_pshufhw_imm : SDNodeXForm; // SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to // PSHUFLW imm. def SHUFFLE_get_pshuflw_imm : SDNodeXForm; def SSE_splat_mask : PatLeaf<(build_vector), [{ return X86::isSplatMask(N); }], SHUFFLE_get_shuf_imm>; def SSE_splat_lo_mask : PatLeaf<(build_vector), [{ return X86::isSplatLoMask(N); }]>; def MOVHLPS_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVHLPSMask(N); }]>; def MOVHLPS_v_undef_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVHLPS_v_undef_Mask(N); }]>; def MOVHP_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVHPMask(N); }]>; def MOVLP_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVLPMask(N); }]>; def MOVL_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVLMask(N); }]>; def MOVSHDUP_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVSHDUPMask(N); }]>; def MOVSLDUP_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isMOVSLDUPMask(N); }]>; def UNPCKL_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKLMask(N); }]>; def UNPCKH_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKHMask(N); }]>; def UNPCKL_v_undef_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKL_v_undef_Mask(N); }]>; def UNPCKH_v_undef_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKH_v_undef_Mask(N); }]>; def PSHUFD_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isPSHUFDMask(N); }], SHUFFLE_get_shuf_imm>; def PSHUFHW_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isPSHUFHWMask(N); }], SHUFFLE_get_pshufhw_imm>; def PSHUFLW_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isPSHUFLWMask(N); }], SHUFFLE_get_pshuflw_imm>; def SHUFP_unary_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isPSHUFDMask(N); }], SHUFFLE_get_shuf_imm>; def SHUFP_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isSHUFPMask(N); }], SHUFFLE_get_shuf_imm>; def PSHUFD_binary_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isSHUFPMask(N); }], SHUFFLE_get_shuf_imm>; //===----------------------------------------------------------------------===// // SSE scalar FP Instructions //===----------------------------------------------------------------------===// // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded by the // scheduler into a branch sequence. // These are expanded by the scheduler. let Uses = [EFLAGS], usesCustomDAGSchedInserter = 1 in { def CMOV_FR32 : I<0, Pseudo, (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), "#CMOV_FR32 PSEUDO!", [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, EFLAGS))]>; def CMOV_FR64 : I<0, Pseudo, (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), "#CMOV_FR64 PSEUDO!", [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, EFLAGS))]>; def CMOV_V4F32 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V4F32 PSEUDO!", [(set VR128:$dst, (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2F64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2F64 PSEUDO!", [(set VR128:$dst, (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2I64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2I64 PSEUDO!", [(set VR128:$dst, (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; } //===----------------------------------------------------------------------===// // SSE1 Instructions //===----------------------------------------------------------------------===// // Move Instructions let neverHasSideEffects = 1 in def MOVSSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), "movss\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def MOVSSrm : SSI<0x10, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), "movss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (loadf32 addr:$src))]>; def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>; // Conversion instructions def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src), "cvttss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (fp_to_sint FR32:$src))]>; def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), "cvttss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>; def CVTSI2SSrr : SSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "cvtsi2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp GR32:$src))]>; def CVTSI2SSrm : SSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "cvtsi2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>; // Match intrinsics which expect XMM operand(s). def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "cvtss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>; def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), "cvtss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse_cvtss2si (load addr:$src)))]>; // Match intrinisics which expect MM and XMM operand(s). def Int_CVTPS2PIrr : PSI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), "cvtps2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvtps2pi VR128:$src))]>; def Int_CVTPS2PIrm : PSI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src), "cvtps2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvtps2pi (load addr:$src)))]>; def Int_CVTTPS2PIrr: PSI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), "cvttps2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvttps2pi VR128:$src))]>; def Int_CVTTPS2PIrm: PSI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src), "cvttps2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvttps2pi (load addr:$src)))]>; let isTwoAddress = 1 in { def Int_CVTPI2PSrr : PSI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR64:$src2), "cvtpi2ps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1, VR64:$src2))]>; def Int_CVTPI2PSrm : PSI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2), "cvtpi2ps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1, (load addr:$src2)))]>; } // Aliases for intrinsics def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "cvttss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse_cvttss2si VR128:$src))]>; def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), "cvttss2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse_cvttss2si(load addr:$src)))]>; let isTwoAddress = 1 in { def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32:$src2), "cvtsi2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1, GR32:$src2))]>; def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2), "cvtsi2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1, (loadi32 addr:$src2)))]>; } // Comparison instructions let isTwoAddress = 1 in { let neverHasSideEffects = 1 in def CMPSSrr : SSIi8<0xC2, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src, SSECC:$cc), "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>; let neverHasSideEffects = 1, mayLoad = 1 in def CMPSSrm : SSIi8<0xC2, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src, SSECC:$cc), "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>; } let Defs = [EFLAGS] in { def UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins FR32:$src1, FR32:$src2), "ucomiss\t{$src2, $src1|$src1, $src2}", [(X86cmp FR32:$src1, FR32:$src2), (implicit EFLAGS)]>; def UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins FR32:$src1, f32mem:$src2), "ucomiss\t{$src2, $src1|$src1, $src2}", [(X86cmp FR32:$src1, (loadf32 addr:$src2)), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Aliases to match intrinsics which expect XMM operand(s). let isTwoAddress = 1 in { def Int_CMPSSrr : SSIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), "cmp${cc}ss\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1, VR128:$src, imm:$cc))]>; def Int_CMPSSrm : SSIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src, SSECC:$cc), "cmp${cc}ss\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1, (load addr:$src), imm:$cc))]>; } let Defs = [EFLAGS] in { def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ucomiss\t{$src2, $src1|$src1, $src2}", [(X86ucomi (v4f32 VR128:$src1), VR128:$src2), (implicit EFLAGS)]>; def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "ucomiss\t{$src2, $src1|$src1, $src2}", [(X86ucomi (v4f32 VR128:$src1), (load addr:$src2)), (implicit EFLAGS)]>; def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "comiss\t{$src2, $src1|$src1, $src2}", [(X86comi (v4f32 VR128:$src1), VR128:$src2), (implicit EFLAGS)]>; def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "comiss\t{$src2, $src1|$src1, $src2}", [(X86comi (v4f32 VR128:$src1), (load addr:$src2)), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Aliases of packed SSE1 instructions for scalar use. These all have names that // start with 'Fs'. // Alias instructions that map fld0 to pxor for sse. let isReMaterializable = 1 in def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "pxor\t$dst, $dst", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>, TB, OpSize; // Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are // disregarded. let neverHasSideEffects = 1 in def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), "movaps\t{$src, $dst|$dst, $src}", []>; // Alias instruction to load FR32 from f128mem using movaps. Upper bits are // disregarded. let isSimpleLoad = 1 in def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), "movaps\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>; // Alias bitwise logical operations using SSE logical ops on packed FP values. let isTwoAddress = 1 in { let isCommutable = 1 in { def FsANDPSrr : PSI<0x54, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), "andps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>; def FsORPSrr : PSI<0x56, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), "orps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>; def FsXORPSrr : PSI<0x57, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), "xorps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>; } def FsANDPSrm : PSI<0x54, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2), "andps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86fand FR32:$src1, (memopfsf32 addr:$src2)))]>; def FsORPSrm : PSI<0x56, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2), "orps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86for FR32:$src1, (memopfsf32 addr:$src2)))]>; def FsXORPSrm : PSI<0x57, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2), "xorps\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86fxor FR32:$src1, (memopfsf32 addr:$src2)))]>; let neverHasSideEffects = 1 in { def FsANDNPSrr : PSI<0x55, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), "andnps\t{$src2, $dst|$dst, $src2}", []>; let mayLoad = 1 in def FsANDNPSrm : PSI<0x55, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2), "andnps\t{$src2, $dst|$dst, $src2}", []>; } } /// basic_sse1_fp_binop_rm - SSE1 binops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a scalar) /// and leaves the top elements undefined. /// /// These three forms can each be reg+reg or reg+mem, so there are a total of /// six "instructions". /// let isTwoAddress = 1 in { multiclass basic_sse1_fp_binop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int, bit Commutable = 0> { // Scalar operation, reg+reg. def SSrr : SSI { let isCommutable = Commutable; } // Scalar operation, reg+mem. def SSrm : SSI; // Vector operation, reg+reg. def PSrr : PSI { let isCommutable = Commutable; } // Vector operation, reg+mem. def PSrm : PSI; // Intrinsic operation, reg+reg. def SSrr_Int : SSI { let isCommutable = Commutable; } // Intrinsic operation, reg+mem. def SSrm_Int : SSI; } } // Arithmetic instructions defm ADD : basic_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>; defm MUL : basic_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>; defm SUB : basic_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>; defm DIV : basic_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>; /// sse1_fp_binop_rm - Other SSE1 binops /// /// This multiclass is like basic_sse1_fp_binop_rm, with the addition of /// instructions for a full-vector intrinsic form. Operations that map /// onto C operators don't use this form since they just use the plain /// vector form instead of having a separate vector intrinsic form. /// /// This provides a total of eight "instructions". /// let isTwoAddress = 1 in { multiclass sse1_fp_binop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int, Intrinsic V4F32Int, bit Commutable = 0> { // Scalar operation, reg+reg. def SSrr : SSI { let isCommutable = Commutable; } // Scalar operation, reg+mem. def SSrm : SSI; // Vector operation, reg+reg. def PSrr : PSI { let isCommutable = Commutable; } // Vector operation, reg+mem. def PSrm : PSI; // Intrinsic operation, reg+reg. def SSrr_Int : SSI { let isCommutable = Commutable; } // Intrinsic operation, reg+mem. def SSrm_Int : SSI; // Vector intrinsic operation, reg+reg. def PSrr_Int : PSI { let isCommutable = Commutable; } // Vector intrinsic operation, reg+mem. def PSrm_Int : PSI; } } defm MAX : sse1_fp_binop_rm<0x5F, "max", X86fmax, int_x86_sse_max_ss, int_x86_sse_max_ps>; defm MIN : sse1_fp_binop_rm<0x5D, "min", X86fmin, int_x86_sse_min_ss, int_x86_sse_min_ps>; //===----------------------------------------------------------------------===// // SSE packed FP Instructions // Move Instructions let neverHasSideEffects = 1 in def MOVAPSrr : PSI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movaps\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def MOVAPSrm : PSI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movaps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (alignedloadv4f32 addr:$src))]>; def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; let neverHasSideEffects = 1 in def MOVUPSrr : PSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movups\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1 in def MOVUPSrm : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movups\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (loadv4f32 addr:$src))]>; def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>; // Intrinsic forms of MOVUPS load and store let isSimpleLoad = 1 in def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movups\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>; def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>; let isTwoAddress = 1 in { let AddedComplexity = 20 in { def MOVLPSrm : PSI<0x12, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "movlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))), MOVLP_shuffle_mask)))]>; def MOVHPSrm : PSI<0x16, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "movhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))), MOVHP_shuffle_mask)))]>; } // AddedComplexity } // isTwoAddress def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>; // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (vector_shuffle (bc_v2f64 (v4f32 VR128:$src)), (undef), UNPCKH_shuffle_mask)), (iPTR 0))), addr:$dst)]>; let isTwoAddress = 1 in { let AddedComplexity = 15 in { def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, MOVHP_shuffle_mask)))]>; def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, MOVHLPS_shuffle_mask)))]>; } // AddedComplexity } // isTwoAddress // Arithmetic /// sse1_fp_unop_rm - SSE1 unops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// /// These four forms can each have a reg or a mem operand, so there are a /// total of eight "instructions". /// multiclass sse1_fp_unop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int, Intrinsic V4F32Int, bit Commutable = 0> { // Scalar operation, reg. def SSr : SSI { let isCommutable = Commutable; } // Scalar operation, mem. def SSm : SSI; // Vector operation, reg. def PSr : PSI { let isCommutable = Commutable; } // Vector operation, mem. def PSm : PSI; // Intrinsic operation, reg. def SSr_Int : SSI { let isCommutable = Commutable; } // Intrinsic operation, mem. def SSm_Int : SSI; // Vector intrinsic operation, reg def PSr_Int : PSI { let isCommutable = Commutable; } // Vector intrinsic operation, mem def PSm_Int : PSI; } // Square root. defm SQRT : sse1_fp_unop_rm<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss, int_x86_sse_sqrt_ps>; // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. defm RSQRT : sse1_fp_unop_rm<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss, int_x86_sse_rsqrt_ps>; defm RCP : sse1_fp_unop_rm<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss, int_x86_sse_rcp_ps>; // Logical let isTwoAddress = 1 in { let isCommutable = 1 in { def ANDPSrr : PSI<0x54, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "andps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and VR128:$src1, VR128:$src2)))]>; def ORPSrr : PSI<0x56, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "orps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (or VR128:$src1, VR128:$src2)))]>; def XORPSrr : PSI<0x57, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "xorps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (xor VR128:$src1, VR128:$src2)))]>; } def ANDPSrm : PSI<0x54, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "andps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (and (bc_v2i64 (v4f32 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def ORPSrm : PSI<0x56, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "orps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (or (bc_v2i64 (v4f32 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def XORPSrm : PSI<0x57, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "xorps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (xor (bc_v2i64 (v4f32 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def ANDNPSrr : PSI<0x55, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "andnps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), VR128:$src2)))]>; def ANDNPSrm : PSI<0x55, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2), "andnps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)), (bc_v2i64 (v4i32 immAllOnesV))), (memopv2i64 addr:$src2))))]>; } let isTwoAddress = 1 in { def CMPPSrri : PSIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), "cmp${cc}ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1, VR128:$src, imm:$cc))]>; def CMPPSrmi : PSIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc), "cmp${cc}ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1, (load addr:$src), imm:$cc))]>; } // Shuffle and unpack instructions let isTwoAddress = 1 in { let isConvertibleToThreeAddress = 1 in // Convert to pshufd def SHUFPSrri : PSIi8<0xC6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, SHUFP_shuffle_mask:$src3)))]>; def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, i32i8imm:$src3), "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2), SHUFP_shuffle_mask:$src3)))]>; let AddedComplexity = 10 in { def UNPCKHPSrr : PSI<0x15, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "unpckhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def UNPCKHPSrm : PSI<0x15, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "unpckhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2), UNPCKH_shuffle_mask)))]>; def UNPCKLPSrr : PSI<0x14, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "unpcklps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def UNPCKLPSrm : PSI<0x14, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "unpcklps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2), UNPCKL_shuffle_mask)))]>; } // AddedComplexity } // isTwoAddress // Mask creation def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "movmskps\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>; def MOVMSKPDrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "movmskpd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>; // Prefetching loads. // TODO: no intrinsics for these? def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", []>; def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), "prefetcht1\t$src", []>; def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), "prefetcht2\t$src", []>; def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), "prefetchnta\t$src", []>; // Non-temporal stores def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>; // Load, store, and memory fence def SFENCE : PSI<0xAE, MRM7m, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>; // MXCSR register def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>; // Alias instructions that map zero vector to pxor / xorp* for sse. let isReMaterializable = 1 in def V_SET0 : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "xorps\t$dst, $dst", [(set VR128:$dst, (v4i32 immAllZerosV))]>; // FR32 to 128-bit vector conversion. def MOVSS2PSrr : SSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (scalar_to_vector FR32:$src)))]>; def MOVSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src), "movss\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (scalar_to_vector (loadf32 addr:$src))))]>; // FIXME: may not be able to eliminate this movss with coalescing the src and // dest register classes are different. We really want to write this pattern // like this: // def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), // (f32 FR32:$src)>; def MOVPS2SSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins VR128:$src), "movss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (vector_extract (v4f32 VR128:$src), (iPTR 0)))]>; def MOVPS2SSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src), "movss\t{$src, $dst|$dst, $src}", [(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), addr:$dst)]>; // Move to lower bits of a VR128, leaving upper bits alone. // Three operand (but two address) aliases. let isTwoAddress = 1 in { let neverHasSideEffects = 1 in def MOVLSS2PSrr : SSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, FR32:$src2), "movss\t{$src2, $dst|$dst, $src2}", []>; let AddedComplexity = 15 in def MOVLPSrr : SSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src1, VR128:$src2, MOVL_shuffle_mask)))]>; } // Move to lower bits of a VR128 and zeroing upper bits. // Loading from memory automatically zeroing upper bits. let AddedComplexity = 20 in def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src), "movss\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (vector_shuffle immAllZerosV_bc, (v4f32 (scalar_to_vector (loadf32 addr:$src))), MOVL_shuffle_mask)))]>; //===----------------------------------------------------------------------===// // SSE2 Instructions //===----------------------------------------------------------------------===// // Move Instructions let neverHasSideEffects = 1 in def MOVSDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), "movsd\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def MOVSDrm : SDI<0x10, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src), "movsd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (loadf64 addr:$src))]>; def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>; // Conversion instructions def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR64:$src), "cvttsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (fp_to_sint FR64:$src))]>; def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f64mem:$src), "cvttsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>; def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))]>; def CVTSD2SSrm : SDI<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))]>; def CVTSI2SDrr : SDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR32:$src), "cvtsi2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp GR32:$src))]>; def CVTSI2SDrm : SDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i32mem:$src), "cvtsi2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>; // SSE2 instructions with XS prefix def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))]>, XS, Requires<[HasSSE2]>; def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (extloadf32 addr:$src))]>, XS, Requires<[HasSSE2]>; // Match intrinsics which expect XMM operand(s). def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "cvtsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>; def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src), "cvtsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_cvtsd2si (load addr:$src)))]>; // Match intrinisics which expect MM and XMM operand(s). def Int_CVTPD2PIrr : PDI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), "cvtpd2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvtpd2pi VR128:$src))]>; def Int_CVTPD2PIrm : PDI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src), "cvtpd2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvtpd2pi (load addr:$src)))]>; def Int_CVTTPD2PIrr: PDI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), "cvttpd2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvttpd2pi VR128:$src))]>; def Int_CVTTPD2PIrm: PDI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src), "cvttpd2pi\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (int_x86_sse_cvttpd2pi (load addr:$src)))]>; def Int_CVTPI2PDrr : PDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src), "cvtpi2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cvtpi2pd VR64:$src))]>; def Int_CVTPI2PDrm : PDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtpi2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_cvtpi2pd (load addr:$src)))]>; // Aliases for intrinsics def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "cvttsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_cvttsd2si VR128:$src))]>; def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src), "cvttsd2si\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_cvttsd2si (load addr:$src)))]>; // Comparison instructions let isTwoAddress = 1, neverHasSideEffects = 1 in { def CMPSDrr : SDIi8<0xC2, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src, SSECC:$cc), "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>; let mayLoad = 1 in def CMPSDrm : SDIi8<0xC2, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f64mem:$src, SSECC:$cc), "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>; } let Defs = [EFLAGS] in { def UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins FR64:$src1, FR64:$src2), "ucomisd\t{$src2, $src1|$src1, $src2}", [(X86cmp FR64:$src1, FR64:$src2), (implicit EFLAGS)]>; def UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs), (ins FR64:$src1, f64mem:$src2), "ucomisd\t{$src2, $src1|$src1, $src2}", [(X86cmp FR64:$src1, (loadf64 addr:$src2)), (implicit EFLAGS)]>; } // Aliases to match intrinsics which expect XMM operand(s). let isTwoAddress = 1 in { def Int_CMPSDrr : SDIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), "cmp${cc}sd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1, VR128:$src, imm:$cc))]>; def Int_CMPSDrm : SDIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src, SSECC:$cc), "cmp${cc}sd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1, (load addr:$src), imm:$cc))]>; } let Defs = [EFLAGS] in { def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ucomisd\t{$src2, $src1|$src1, $src2}", [(X86ucomi (v2f64 VR128:$src1), (v2f64 VR128:$src2)), (implicit EFLAGS)]>; def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2), "ucomisd\t{$src2, $src1|$src1, $src2}", [(X86ucomi (v2f64 VR128:$src1), (load addr:$src2)), (implicit EFLAGS)]>; def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "comisd\t{$src2, $src1|$src1, $src2}", [(X86comi (v2f64 VR128:$src1), (v2f64 VR128:$src2)), (implicit EFLAGS)]>; def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "comisd\t{$src2, $src1|$src1, $src2}", [(X86comi (v2f64 VR128:$src1), (load addr:$src2)), (implicit EFLAGS)]>; } // Defs = EFLAGS] // Aliases of packed SSE2 instructions for scalar use. These all have names that // start with 'Fs'. // Alias instructions that map fld0 to pxor for sse. let isReMaterializable = 1 in def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "pxor\t$dst, $dst", [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>, TB, OpSize; // Alias instruction to do FR64 reg-to-reg copy using movapd. Upper bits are // disregarded. let neverHasSideEffects = 1 in def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), "movapd\t{$src, $dst|$dst, $src}", []>; // Alias instruction to load FR64 from f128mem using movapd. Upper bits are // disregarded. let isSimpleLoad = 1 in def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), "movapd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>; // Alias bitwise logical operations using SSE logical ops on packed FP values. let isTwoAddress = 1 in { let isCommutable = 1 in { def FsANDPDrr : PDI<0x54, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), "andpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>; def FsORPDrr : PDI<0x56, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), "orpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>; def FsXORPDrr : PDI<0x57, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), "xorpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>; } def FsANDPDrm : PDI<0x54, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2), "andpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86fand FR64:$src1, (memopfsf64 addr:$src2)))]>; def FsORPDrm : PDI<0x56, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2), "orpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86for FR64:$src1, (memopfsf64 addr:$src2)))]>; def FsXORPDrm : PDI<0x57, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2), "xorpd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86fxor FR64:$src1, (memopfsf64 addr:$src2)))]>; let neverHasSideEffects = 1 in { def FsANDNPDrr : PDI<0x55, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), "andnpd\t{$src2, $dst|$dst, $src2}", []>; let mayLoad = 1 in def FsANDNPDrm : PDI<0x55, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2), "andnpd\t{$src2, $dst|$dst, $src2}", []>; } } /// basic_sse2_fp_binop_rm - SSE2 binops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a scalar) /// and leaves the top elements undefined. /// /// These three forms can each be reg+reg or reg+mem, so there are a total of /// six "instructions". /// let isTwoAddress = 1 in { multiclass basic_sse2_fp_binop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int, bit Commutable = 0> { // Scalar operation, reg+reg. def SDrr : SDI { let isCommutable = Commutable; } // Scalar operation, reg+mem. def SDrm : SDI; // Vector operation, reg+reg. def PDrr : PDI { let isCommutable = Commutable; } // Vector operation, reg+mem. def PDrm : PDI; // Intrinsic operation, reg+reg. def SDrr_Int : SDI { let isCommutable = Commutable; } // Intrinsic operation, reg+mem. def SDrm_Int : SDI; } } // Arithmetic instructions defm ADD : basic_sse2_fp_binop_rm<0x58, "add", fadd, int_x86_sse2_add_sd, 1>; defm MUL : basic_sse2_fp_binop_rm<0x59, "mul", fmul, int_x86_sse2_mul_sd, 1>; defm SUB : basic_sse2_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse2_sub_sd>; defm DIV : basic_sse2_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse2_div_sd>; /// sse2_fp_binop_rm - Other SSE2 binops /// /// This multiclass is like basic_sse2_fp_binop_rm, with the addition of /// instructions for a full-vector intrinsic form. Operations that map /// onto C operators don't use this form since they just use the plain /// vector form instead of having a separate vector intrinsic form. /// /// This provides a total of eight "instructions". /// let isTwoAddress = 1 in { multiclass sse2_fp_binop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int, Intrinsic V2F64Int, bit Commutable = 0> { // Scalar operation, reg+reg. def SDrr : SDI { let isCommutable = Commutable; } // Scalar operation, reg+mem. def SDrm : SDI; // Vector operation, reg+reg. def PDrr : PDI { let isCommutable = Commutable; } // Vector operation, reg+mem. def PDrm : PDI; // Intrinsic operation, reg+reg. def SDrr_Int : SDI { let isCommutable = Commutable; } // Intrinsic operation, reg+mem. def SDrm_Int : SDI; // Vector intrinsic operation, reg+reg. def PDrr_Int : PDI { let isCommutable = Commutable; } // Vector intrinsic operation, reg+mem. def PDrm_Int : PDI; } } defm MAX : sse2_fp_binop_rm<0x5F, "max", X86fmax, int_x86_sse2_max_sd, int_x86_sse2_max_pd>; defm MIN : sse2_fp_binop_rm<0x5D, "min", X86fmin, int_x86_sse2_min_sd, int_x86_sse2_min_pd>; //===----------------------------------------------------------------------===// // SSE packed FP Instructions // Move Instructions let neverHasSideEffects = 1 in def MOVAPDrr : PDI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movapd\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def MOVAPDrm : PDI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movapd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (alignedloadv2f64 addr:$src))]>; def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; let neverHasSideEffects = 1 in def MOVUPDrr : PDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movupd\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1 in def MOVUPDrm : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movupd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (loadv2f64 addr:$src))]>; def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>; // Intrinsic forms of MOVUPD load and store def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movupd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>; def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>; let isTwoAddress = 1 in { let AddedComplexity = 20 in { def MOVLPDrm : PDI<0x12, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "movlpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)), MOVLP_shuffle_mask)))]>; def MOVHPDrm : PDI<0x16, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "movhpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)), MOVHP_shuffle_mask)))]>; } // AddedComplexity } // isTwoAddress def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>; // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (vector_shuffle VR128:$src, (undef), UNPCKH_shuffle_mask)), (iPTR 0))), addr:$dst)]>; // SSE2 instructions without OpSize prefix def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps (bitconvert (memopv2i64 addr:$src))))]>, TB, Requires<[HasSSE2]>; // SSE2 instructions with XS prefix def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, XS, Requires<[HasSSE2]>; def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd (bitconvert (memopv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>; def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (load addr:$src)))]>; // SSE2 packed instructions with XS prefix def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>, XS, Requires<[HasSSE2]>; def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (load addr:$src)))]>, XS, Requires<[HasSSE2]>; // SSE2 packed instructions with XD prefix def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, XD, Requires<[HasSSE2]>; def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (load addr:$src)))]>, XD, Requires<[HasSSE2]>; def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>; def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (load addr:$src)))]>; // SSE2 instructions without OpSize prefix def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTPS2PDrm : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd (load addr:$src)))]>, TB, Requires<[HasSSE2]>; def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (load addr:$src)))]>; // Match intrinsics which expect XMM operand(s). // Aliases for intrinsics let isTwoAddress = 1 in { def Int_CVTSI2SDrr: SDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32:$src2), "cvtsi2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1, GR32:$src2))]>; def Int_CVTSI2SDrm: SDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2), "cvtsi2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1, (loadi32 addr:$src2)))]>; def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>; def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, (load addr:$src2)))]>; def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>, XS, Requires<[HasSSE2]>; def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, (load addr:$src2)))]>, XS, Requires<[HasSSE2]>; } // Arithmetic /// sse2_fp_unop_rm - SSE2 unops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// /// These four forms can each have a reg or a mem operand, so there are a /// total of eight "instructions". /// multiclass sse2_fp_unop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int, Intrinsic V2F64Int, bit Commutable = 0> { // Scalar operation, reg. def SDr : SDI { let isCommutable = Commutable; } // Scalar operation, mem. def SDm : SDI; // Vector operation, reg. def PDr : PDI { let isCommutable = Commutable; } // Vector operation, mem. def PDm : PDI; // Intrinsic operation, reg. def SDr_Int : SDI { let isCommutable = Commutable; } // Intrinsic operation, mem. def SDm_Int : SDI; // Vector intrinsic operation, reg def PDr_Int : PDI { let isCommutable = Commutable; } // Vector intrinsic operation, mem def PDm_Int : PDI; } // Square root. defm SQRT : sse2_fp_unop_rm<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd, int_x86_sse2_sqrt_pd>; // There is no f64 version of the reciprocal approximation instructions. // Logical let isTwoAddress = 1 in { let isCommutable = 1 in { def ANDPDrr : PDI<0x54, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "andpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (and (bc_v2i64 (v2f64 VR128:$src1)), (bc_v2i64 (v2f64 VR128:$src2))))]>; def ORPDrr : PDI<0x56, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "orpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (or (bc_v2i64 (v2f64 VR128:$src1)), (bc_v2i64 (v2f64 VR128:$src2))))]>; def XORPDrr : PDI<0x57, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "xorpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (xor (bc_v2i64 (v2f64 VR128:$src1)), (bc_v2i64 (v2f64 VR128:$src2))))]>; } def ANDPDrm : PDI<0x54, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "andpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (and (bc_v2i64 (v2f64 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def ORPDrm : PDI<0x56, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "orpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (or (bc_v2i64 (v2f64 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def XORPDrm : PDI<0x57, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "xorpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (xor (bc_v2i64 (v2f64 VR128:$src1)), (memopv2i64 addr:$src2)))]>; def ANDNPDrr : PDI<0x55, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "andnpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), (bc_v2i64 (v2f64 VR128:$src2))))]>; def ANDNPDrm : PDI<0x55, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2), "andnpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), (memopv2i64 addr:$src2)))]>; } let isTwoAddress = 1 in { def CMPPDrri : PDIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), "cmp${cc}pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1, VR128:$src, imm:$cc))]>; def CMPPDrmi : PDIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc), "cmp${cc}pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1, (load addr:$src), imm:$cc))]>; } // Shuffle and unpack instructions let isTwoAddress = 1 in { def SHUFPDrri : PDIi8<0xC6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, VR128:$src2, SHUFP_shuffle_mask:$src3)))]>; def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, i8imm:$src3), "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2), SHUFP_shuffle_mask:$src3)))]>; let AddedComplexity = 10 in { def UNPCKHPDrr : PDI<0x15, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "unpckhpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def UNPCKHPDrm : PDI<0x15, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "unpckhpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2), UNPCKH_shuffle_mask)))]>; def UNPCKLPDrr : PDI<0x14, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "unpcklpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def UNPCKLPDrm : PDI<0x14, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "unpcklpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2), UNPCKL_shuffle_mask)))]>; } // AddedComplexity } // isTwoAddress //===----------------------------------------------------------------------===// // SSE integer instructions // Move Instructions let neverHasSideEffects = 1 in def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>; let isSimpleLoad = 1, mayLoad = 1 in def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; let mayStore = 1 in def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; let isSimpleLoad = 1, mayLoad = 1 in def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, XS, Requires<[HasSSE2]>; let mayStore = 1 in def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, XS, Requires<[HasSSE2]>; // Intrinsic forms of MOVDQU load and store let isSimpleLoad = 1 in def MOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>, XS, Requires<[HasSSE2]>; def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, Requires<[HasSSE2]>; let isTwoAddress = 1 in { multiclass PDI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } /// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64. /// /// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew /// to collapse (bitconvert VT to VT) into its operand. /// multiclass PDI_binop_rm_v2i64 opc, string OpcodeStr, SDNode OpNode, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } } // isTwoAddress // 128-bit Integer Arithmetic defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>; defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>; defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>; defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>; defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>; defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>; defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>; defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>; defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>; defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>; defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>; defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>; defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>; defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>; defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>; defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>; defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>; defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>; defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>; defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>; defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>; defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>; defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>; defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>; defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>; defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>; defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>; defm PSADBW : PDI_binop_rm_int<0xE0, "psadbw", int_x86_sse2_psad_bw, 1>; defm PSLLW : PDI_binop_rm_int<0xF1, "psllw", int_x86_sse2_psll_w>; defm PSLLD : PDI_binop_rm_int<0xF2, "pslld", int_x86_sse2_psll_d>; defm PSLLQ : PDI_binop_rm_int<0xF3, "psllq", int_x86_sse2_psll_q>; defm PSRLW : PDI_binop_rm_int<0xD1, "psrlw", int_x86_sse2_psrl_w>; defm PSRLD : PDI_binop_rm_int<0xD2, "psrld", int_x86_sse2_psrl_d>; defm PSRLQ : PDI_binop_rm_int<0xD3, "psrlq", int_x86_sse2_psrl_q>; defm PSRAW : PDI_binop_rm_int<0xE1, "psraw", int_x86_sse2_psra_w>; defm PSRAD : PDI_binop_rm_int<0xE2, "psrad", int_x86_sse2_psra_d>; // Some immediate variants need to match a bit_convert. def PSLLWri : PDIi8<0x71, MRM6r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psllw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psll_w VR128:$src1, (bc_v8i16 (v4i32 (scalar_to_vector (i32 imm:$src2))))))]>; def PSLLDri : PDIi8<0x72, MRM6r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "pslld\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psll_d VR128:$src1, (scalar_to_vector (i32 imm:$src2))))]>; def PSLLQri : PDIi8<0x73, MRM6r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psllq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psll_q VR128:$src1, (bc_v2i64 (v4i32 (scalar_to_vector (i32 imm:$src2))))))]>; def PSRLWri : PDIi8<0x71, MRM2r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrlw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psrl_w VR128:$src1, (bc_v8i16 (v4i32 (scalar_to_vector (i32 imm:$src2))))))]>; def PSRLDri : PDIi8<0x72, MRM2r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrld\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psrl_d VR128:$src1, (scalar_to_vector (i32 imm:$src2))))]>; def PSRLQri : PDIi8<0x73, MRM2r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrlq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psrl_q VR128:$src1, (bc_v2i64 (v4i32 (scalar_to_vector (i32 imm:$src2))))))]>; def PSRAWri : PDIi8<0x71, MRM4r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psraw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psra_w VR128:$src1, (bc_v8i16 (v4i32 (scalar_to_vector (i32 imm:$src2))))))]>; def PSRADri : PDIi8<0x72, MRM4r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrad\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_psra_d VR128:$src1, (scalar_to_vector (i32 imm:$src2))))]>; // PSRAQ doesn't exist in SSE[1-3]. // 128-bit logical shifts. let isTwoAddress = 1, neverHasSideEffects = 1 in { def PSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "pslldq\t{$src2, $dst|$dst, $src2}", []>; def PSRLDQri : PDIi8<0x73, MRM3r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrldq\t{$src2, $dst|$dst, $src2}", []>; // PSRADQri doesn't exist in SSE[1-3]. } let Predicates = [HasSSE2] in { def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2), (v2i64 (PSLLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2), (v2i64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>; def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)), (v2f64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>; } // Logical defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>; defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>; defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>; let isTwoAddress = 1 in { def PANDNrr : PDI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "pandn\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), VR128:$src2)))]>; def PANDNrm : PDI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "pandn\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), (memopv2i64 addr:$src2))))]>; } // SSE2 Integer comparison defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b>; defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w>; defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d>; defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>; defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>; defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>; // Pack instructions defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>; defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>; defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>; // Shuffle and unpack instructions def PSHUFDri : PDIi8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle VR128:$src1, (undef), PSHUFD_shuffle_mask:$src2)))]>; def PSHUFDmi : PDIi8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle (bc_v4i32(memopv2i64 addr:$src1)), (undef), PSHUFD_shuffle_mask:$src2)))]>; // SSE2 with ImmT == Imm8 and XS prefix. def PSHUFHWri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, (undef), PSHUFHW_shuffle_mask:$src2)))]>, XS, Requires<[HasSSE2]>; def PSHUFHWmi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle (bc_v8i16 (memopv2i64 addr:$src1)), (undef), PSHUFHW_shuffle_mask:$src2)))]>, XS, Requires<[HasSSE2]>; // SSE2 with ImmT == Imm8 and XD prefix. def PSHUFLWri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, (undef), PSHUFLW_shuffle_mask:$src2)))]>, XD, Requires<[HasSSE2]>; def PSHUFLWmi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i32i8imm:$src2), "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle (bc_v8i16 (memopv2i64 addr:$src1)), (undef), PSHUFLW_shuffle_mask:$src2)))]>, XD, Requires<[HasSSE2]>; let isTwoAddress = 1 in { def PUNPCKLBWrr : PDI<0x60, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklbw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v16i8 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def PUNPCKLBWrm : PDI<0x60, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpcklbw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v16i8 (vector_shuffle VR128:$src1, (bc_v16i8 (memopv2i64 addr:$src2)), UNPCKL_shuffle_mask)))]>; def PUNPCKLWDrr : PDI<0x61, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklwd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def PUNPCKLWDrm : PDI<0x61, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpcklwd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, (bc_v8i16 (memopv2i64 addr:$src2)), UNPCKL_shuffle_mask)))]>; def PUNPCKLDQrr : PDI<0x62, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckldq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def PUNPCKLDQrm : PDI<0x62, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckldq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), UNPCKL_shuffle_mask)))]>; def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKL_shuffle_mask)))]>; def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2), UNPCKL_shuffle_mask)))]>; def PUNPCKHBWrr : PDI<0x68, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhbw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v16i8 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def PUNPCKHBWrm : PDI<0x68, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhbw\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v16i8 (vector_shuffle VR128:$src1, (bc_v16i8 (memopv2i64 addr:$src2)), UNPCKH_shuffle_mask)))]>; def PUNPCKHWDrr : PDI<0x69, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhwd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def PUNPCKHWDrm : PDI<0x69, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhwd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v8i16 (vector_shuffle VR128:$src1, (bc_v8i16 (memopv2i64 addr:$src2)), UNPCKH_shuffle_mask)))]>; def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), UNPCKH_shuffle_mask)))]>; def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (vector_shuffle VR128:$src1, VR128:$src2, UNPCKH_shuffle_mask)))]>; def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2), UNPCKH_shuffle_mask)))]>; } // Extract / Insert def PEXTRWri : PDIi8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>; let isTwoAddress = 1 in { def PINSRWrri : PDIi8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>; def PINSRWrmi : PDIi8<0xC4, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i16mem:$src2, i32i8imm:$src3), "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), imm:$src3))]>; } // Mask creation def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; // Conditional store let Uses = [EDI] in def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; // Non-temporal stores def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>; def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>; def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>, TB, Requires<[HasSSE2]>; // Flush cache def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, TB, Requires<[HasSSE2]>; // Load, store, and memory fence def LFENCE : I<0xAE, MRM5m, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>; def MFENCE : I<0xAE, MRM6m, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>; //TODO: custom lower this so as to never even generate the noop def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss), (i8 0)), (NOOP)>; def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss), (i8 1)), (MFENCE)>; // Alias instructions that map zero vector to pxor / xorp* for sse. let isReMaterializable = 1 in def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "pcmpeqd\t$dst, $dst", [(set VR128:$dst, (v4i32 immAllOnesV))]>; // FR64 to 128-bit vector conversion. def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (scalar_to_vector FR64:$src)))]>; def MOVSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "movsd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (scalar_to_vector (loadf64 addr:$src))))]>; def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>; def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>; def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>; def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>; // SSE2 instructions with XS prefix def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>; // FIXME: may not be able to eliminate this movss with coalescing the src and // dest register classes are different. We really want to write this pattern // like this: // def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), // (f32 FR32:$src)>; def MOVPD2SDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins VR128:$src), "movsd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (vector_extract (v2f64 VR128:$src), (iPTR 0)))]>; def MOVPD2SDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movsd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>; def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), (iPTR 0)))]>; def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>; def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>; def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>; // Move to lower bits of a VR128, leaving upper bits alone. // Three operand (but two address) aliases. let isTwoAddress = 1 in { let neverHasSideEffects = 1 in def MOVLSD2PDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, FR64:$src2), "movsd\t{$src2, $dst|$dst, $src2}", []>; let AddedComplexity = 15 in def MOVLPDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movsd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src1, VR128:$src2, MOVL_shuffle_mask)))]>; } // Store / copy lower 64-bits of a XMM register. def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; // Move to lower bits of a VR128 and zeroing upper bits. // Loading from memory automatically zeroing upper bits. let AddedComplexity = 20 in def MOVZSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "movsd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (vector_shuffle immAllZerosV_bc, (v2f64 (scalar_to_vector (loadf64 addr:$src))), MOVL_shuffle_mask)))]>; // movd / movq to XMM register zero-extends let AddedComplexity = 15 in { def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (vector_shuffle immAllZerosV, (v4i32 (scalar_to_vector GR32:$src)), MOVL_shuffle_mask)))]>; // This is X86-64 only. def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (vector_shuffle immAllZerosV_bc, (v2i64 (scalar_to_vector GR64:$src)), MOVL_shuffle_mask)))]>; } let AddedComplexity = 20 in { def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (vector_shuffle immAllZerosV, (v4i32 (scalar_to_vector (loadi32 addr:$src))), MOVL_shuffle_mask)))]>; def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (vector_shuffle immAllZerosV_bc, (v2i64 (scalar_to_vector (loadi64 addr:$src))), MOVL_shuffle_mask)))]>, XS, Requires<[HasSSE2]>; } // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. let AddedComplexity = 15 in def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (vector_shuffle immAllZerosV_bc, VR128:$src, MOVL_shuffle_mask)))]>, XS, Requires<[HasSSE2]>; let AddedComplexity = 20 in def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (vector_shuffle immAllZerosV_bc, (memopv2i64 addr:$src), MOVL_shuffle_mask)))]>, XS, Requires<[HasSSE2]>; //===----------------------------------------------------------------------===// // SSE3 Instructions //===----------------------------------------------------------------------===// // Move Instructions def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movshdup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src, (undef), MOVSHDUP_shuffle_mask)))]>; def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movshdup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (vector_shuffle (memopv4f32 addr:$src), (undef), MOVSHDUP_shuffle_mask)))]>; def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movsldup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (vector_shuffle VR128:$src, (undef), MOVSLDUP_shuffle_mask)))]>; def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movsldup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (vector_shuffle (memopv4f32 addr:$src), (undef), MOVSLDUP_shuffle_mask)))]>; def MOVDDUPrr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movddup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (vector_shuffle VR128:$src, (undef), SSE_splat_lo_mask)))]>; def MOVDDUPrm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "movddup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (vector_shuffle (scalar_to_vector (loadf64 addr:$src)), (undef), SSE_splat_lo_mask)))]>; // Arithmetic let isTwoAddress = 1 in { def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "addsubps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, VR128:$src2))]>; def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "addsubps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, (load addr:$src2)))]>; def ADDSUBPDrr : S3I<0xD0, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "addsubpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, VR128:$src2))]>; def ADDSUBPDrm : S3I<0xD0, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "addsubpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, (load addr:$src2)))]>; } def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "lddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>; // Horizontal ops class S3D_Intrr o, string OpcodeStr, Intrinsic IntId> : S3DI; class S3D_Intrm o, string OpcodeStr, Intrinsic IntId> : S3DI; class S3_Intrr o, string OpcodeStr, Intrinsic IntId> : S3I; class S3_Intrm o, string OpcodeStr, Intrinsic IntId> : S3I; let isTwoAddress = 1 in { def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>; def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>; def HADDPDrr : S3_Intrr <0x7C, "haddpd", int_x86_sse3_hadd_pd>; def HADDPDrm : S3_Intrm <0x7C, "haddpd", int_x86_sse3_hadd_pd>; def HSUBPSrr : S3D_Intrr<0x7D, "hsubps", int_x86_sse3_hsub_ps>; def HSUBPSrm : S3D_Intrm<0x7D, "hsubps", int_x86_sse3_hsub_ps>; def HSUBPDrr : S3_Intrr <0x7D, "hsubpd", int_x86_sse3_hsub_pd>; def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>; } // Thread synchronization def MONITOR : I<0xC8, RawFrm, (outs), (ins), "monitor", [(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>; def MWAIT : I<0xC9, RawFrm, (outs), (ins), "mwait", [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; // vector_shuffle v1, <1, 1, 3, 3> let AddedComplexity = 15 in def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef), MOVSHDUP_shuffle_mask)), (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (memopv2i64 addr:$src)), (undef), MOVSHDUP_shuffle_mask)), (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>; // vector_shuffle v1, <0, 0, 2, 2> let AddedComplexity = 15 in def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef), MOVSLDUP_shuffle_mask)), (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (memopv2i64 addr:$src)), (undef), MOVSLDUP_shuffle_mask)), (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>; //===----------------------------------------------------------------------===// // SSSE3 Instructions //===----------------------------------------------------------------------===// /// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8. multiclass SS3I_unop_rm_int_8 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } /// SS3I_unop_rm_int_16 - Simple SSSE3 unary operator whose type is v*i16. multiclass SS3I_unop_rm_int_16 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } /// SS3I_unop_rm_int_32 - Simple SSSE3 unary operator whose type is v*i32. multiclass SS3I_unop_rm_int_32 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } defm PABSB : SS3I_unop_rm_int_8 <0x1C, "pabsb", int_x86_ssse3_pabs_b, int_x86_ssse3_pabs_b_128>; defm PABSW : SS3I_unop_rm_int_16<0x1D, "pabsw", int_x86_ssse3_pabs_w, int_x86_ssse3_pabs_w_128>; defm PABSD : SS3I_unop_rm_int_32<0x1E, "pabsd", int_x86_ssse3_pabs_d, int_x86_ssse3_pabs_d_128>; /// SS3I_binop_rm_int_8 - Simple SSSE3 binary operator whose type is v*i8. let isTwoAddress = 1 in { multiclass SS3I_binop_rm_int_8 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } /// SS3I_binop_rm_int_16 - Simple SSSE3 binary operator whose type is v*i16. let isTwoAddress = 1 in { multiclass SS3I_binop_rm_int_16 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } /// SS3I_binop_rm_int_32 - Simple SSSE3 binary operator whose type is v*i32. let isTwoAddress = 1 in { multiclass SS3I_binop_rm_int_32 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } defm PHADDW : SS3I_binop_rm_int_16<0x01, "phaddw", int_x86_ssse3_phadd_w, int_x86_ssse3_phadd_w_128, 1>; defm PHADDD : SS3I_binop_rm_int_32<0x02, "phaddd", int_x86_ssse3_phadd_d, int_x86_ssse3_phadd_d_128, 1>; defm PHADDSW : SS3I_binop_rm_int_16<0x03, "phaddsw", int_x86_ssse3_phadd_sw, int_x86_ssse3_phadd_sw_128, 1>; defm PHSUBW : SS3I_binop_rm_int_16<0x05, "phsubw", int_x86_ssse3_phsub_w, int_x86_ssse3_phsub_w_128>; defm PHSUBD : SS3I_binop_rm_int_32<0x06, "phsubd", int_x86_ssse3_phsub_d, int_x86_ssse3_phsub_d_128>; defm PHSUBSW : SS3I_binop_rm_int_16<0x07, "phsubsw", int_x86_ssse3_phsub_sw, int_x86_ssse3_phsub_sw_128>; defm PMADDUBSW : SS3I_binop_rm_int_8 <0x04, "pmaddubsw", int_x86_ssse3_pmadd_ub_sw, int_x86_ssse3_pmadd_ub_sw_128, 1>; defm PMULHRSW : SS3I_binop_rm_int_16<0x0B, "pmulhrsw", int_x86_ssse3_pmul_hr_sw, int_x86_ssse3_pmul_hr_sw_128, 1>; defm PSHUFB : SS3I_binop_rm_int_8 <0x00, "pshufb", int_x86_ssse3_pshuf_b, int_x86_ssse3_pshuf_b_128>; defm PSIGNB : SS3I_binop_rm_int_8 <0x08, "psignb", int_x86_ssse3_psign_b, int_x86_ssse3_psign_b_128>; defm PSIGNW : SS3I_binop_rm_int_16<0x09, "psignw", int_x86_ssse3_psign_w, int_x86_ssse3_psign_w_128>; defm PSIGND : SS3I_binop_rm_int_32<0x09, "psignd", int_x86_ssse3_psign_d, int_x86_ssse3_psign_d_128>; let isTwoAddress = 1 in { def PALIGNR64rr : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2, i16imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR64:$dst, (int_x86_ssse3_palign_r VR64:$src1, VR64:$src2, imm:$src3))]>; def PALIGNR64rm : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2, i16imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR64:$dst, (int_x86_ssse3_palign_r VR64:$src1, (bitconvert (memopv2i32 addr:$src2)), imm:$src3))]>; def PALIGNR128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_ssse3_palign_r_128 VR128:$src1, VR128:$src2, imm:$src3))]>, OpSize; def PALIGNR128rm : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i32imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (int_x86_ssse3_palign_r_128 VR128:$src1, (bitconvert (memopv4i32 addr:$src2)), imm:$src3))]>, OpSize; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // 128-bit vector undef's. def : Pat<(v4f32 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; def : Pat<(v2f64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; def : Pat<(v16i8 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; def : Pat<(v8i16 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>; // extload f32 -> f64. This matches load+fextend because we have a hack in // the isel (PreprocessForFPConvert) that can introduce loads after dag combine. // Since these loads aren't folded into the fextend, we have to match it // explicitly here. let Predicates = [HasSSE2] in def : Pat<(fextend (loadf32 addr:$src)), (CVTSS2SDrm addr:$src)>; // bit_convert let Predicates = [HasSSE2] in { def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; } // Move scalar to XMM zero-extended // movd to XMM register zero-extends let AddedComplexity = 15 in { // Zeroing a VR128 then do a MOVS{S|D} to the lower bits. def : Pat<(v2f64 (vector_shuffle immAllZerosV_bc, (v2f64 (scalar_to_vector FR64:$src)), MOVL_shuffle_mask)), (MOVLSD2PDrr (V_SET0), FR64:$src)>, Requires<[HasSSE2]>; def : Pat<(v4f32 (vector_shuffle immAllZerosV_bc, (v4f32 (scalar_to_vector FR32:$src)), MOVL_shuffle_mask)), (MOVLSS2PSrr (V_SET0), FR32:$src)>, Requires<[HasSSE2]>; } // Splat v2f64 / v2i64 let AddedComplexity = 10 in { def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), SSE_splat_lo_mask:$sm), (UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm), (UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), SSE_splat_lo_mask:$sm), (PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm), (PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; } // Splat v4f32 def : Pat<(vector_shuffle (v4f32 VR128:$src), (undef), SSE_splat_mask:$sm), (SHUFPSrri VR128:$src, VR128:$src, SSE_splat_mask:$sm)>, Requires<[HasSSE1]>; // Special unary SHUFPSrri case. // FIXME: when we want non two-address code, then we should use PSHUFD? def : Pat<(v4f32 (vector_shuffle VR128:$src1, (undef), SHUFP_unary_shuffle_mask:$sm)), (SHUFPSrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>, Requires<[HasSSE1]>; // Special unary SHUFPDrri case. def : Pat<(v2f64 (vector_shuffle VR128:$src1, (undef), SHUFP_unary_shuffle_mask:$sm)), (SHUFPDrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>, Requires<[HasSSE2]>; // Unary v4f32 shuffle with PSHUF* in order to fold a load. def : Pat<(vector_shuffle (memopv4f32 addr:$src1), (undef), SHUFP_unary_shuffle_mask:$sm), (PSHUFDmi addr:$src1, SHUFP_unary_shuffle_mask:$sm)>, Requires<[HasSSE2]>; // Special binary v4i32 shuffle cases with SHUFPS. def : Pat<(v4i32 (vector_shuffle VR128:$src1, (v4i32 VR128:$src2), PSHUFD_binary_shuffle_mask:$sm)), (SHUFPSrri VR128:$src1, VR128:$src2, PSHUFD_binary_shuffle_mask:$sm)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), PSHUFD_binary_shuffle_mask:$sm)), (SHUFPSrmi VR128:$src1, addr:$src2, PSHUFD_binary_shuffle_mask:$sm)>, Requires<[HasSSE2]>; // Special binary v2i64 shuffle cases using SHUFPDrri. def : Pat<(v2i64 (vector_shuffle VR128:$src1, VR128:$src2, SHUFP_shuffle_mask:$sm)), (SHUFPDrri VR128:$src1, VR128:$src2, SHUFP_shuffle_mask:$sm)>, Requires<[HasSSE2]>; // Special unary SHUFPDrri case. def : Pat<(v2i64 (vector_shuffle VR128:$src1, (undef), SHUFP_unary_shuffle_mask:$sm)), (SHUFPDrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>, Requires<[HasSSE2]>; // vector_shuffle v1, , <0, 0, 1, 1, ...> let AddedComplexity = 10 in { def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef), UNPCKL_v_undef_shuffle_mask)), (UNPCKLPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef), UNPCKL_v_undef_shuffle_mask)), (PUNPCKLBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef), UNPCKL_v_undef_shuffle_mask)), (PUNPCKLWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef), UNPCKL_v_undef_shuffle_mask)), (PUNPCKLDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>; } // vector_shuffle v1, , <2, 2, 3, 3, ...> let AddedComplexity = 10 in { def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef), UNPCKH_v_undef_shuffle_mask)), (UNPCKHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef), UNPCKH_v_undef_shuffle_mask)), (PUNPCKHBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef), UNPCKH_v_undef_shuffle_mask)), (PUNPCKHWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef), UNPCKH_v_undef_shuffle_mask)), (PUNPCKHDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>; } let AddedComplexity = 15 in { // vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2, MOVHP_shuffle_mask)), (MOVLHPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2, MOVHLPS_shuffle_mask)), (MOVHLPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS def : Pat<(v4f32 (vector_shuffle VR128:$src1, (undef), MOVHLPS_v_undef_shuffle_mask)), (MOVHLPSrr VR128:$src1, VR128:$src1)>; def : Pat<(v4i32 (vector_shuffle VR128:$src1, (undef), MOVHLPS_v_undef_shuffle_mask)), (MOVHLPSrr VR128:$src1, VR128:$src1)>; } let AddedComplexity = 20 in { // vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS // vector_shuffle v1, (load v2) <0, 1, 4, 5> using MOVHPS def : Pat<(v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2), MOVLP_shuffle_mask)), (MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>; def : Pat<(v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2), MOVLP_shuffle_mask)), (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2), MOVHP_shuffle_mask)), (MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>; def : Pat<(v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2), MOVHP_shuffle_mask)), (MOVHPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), MOVLP_shuffle_mask)), (MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2), MOVLP_shuffle_mask)), (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), MOVHP_shuffle_mask)), (MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>; def : Pat<(v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2), MOVLP_shuffle_mask)), (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; } let AddedComplexity = 15 in { // Setting the lowest element in the vector. def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2, MOVL_shuffle_mask)), (MOVLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (vector_shuffle VR128:$src1, VR128:$src2, MOVL_shuffle_mask)), (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; // vector_shuffle v1, v2 <4, 5, 2, 3> using MOVLPDrr (movsd) def : Pat<(v4f32 (vector_shuffle VR128:$src1, VR128:$src2, MOVLP_shuffle_mask)), (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2, MOVLP_shuffle_mask)), (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; } // Set lowest element and zero upper elements. let AddedComplexity = 15 in def : Pat<(v2f64 (vector_shuffle immAllZerosV_bc, VR128:$src, MOVL_shuffle_mask)), (MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>; // FIXME: Temporary workaround since 2-wide shuffle is broken. def : Pat<(int_x86_sse2_movs_d VR128:$src1, VR128:$src2), (v2f64 (MOVLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_loadh_pd VR128:$src1, addr:$src2), (v2f64 (MOVHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_loadl_pd VR128:$src1, addr:$src2), (v2f64 (MOVLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, VR128:$src2, imm:$src3), (v2f64 (SHUFPDrri VR128:$src1, VR128:$src2, imm:$src3))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, (load addr:$src2), imm:$src3), (v2f64 (SHUFPDrmi VR128:$src1, addr:$src2, imm:$src3))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, VR128:$src2), (v2f64 (UNPCKHPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, (load addr:$src2)), (v2f64 (UNPCKHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, VR128:$src2), (v2f64 (UNPCKLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, (load addr:$src2)), (v2f64 (UNPCKLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, VR128:$src2), (v2i64 (PUNPCKHQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, (load addr:$src2)), (v2i64 (PUNPCKHQDQrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, VR128:$src2), (v2i64 (PUNPCKLQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>; def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, (load addr:$src2)), (PUNPCKLQDQrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; // Some special case pandn patterns. def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), (memopv2i64 addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))), (memopv2i64 addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))), (memopv2i64 addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; // vector -> vector casts def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))), (Int_CVTDQ2PSrr VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))), (Int_CVTTPS2DQrr VR128:$src)>, Requires<[HasSSE2]>; // Use movaps / movups for SSE integer load / store (one byte shorter). def : Pat<(alignedloadv4i32 addr:$src), (MOVAPSrm addr:$src)>, Requires<[HasSSE1]>; def : Pat<(loadv4i32 addr:$src), (MOVUPSrm addr:$src)>, Requires<[HasSSE1]>; def : Pat<(alignedloadv2i64 addr:$src), (MOVAPSrm addr:$src)>, Requires<[HasSSE2]>; def : Pat<(loadv2i64 addr:$src), (MOVUPSrm addr:$src)>, Requires<[HasSSE2]>; def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(store (v2i64 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>; //===----------------------------------------------------------------------===// // SSE4.1 Instructions //===----------------------------------------------------------------------===// multiclass sse41_fp_unop_rm opcss, bits<8> opcps, bits<8> opcsd, bits<8> opcpd, string OpcodeStr, Intrinsic F32Int, Intrinsic V4F32Int, Intrinsic F64Int, Intrinsic V2F64Int> { // Intrinsic operation, reg. def SSr_Int : SS4AI, OpSize; // Intrinsic operation, mem. def SSm_Int : SS4AI, OpSize; // Vector intrinsic operation, reg def PSr_Int : SS4AI, OpSize; // Vector intrinsic operation, mem def PSm_Int : SS4AI, OpSize; // Intrinsic operation, reg. def SDr_Int : SS4AI, OpSize; // Intrinsic operation, mem. def SDm_Int : SS4AI, OpSize; // Vector intrinsic operation, reg def PDr_Int : SS4AI, OpSize; // Vector intrinsic operation, mem def PDm_Int : SS4AI, OpSize; } // FP round - roundss, roundps, roundsd, roundpd defm ROUND : sse41_fp_unop_rm<0x0A, 0x08, 0x0B, 0x09, "round", int_x86_sse41_round_ss, int_x86_sse41_round_ps, int_x86_sse41_round_sd, int_x86_sse41_round_pd>; // SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. multiclass SS41I_unop_rm_int_v16 opc, string OpcodeStr, Intrinsic IntId128> { def rr128 : SS48I, OpSize; def rm128 : SS48I, OpSize; } defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", int_x86_sse41_phminposuw>; /// SS41I_binop_rm_int - Simple SSE 4.1 binary operator let isTwoAddress = 1 in { multiclass SS41I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rr : SS48I, OpSize { let isCommutable = Commutable; } def rm : SS48I, OpSize; } } defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", int_x86_sse41_pcmpeqq, 1>; defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw, 0>; defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb, 1>; defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd, 1>; defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud, 1>; defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw, 1>; defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb, 1>; defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd, 1>; defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud, 1>; defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw, 1>; defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq, 1>; /// SS41I_binop_rm_int - Simple SSE 4.1 binary operator let isTwoAddress = 1 in { multiclass SS41I_binop_patint opc, string OpcodeStr, SDNode OpNode, Intrinsic IntId128, bit Commutable = 0> { def rr : SS48I, OpSize { let isCommutable = Commutable; } def rr_int : SS48I, OpSize { let isCommutable = Commutable; } def rm : SS48I, OpSize; def rm_int : SS48I, OpSize; } } defm PMULLD : SS41I_binop_patint<0x40, "pmulld", mul, int_x86_sse41_pmulld, 1>; /// SS41I_binop_rmi_int - SSE 4.1 binary operator with immediate let isTwoAddress = 1 in { multiclass SS41I_binop_rmi_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rri : SS4AI, OpSize { let isCommutable = Commutable; } def rmi : SS4AI, OpSize; } } defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps, 0>; defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd, 0>; defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw, 0>; defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps, 1>; defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd, 1>; defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw, 0>; /// SS41I_binop_rmi_int - SSE 4.1 binary operator with immediate let Uses = [XMM0], isTwoAddress = 1 in { multiclass SS41I_ternary_int opc, string OpcodeStr, Intrinsic IntId> { def rr0 : SS48I, OpSize; def rm0 : SS48I, OpSize; } } defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>; defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>; defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; multiclass SS41I_binop_rm_int8 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>; defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>; defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>; defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw>; defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd>; defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq>; multiclass SS41I_binop_rm_int4 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>; defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>; defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>; defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq>; multiclass SS41I_binop_rm_int2 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>; defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovsxbq", int_x86_sse41_pmovzxbq>; /// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem multiclass SS41I_extract8 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def mr : SS4AI, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } defm PEXTRB : SS41I_extract8<0x14, "pextrb">; /// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination multiclass SS41I_extract16 opc, string OpcodeStr> { def mr : SS4AI, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } defm PEXTRW : SS41I_extract16<0x15, "pextrw">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract32 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def mr : SS4AI, OpSize; } defm PEXTRD : SS41I_extract32<0x16, "pextrd">; /// SS41I_extractf32 - SSE 4.1 extract 32 bits to fp reg or memory destination multiclass SS41I_extractf32 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def mr : SS4AI, OpSize; } defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; let isTwoAddress = 1 in { multiclass SS41I_insert8 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def rm : SS4AI, OpSize; } } defm PINSRB : SS41I_insert8<0x20, "pinsrb">; let isTwoAddress = 1 in { multiclass SS41I_insert32 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def rm : SS4AI, OpSize; } } defm PINSRD : SS41I_insert32<0x22, "pinsrd">; let isTwoAddress = 1 in { multiclass SS41I_insertf32 opc, string OpcodeStr> { def rr : SS4AI, OpSize; def rm : SS4AI, OpSize; } } defm INSERTPS : SS41I_insertf32<0x31, "insertps">;