//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of ELF support for the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dyld" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/IntervalMap.h" #include "RuntimeDyldELF.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/ELF.h" #include "llvm/ADT/Triple.h" #include "llvm/Object/ELF.h" #include "JITRegistrar.h" using namespace llvm; using namespace llvm::object; namespace { template class DyldELFObject : public ELFObjectFile { LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits) typedef Elf_Shdr_Impl Elf_Shdr; typedef Elf_Sym_Impl Elf_Sym; typedef Elf_Rel_Impl Elf_Rel; typedef Elf_Rel_Impl Elf_Rela; typedef typename ELFObjectFile:: Elf_Ehdr Elf_Ehdr; typedef typename ELFDataTypeTypedefHelper< target_endianness, is64Bits>::value_type addr_type; protected: // This duplicates the 'Data' member in the 'Binary' base class // but it is necessary to workaround a bug in gcc 4.2 MemoryBuffer *InputData; public: DyldELFObject(MemoryBuffer *Object, error_code &ec); void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr); const MemoryBuffer& getBuffer() const { return *InputData; } // Methods for type inquiry through isa, cast and dyn_cast static inline bool classof(const Binary *v) { return (isa >(v) && classof(cast >(v))); } static inline bool classof( const ELFObjectFile *v) { return v->isDyldType(); } static inline bool classof(const DyldELFObject *v) { return true; } }; template class ELFObjectImage : public ObjectImage { protected: DyldELFObject *DyldObj; bool Registered; public: ELFObjectImage(DyldELFObject *Obj) : ObjectImage(Obj), DyldObj(Obj), Registered(false) {} virtual ~ELFObjectImage() { if (Registered) deregisterWithDebugger(); } // Subclasses can override these methods to update the image with loaded // addresses for sections and common symbols virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) { DyldObj->updateSectionAddress(Sec, Addr); } virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) { DyldObj->updateSymbolAddress(Sym, Addr); } virtual void registerWithDebugger() { JITRegistrar::getGDBRegistrar().registerObject(DyldObj->getBuffer()); Registered = true; } virtual void deregisterWithDebugger() { JITRegistrar::getGDBRegistrar().deregisterObject(DyldObj->getBuffer()); } }; template DyldELFObject::DyldELFObject(MemoryBuffer *Object, error_code &ec) : ELFObjectFile(Object, ec), InputData(Object) { this->isDyldELFObject = true; } template void DyldELFObject::updateSectionAddress( const SectionRef &Sec, uint64_t Addr) { DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); Elf_Shdr *shdr = const_cast( reinterpret_cast(ShdrRef.p)); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. shdr->sh_addr = static_cast(Addr); } template void DyldELFObject::updateSymbolAddress( const SymbolRef &SymRef, uint64_t Addr) { Elf_Sym *sym = const_cast( ELFObjectFile:: getSymbol(SymRef.getRawDataRefImpl())); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. sym->st_value = static_cast(Addr); } } // namespace namespace llvm { ObjectImage *RuntimeDyldELF::createObjectImage( const MemoryBuffer *ConstInputBuffer) { MemoryBuffer *InputBuffer = const_cast(ConstInputBuffer); std::pair Ident = getElfArchType(InputBuffer); error_code ec; if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) { DyldELFObject *Obj = new DyldELFObject(InputBuffer, ec); return new ELFObjectImage(Obj); } else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) { DyldELFObject *Obj = new DyldELFObject(InputBuffer, ec); return new ELFObjectImage(Obj); } else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) { DyldELFObject *Obj = new DyldELFObject(InputBuffer, ec); return new ELFObjectImage(Obj); } else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) { DyldELFObject *Obj = new DyldELFObject(InputBuffer, ec); return new ELFObjectImage(Obj); } else llvm_unreachable("Unexpected ELF format"); } void RuntimeDyldELF::handleObjectLoaded(ObjectImage *Obj) { Obj->registerWithDebugger(); // Save the loaded object. It will deregister itself when deleted LoadedObject = Obj; } RuntimeDyldELF::~RuntimeDyldELF() { if (LoadedObject) delete LoadedObject; } void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress, uint64_t FinalAddress, uint64_t Value, uint32_t Type, int64_t Addend) { switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_X86_64_64: { uint64_t *Target = (uint64_t*)(LocalAddress); *Target = Value + Addend; break; } case ELF::R_X86_64_32: case ELF::R_X86_64_32S: { Value += Addend; assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); uint32_t *Target = reinterpret_cast(LocalAddress); *Target = TruncatedAddr; break; } case ELF::R_X86_64_PC32: { uint32_t *Placeholder = reinterpret_cast(LocalAddress); int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); *Placeholder = TruncOffset; break; } } } void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress, uint32_t FinalAddress, uint32_t Value, uint32_t Type, int32_t Addend) { switch (Type) { case ELF::R_386_32: { uint32_t *Target = (uint32_t*)(LocalAddress); uint32_t Placeholder = *Target; *Target = Placeholder + Value + Addend; break; } case ELF::R_386_PC32: { uint32_t *Placeholder = reinterpret_cast(LocalAddress); uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress; *Placeholder = RealOffset; break; } default: // There are other relocation types, but it appears these are the // only ones currently used by the LLVM ELF object writer llvm_unreachable("Relocation type not implemented yet!"); break; } } void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress, uint32_t FinalAddress, uint32_t Value, uint32_t Type, int32_t Addend) { // TODO: Add Thumb relocations. uint32_t* TargetPtr = (uint32_t*)LocalAddress; Value += Addend; DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress << " FinalAddress: " << format("%p",FinalAddress) << " Value: " << format("%x",Value) << " Type: " << format("%x",Type) << " Addend: " << format("%x",Addend) << "\n"); switch(Type) { default: llvm_unreachable("Not implemented relocation type!"); // Just write 32bit value to relocation address case ELF::R_ARM_ABS32 : *TargetPtr = Value; break; // Write first 16 bit of 32 bit value to the mov instruction. // Last 4 bit should be shifted. case ELF::R_ARM_MOVW_ABS_NC : Value = Value & 0xFFFF; *TargetPtr |= Value & 0xFFF; *TargetPtr |= ((Value >> 12) & 0xF) << 16; break; // Write last 16 bit of 32 bit value to the mov instruction. // Last 4 bit should be shifted. case ELF::R_ARM_MOVT_ABS : Value = (Value >> 16) & 0xFFFF; *TargetPtr |= Value & 0xFFF; *TargetPtr |= ((Value >> 12) & 0xF) << 16; break; // Write 24 bit relative value to the branch instruction. case ELF::R_ARM_PC24 : // Fall through. case ELF::R_ARM_CALL : // Fall through. case ELF::R_ARM_JUMP24 : int32_t RelValue = static_cast(Value - FinalAddress - 8); RelValue = (RelValue & 0x03FFFFFC) >> 2; *TargetPtr &= 0xFF000000; *TargetPtr |= RelValue; break; } } void RuntimeDyldELF::resolveMIPSRelocation(uint8_t *LocalAddress, uint32_t FinalAddress, uint32_t Value, uint32_t Type, int32_t Addend) { uint32_t* TargetPtr = (uint32_t*)LocalAddress; Value += Addend; DEBUG(dbgs() << "resolveMipselocation, LocalAddress: " << LocalAddress << " FinalAddress: " << format("%p",FinalAddress) << " Value: " << format("%x",Value) << " Type: " << format("%x",Type) << " Addend: " << format("%x",Addend) << "\n"); switch(Type) { default: llvm_unreachable("Not implemented relocation type!"); break; case ELF::R_MIPS_32: *TargetPtr = Value + (*TargetPtr); break; case ELF::R_MIPS_26: *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2); break; case ELF::R_MIPS_HI16: // Get the higher 16-bits. Also add 1 if bit 15 is 1. Value += ((*TargetPtr) & 0x0000ffff) << 16; *TargetPtr = ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); break; case ELF::R_MIPS_LO16: Value += ((*TargetPtr) & 0x0000ffff); *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff); break; } } void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress, uint64_t FinalAddress, uint64_t Value, uint32_t Type, int64_t Addend) { switch (Arch) { case Triple::x86_64: resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend); break; case Triple::x86: resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL), (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::arm: // Fall through. case Triple::thumb: resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL), (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::mips: // Fall through. case Triple::mipsel: resolveMIPSRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL), (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; default: llvm_unreachable("Unsupported CPU type!"); } } void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel, ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, StubMap &Stubs) { uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL); intptr_t Addend = (intptr_t)Rel.AdditionalInfo; const SymbolRef &Symbol = Rel.Symbol; // Obtain the symbol name which is referenced in the relocation StringRef TargetName; Symbol.getName(TargetName); DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend << " TargetName: " << TargetName << "\n"); RelocationValueRef Value; // First search for the symbol in the local symbol table SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data()); if (lsi != Symbols.end()) { Value.SectionID = lsi->second.first; Value.Addend = lsi->second.second; } else { // Search for the symbol in the global symbol table SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data()); if (gsi != GlobalSymbolTable.end()) { Value.SectionID = gsi->second.first; Value.Addend = gsi->second.second; } else { SymbolRef::Type SymType; Symbol.getType(SymType); switch (SymType) { case SymbolRef::ST_Debug: { // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously // and can be changed by another developers. Maybe best way is add // a new symbol type ST_Section to SymbolRef and use it. section_iterator si(Obj.end_sections()); Symbol.getSection(si); if (si == Obj.end_sections()) llvm_unreachable("Symbol section not found, bad object file format!"); DEBUG(dbgs() << "\t\tThis is section symbol\n"); Value.SectionID = findOrEmitSection(Obj, (*si), true, ObjSectionToID); Value.Addend = Addend; break; } case SymbolRef::ST_Unknown: { Value.SymbolName = TargetName.data(); Value.Addend = Addend; break; } default: llvm_unreachable("Unresolved symbol type!"); break; } } } DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID << " Rel.Offset: " << Rel.Offset << "\n"); if (Arch == Triple::arm && (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || RelType == ELF::R_ARM_JUMP24)) { // This is an ARM branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); SectionEntry &Section = Sections[Rel.SectionID]; uint8_t *Target = Section.Address + Rel.Offset; // Look up for existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address + i->second, RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset); RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address, ELF::R_ARM_ABS32, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); Section.StubOffset += getMaxStubSize(); } } else if (Arch == Triple::mipsel && RelType == ELF::R_MIPS_26) { // This is an Mips branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); SectionEntry &Section = Sections[Rel.SectionID]; uint8_t *Target = Section.Address + Rel.Offset; uint32_t *TargetAddress = (uint32_t *)Target; // Extract the addend from the instruction. uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2; Value.Addend += Addend; // Look up for existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address + i->second, RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset); // Creating Hi and Lo relocations for the filled stub instructions. RelocationEntry REHi(Rel.SectionID, StubTargetAddr - Section.Address, ELF::R_MIPS_HI16, Value.Addend); RelocationEntry RELo(Rel.SectionID, StubTargetAddr - Section.Address + 4, ELF::R_MIPS_LO16, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REHi, Value.SymbolName); addRelocationForSymbol(RELo, Value.SymbolName); } else { addRelocationForSection(REHi, Value.SectionID); addRelocationForSection(RELo, Value.SectionID); } resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); Section.StubOffset += getMaxStubSize(); } } else { RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } } bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const { StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT); return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; } } // namespace llvm