//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon instructions in TableGen format. // //===----------------------------------------------------------------------===// include "HexagonInstrFormats.td" include "HexagonOperands.td" // Pattern fragment that combines the value type and the register class // into a single parameter. // The pat frags in the definitions below need to have a named register, // otherwise i32 will be assumed regardless of the register class. The // name of the register does not matter. def I1 : PatLeaf<(i1 PredRegs:$R)>; def I32 : PatLeaf<(i32 IntRegs:$R)>; def I64 : PatLeaf<(i64 DoubleRegs:$R)>; def F32 : PatLeaf<(f32 IntRegs:$R)>; def F64 : PatLeaf<(f64 DoubleRegs:$R)>; // Pattern fragments to extract the low and high subregisters from a // 64-bit value. def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>; def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), subreg_hireg)>; // SDNode for converting immediate C to C-1. def DEC_CONST_SIGNED : SDNodeXFormgetSExtValue(); return XformSToSM1Imm(imm); }]>; // SDNode for converting immediate C to C-2. def DEC2_CONST_SIGNED : SDNodeXFormgetSExtValue(); return XformSToSM2Imm(imm); }]>; // SDNode for converting immediate C to C-3. def DEC3_CONST_SIGNED : SDNodeXFormgetSExtValue(); return XformSToSM3Imm(imm); }]>; // SDNode for converting immediate C to C-1. def DEC_CONST_UNSIGNED : SDNodeXFormgetZExtValue(); return XformUToUM1Imm(imm); }]>; //===----------------------------------------------------------------------===// // Compare //===----------------------------------------------------------------------===// let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1, opExtendable = 2 in class T_CMP MajOp, bit isNot, Operand ImmOp> : ALU32Inst <(outs PredRegs:$dst), (ins IntRegs:$src1, ImmOp:$src2), "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)", [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel { bits<2> dst; bits<5> src1; bits<10> src2; let CextOpcode = mnemonic; let opExtentBits = !if(!eq(mnemonic, "cmp.gtu"), 9, 10); let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1); let IClass = 0b0111; let Inst{27-24} = 0b0101; let Inst{23-22} = MajOp; let Inst{21} = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9}); let Inst{20-16} = src1; let Inst{13-5} = src2{8-0}; let Inst{4} = isNot; let Inst{3-2} = 0b00; let Inst{1-0} = dst; } def C2_cmpeqi : T_CMP <"cmp.eq", 0b00, 0, s10Ext>; def C2_cmpgti : T_CMP <"cmp.gt", 0b01, 0, s10Ext>; def C2_cmpgtui : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>; class T_CMP_pat : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)), (MI IntRegs:$src1, ImmPred:$src2)>; def : T_CMP_pat ; def : T_CMP_pat ; def : T_CMP_pat ; //===----------------------------------------------------------------------===// // ALU32/ALU + //===----------------------------------------------------------------------===// // Add. def SDT_Int32Leaf : SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>; def SDT_Int32Unary : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDTHexagonI64I32I32 : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; def HexagonPACKHL : SDNode<"HexagonISD::PACKHL", SDTHexagonI64I32I32>; let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in class T_ALU32_3op MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> : ALU32_rr<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredRel { let isCommutable = IsComm; let BaseOpcode = mnemonic#_rr; let CextOpcode = mnemonic; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1111; let Inst{27} = 0b0; let Inst{26-24} = MajOp; let Inst{23-21} = MinOp; let Inst{20-16} = !if(OpsRev,Rt,Rs); let Inst{12-8} = !if(OpsRev,Rs,Rt); let Inst{4-0} = Rd; } let hasSideEffects = 0, hasNewValue = 1 in class T_ALU32_3op_pred MajOp, bits<3> MinOp, bit OpsRev, bit PredNot, bit PredNew> : ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt), "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") "# "$Rd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredNewRel { let isPredicated = 1; let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; let BaseOpcode = mnemonic#_rr; let CextOpcode = mnemonic; bits<2> Pu; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1111; let Inst{27} = 0b1; let Inst{26-24} = MajOp; let Inst{23-21} = MinOp; let Inst{20-16} = !if(OpsRev,Rt,Rs); let Inst{13} = PredNew; let Inst{12-8} = !if(OpsRev,Rs,Rt); let Inst{7} = PredNot; let Inst{6-5} = Pu; let Inst{4-0} = Rd; } class T_ALU32_combineh MajOp, bits<3> MinOp, bit OpsRev> : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> { let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")"; } def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>; def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>; def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>; def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>; class T_ALU32_3op_sfx MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> { let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix; } def A2_svaddh : T_ALU32_3op<"vaddh", 0b110, 0b000, 0, 1>; def A2_svsubh : T_ALU32_3op<"vsubh", 0b110, 0b100, 1, 0>; let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123 in { def A2_svaddhs : T_ALU32_3op_sfx<"vaddh", ":sat", 0b110, 0b001, 0, 1>; def A2_addsat : T_ALU32_3op_sfx<"add", ":sat", 0b110, 0b010, 0, 1>; def A2_svadduhs : T_ALU32_3op_sfx<"vadduh", ":sat", 0b110, 0b011, 0, 1>; def A2_svsubhs : T_ALU32_3op_sfx<"vsubh", ":sat", 0b110, 0b101, 1, 0>; def A2_subsat : T_ALU32_3op_sfx<"sub", ":sat", 0b110, 0b110, 1, 0>; def A2_svsubuhs : T_ALU32_3op_sfx<"vsubuh", ":sat", 0b110, 0b111, 1, 0>; } let Itinerary = ALU32_3op_tc_2_SLOT0123 in def A2_svavghs : T_ALU32_3op_sfx<"vavgh", ":rnd", 0b111, 0b001, 0, 1>; def A2_svavgh : T_ALU32_3op<"vavgh", 0b111, 0b000, 0, 1>; def A2_svnavgh : T_ALU32_3op<"vnavgh", 0b111, 0b011, 1, 0>; multiclass T_ALU32_3op_p MajOp, bits<3> MinOp, bit OpsRev> { def t : T_ALU32_3op_pred; def f : T_ALU32_3op_pred; def tnew : T_ALU32_3op_pred; def fnew : T_ALU32_3op_pred; } multiclass T_ALU32_3op_A2 MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> { let isPredicable = 1 in def A2_#NAME : T_ALU32_3op ; defm A2_p#NAME : T_ALU32_3op_p; } defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>; defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>; defm or : T_ALU32_3op_A2<"or", 0b001, 0b001, 0, 1>; defm sub : T_ALU32_3op_A2<"sub", 0b011, 0b001, 1, 0>; defm xor : T_ALU32_3op_A2<"xor", 0b001, 0b011, 0, 1>; // Pats for instruction selection. class BinOp32_pat : Pat<(ResT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; // A few special cases producing register pairs: let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0 in { def S2_packhl : T_ALU32_3op <"packhl", 0b101, 0b100, 0, 0>; let isPredicable = 1 in def A2_combinew : T_ALU32_3op <"combine", 0b101, 0b000, 0, 0>; // Conditional combinew uses "newt/f" instead of "t/fnew". def C2_ccombinewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>; def C2_ccombinewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>; def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>; def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>; } def: BinOp32_pat; def: BinOp32_pat; let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg" in class T_ALU32_3op_cmp MinOp, bit IsNeg, bit IsComm> : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { let CextOpcode = mnemonic; let isCommutable = IsComm; bits<5> Rs; bits<5> Rt; bits<2> Pd; let IClass = 0b1111; let Inst{27-24} = 0b0010; let Inst{22-21} = MinOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4} = IsNeg; let Inst{3-2} = 0b00; let Inst{1-0} = Pd; } let Itinerary = ALU32_3op_tc_2early_SLOT0123 in { def C2_cmpeq : T_ALU32_3op_cmp< "cmp.eq", 0b00, 0, 1>; def C2_cmpgt : T_ALU32_3op_cmp< "cmp.gt", 0b10, 0, 0>; def C2_cmpgtu : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>; } // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones // that reverse the order of the operands. class RevCmp : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>; // Pats for compares. They use PatFrags as operands, not SDNodes, // since seteq/setgt/etc. are defined as ParFrags. class T_cmp32_rr_pat : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (VT (MI IntRegs:$Rs, IntRegs:$Rt))>; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat, i1>; def: T_cmp32_rr_pat, i1>; let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1 in def C2_mux: ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt), "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { bits<5> Rd; bits<2> Pu; bits<5> Rs; bits<5> Rt; let CextOpcode = "mux"; let InputType = "reg"; let hasSideEffects = 0; let IClass = 0b1111; let Inst{27-24} = 0b0100; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{6-5} = Pu; let Inst{4-0} = Rd; } def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>; // Combines the two immediates into a double register. // Increase complexity to make it greater than any complexity of a combine // that involves a register. let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1, isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1, AddedComplexity = 75 in def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8), "$Rdd = combine(#$s8, #$S8)", [(set (i64 DoubleRegs:$Rdd), (i64 (HexagonCOMBINE(i32 s32ImmPred:$s8), (i32 s8ImmPred:$S8))))]> { bits<5> Rdd; bits<8> s8; bits<8> S8; let IClass = 0b0111; let Inst{27-23} = 0b11000; let Inst{22-16} = S8{7-1}; let Inst{13} = S8{0}; let Inst{12-5} = s8; let Inst{4-0} = Rdd; } //===----------------------------------------------------------------------===// // Template class for predicated ADD of a reg and an Immediate value. //===----------------------------------------------------------------------===// let hasNewValue = 1, hasSideEffects = 0 in class T_Addri_Pred : ALU32_ri <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ", ") $Rd = ")#"add($Rs, #$s8)"> { bits<5> Rd; bits<2> Pu; bits<5> Rs; bits<8> s8; let isPredicatedNew = PredNew; let IClass = 0b0111; let Inst{27-24} = 0b0100; let Inst{23} = PredNot; let Inst{22-21} = Pu; let Inst{20-16} = Rs; let Inst{13} = PredNew; let Inst{12-5} = s8; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // A2_addi: Add a signed immediate to a register. //===----------------------------------------------------------------------===// let hasNewValue = 1, hasSideEffects = 0 in class T_Addri : ALU32_ri <(outs IntRegs:$Rd), (ins IntRegs:$Rs, immOp:$s16), "$Rd = add($Rs, #$s16)", [], "", ALU32_ADDI_tc_1_SLOT0123> { bits<5> Rd; bits<5> Rs; bits<16> s16; let IClass = 0b1011; let Inst{27-21} = s16{15-9}; let Inst{20-16} = Rs; let Inst{13-5} = s16{8-0}; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // Multiclass for ADD of a register and an immediate value. //===----------------------------------------------------------------------===// multiclass Addri_Pred { let isPredicatedFalse = PredNot in { def NAME : T_Addri_Pred; // Predicate new def NAME#new : T_Addri_Pred; } } let isExtendable = 1, isExtentSigned = 1, InputType = "imm" in multiclass Addri_base { let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in { let opExtendable = 2, opExtentBits = 16, isPredicable = 1 in def A2_#NAME : T_Addri; let opExtendable = 3, opExtentBits = 8, isPredicated = 1 in { defm A2_p#NAME#t : Addri_Pred; defm A2_p#NAME#f : Addri_Pred; } } } defm addi : Addri_base<"add", add>, ImmRegRel, PredNewRel; def: Pat<(i32 (add I32:$Rs, s32ImmPred:$s16)), (i32 (A2_addi I32:$Rs, imm:$s16))>; //===----------------------------------------------------------------------===// // Template class used for the following ALU32 instructions. // Rd=and(Rs,#s10) // Rd=or(Rs,#s10) //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, InputType = "imm", hasNewValue = 1 in class T_ALU32ri_logical MinOp> : ALU32_ri <(outs IntRegs:$Rd), (ins IntRegs:$Rs, s10Ext:$s10), "$Rd = "#mnemonic#"($Rs, #$s10)" , [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10))]> { bits<5> Rd; bits<5> Rs; bits<10> s10; let CextOpcode = mnemonic; let IClass = 0b0111; let Inst{27-24} = 0b0110; let Inst{23-22} = MinOp; let Inst{21} = s10{9}; let Inst{20-16} = Rs; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Rd; } def A2_orir : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel; def A2_andir : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel; // Subtract register from immediate // Rd32=sub(#s10,Rs32) let isExtendable = 1, CextOpcode = "sub", opExtendable = 1, isExtentSigned = 1, opExtentBits = 10, InputType = "imm", hasNewValue = 1, hasSideEffects = 0 in def A2_subri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs), "$Rd = sub(#$s10, $Rs)", []>, ImmRegRel { bits<5> Rd; bits<10> s10; bits<5> Rs; let IClass = 0b0111; let Inst{27-22} = 0b011001; let Inst{21} = s10{9}; let Inst{20-16} = Rs; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Rd; } // Nop. let hasSideEffects = 0 in def A2_nop: ALU32Inst <(outs), (ins), "nop" > { let IClass = 0b0111; let Inst{27-24} = 0b1111; } def: Pat<(sub s32ImmPred:$s10, IntRegs:$Rs), (A2_subri imm:$s10, IntRegs:$Rs)>; // Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). def: Pat<(not (i32 IntRegs:$src1)), (A2_subri -1, IntRegs:$src1)>; let hasSideEffects = 0, hasNewValue = 1 in class T_tfr16 : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16), "$Rx"#!if(isHi, ".h", ".l")#" = #$u16", [], "$src1 = $Rx" > { bits<5> Rx; bits<16> u16; let IClass = 0b0111; let Inst{27-26} = 0b00; let Inst{25-24} = !if(isHi, 0b10, 0b01); let Inst{23-22} = u16{15-14}; let Inst{21} = 0b1; let Inst{20-16} = Rx; let Inst{13-0} = u16{13-0}; } def A2_tfril: T_tfr16<0>; def A2_tfrih: T_tfr16<1>; // Conditional transfer is an alias to conditional "Rd = add(Rs, #0)". let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in class T_tfr_pred : ALU32Inst<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if ("#!if(isPredNot, "!", "")# "$src1"#!if(isPredNew, ".new", "")# ") $dst = $src2"> { bits<5> dst; bits<2> src1; bits<5> src2; let isPredicatedFalse = isPredNot; let isPredicatedNew = isPredNew; let IClass = 0b0111; let Inst{27-24} = 0b0100; let Inst{23} = isPredNot; let Inst{13} = isPredNew; let Inst{12-5} = 0; let Inst{4-0} = dst; let Inst{22-21} = src1; let Inst{20-16} = src2; } let isPredicable = 1 in class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src), "$dst = $src"> { bits<5> dst; bits<5> src; let IClass = 0b0111; let Inst{27-21} = 0b0000011; let Inst{20-16} = src; let Inst{13} = 0b0; let Inst{4-0} = dst; } let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in multiclass tfr_base { let CextOpcode = CextOp, BaseOpcode = CextOp in { def NAME : T_tfr; // Predicate def t : T_tfr_pred<0, 0>; def f : T_tfr_pred<1, 0>; // Predicate new def tnew : T_tfr_pred<0, 1>; def fnew : T_tfr_pred<1, 1>; } } // Assembler mapped to C2_ccombinew[t|f|newt|newf]. // Please don't add bits to this instruction as it'll be converted into // 'combine' before object code emission. let isPredicated = 1 in class T_tfrp_pred : ALU32_rr <(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2), "if ("#!if(PredNot, "!", "")#"$src1" #!if(PredNew, ".new", "")#") $dst = $src2" > { let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; } // Assembler mapped to A2_combinew. // Please don't add bits to this instruction as it'll be converted into // 'combine' before object code emission. class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst), (ins DoubleRegs:$src), "$dst = $src">; let hasSideEffects = 0 in multiclass TFR64_base { let BaseOpcode = BaseName in { let isPredicable = 1 in def NAME : T_tfrp; // Predicate def t : T_tfrp_pred <0, 0>; def f : T_tfrp_pred <1, 0>; // Predicate new def tnew : T_tfrp_pred <0, 1>; def fnew : T_tfrp_pred <1, 1>; } } let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12, isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR", hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in class T_TFRI_Pred : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12), "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12", [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel { let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; bits<5> Rd; bits<2> Pu; bits<12> s12; let IClass = 0b0111; let Inst{27-24} = 0b1110; let Inst{23} = PredNot; let Inst{22-21} = Pu; let Inst{20} = 0b0; let Inst{19-16,12-5} = s12; let Inst{13} = PredNew; let Inst{4-0} = Rd; } def C2_cmoveit : T_TFRI_Pred<0, 0>; def C2_cmoveif : T_TFRI_Pred<1, 0>; def C2_cmovenewit : T_TFRI_Pred<0, 1>; def C2_cmovenewif : T_TFRI_Pred<1, 1>; let InputType = "imm", isExtendable = 1, isExtentSigned = 1, CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0, isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1, isPredicated = 0, isPredicable = 1, isReMaterializable = 1 in def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16", [(set (i32 IntRegs:$Rd), s32ImmPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredRel { bits<5> Rd; bits<16> s16; let IClass = 0b0111; let Inst{27-24} = 0b1000; let Inst{23-22,20-16,13-5} = s16; let Inst{4-0} = Rd; } defm A2_tfr : tfr_base<"TFR">, ImmRegRel, PredNewRel; let isAsmParserOnly = 1 in defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel; // Assembler mapped let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1, isAsmParserOnly = 1 in def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), "$dst = #$src1", [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; // TODO: see if this instruction can be deleted.. let isExtendable = 1, opExtendable = 1, opExtentBits = 6, isAsmParserOnly = 1 in { def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u64Imm:$src1), "$dst = #$src1">; def TFRI64_V2_ext : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Ext:$src1, s8Imm:$src2), "$dst = combine(##$src1, #$src2)">; } //===----------------------------------------------------------------------===// // ALU32/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// // Scalar mux register immediate. let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX", InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in class T_MUX1 : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel { bits<5> Rd; bits<2> Pu; bits<8> s8; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0011; let Inst{23} = MajOp; let Inst{22-21} = Pu; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-5} = s8; let Inst{4-0} = Rd; } let opExtendable = 2 in def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs), "$Rd = mux($Pu, #$s8, $Rs)">; let opExtendable = 3 in def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), "$Rd = mux($Pu, $Rs, #$s8)">; def : Pat<(i32 (select I1:$Pu, s32ImmPred:$s8, I32:$Rs)), (C2_muxri I1:$Pu, s32ImmPred:$s8, I32:$Rs)>; def : Pat<(i32 (select I1:$Pu, I32:$Rs, s32ImmPred:$s8)), (C2_muxir I1:$Pu, I32:$Rs, s32ImmPred:$s8)>; // C2_muxii: Scalar mux immediates. let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 2 in def C2_muxii: ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8), "$Rd = mux($Pu, #$s8, #$S8)" , [(set (i32 IntRegs:$Rd), (i32 (select I1:$Pu, s32ImmPred:$s8, s8ImmPred:$S8)))] > { bits<5> Rd; bits<2> Pu; bits<8> s8; bits<8> S8; let IClass = 0b0111; let Inst{27-25} = 0b101; let Inst{24-23} = Pu; let Inst{22-16} = S8{7-1}; let Inst{13} = S8{0}; let Inst{12-5} = s8; let Inst{4-0} = Rd; } let isCodeGenOnly = 1, isPseudo = 1 in def MUX64_rr : ALU64_rr<(outs DoubleRegs:$Rd), (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt), ".error \"should not emit\" ", []>; //===----------------------------------------------------------------------===// // template class for non-predicated alu32_2op instructions // - aslh, asrh, sxtb, sxth, zxth //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_ALU32_2op minOp> : ALU32Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = "#mnemonic#"($Rs)", [] > { bits<5> Rd; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0000; let Inst{23-21} = minOp; let Inst{13} = 0b0; let Inst{4-0} = Rd; let Inst{20-16} = Rs; } //===----------------------------------------------------------------------===// // template class for predicated alu32_2op instructions // - aslh, asrh, sxtb, sxth, zxtb, zxth //===----------------------------------------------------------------------===// let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class T_ALU32_2op_Pred minOp, bit isPredNot, bit isPredNew > : ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs), !if(isPredNot, "if (!$Pu", "if ($Pu") #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> { bits<5> Rd; bits<2> Pu; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0000; let Inst{23-21} = minOp; let Inst{13} = 0b1; let Inst{11} = isPredNot; let Inst{10} = isPredNew; let Inst{4-0} = Rd; let Inst{9-8} = Pu; let Inst{20-16} = Rs; } multiclass ALU32_2op_Pred minOp, bit PredNot> { let isPredicatedFalse = PredNot in { def NAME : T_ALU32_2op_Pred; // Predicate new let isPredicatedNew = 1 in def NAME#new : T_ALU32_2op_Pred; } } multiclass ALU32_2op_base minOp> { let BaseOpcode = mnemonic in { let isPredicable = 1, hasSideEffects = 0 in def A2_#NAME : T_ALU32_2op; let isPredicated = 1, hasSideEffects = 0 in { defm A4_p#NAME#t : ALU32_2op_Pred; defm A4_p#NAME#f : ALU32_2op_Pred; } } } defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel; defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel; defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel; defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel; defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel; // Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255). // Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has // predicated forms while 'and' doesn't. Since integrated assembler can't // handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where // immediate operand is set to '255'. let hasNewValue = 1, opNewValue = 0 in class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255) bits<5> Rd; bits<5> Rs; bits<10> s10 = 255; let IClass = 0b0111; let Inst{27-22} = 0b011000; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{21} = s10{9}; let Inst{13-5} = s10{8-0}; } //Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255) multiclass ZXTB_base minOp> { let BaseOpcode = mnemonic in { let isPredicable = 1, hasSideEffects = 0 in def A2_#NAME : T_ZXTB; let isPredicated = 1, hasSideEffects = 0 in { defm A4_p#NAME#t : ALU32_2op_Pred; defm A4_p#NAME#f : ALU32_2op_Pred; } } } defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel; def: Pat<(shl I32:$src1, (i32 16)), (A2_aslh I32:$src1)>; def: Pat<(sra I32:$src1, (i32 16)), (A2_asrh I32:$src1)>; def: Pat<(sext_inreg I32:$src1, i8), (A2_sxtb I32:$src1)>; def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>; //===----------------------------------------------------------------------===// // Template class for vector add and avg //===----------------------------------------------------------------------===// class T_VectALU_64 majOp, bits<3> minOp, bit isSat, bit isRnd, bit isCrnd, bit SwapOps > : ALU64_rr < (outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rdd = "#opc#"($Rss, $Rtt)"#!if(isRnd, ":rnd", "") #!if(isCrnd,":crnd","") #!if(isSat, ":sat", ""), [], "", ALU64_tc_2_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1101; let Inst{27-24} = 0b0011; let Inst{23-21} = majOp; let Inst{20-16} = !if (SwapOps, Rtt, Rss); let Inst{12-8} = !if (SwapOps, Rss, Rtt); let Inst{7-5} = minOp; let Inst{4-0} = Rdd; } // ALU64 - Vector add // Rdd=vadd[u][bhw](Rss,Rtt) let Itinerary = ALU64_tc_1_SLOT23 in { def A2_vaddub : T_VectALU_64 < "vaddub", 0b000, 0b000, 0, 0, 0, 0>; def A2_vaddh : T_VectALU_64 < "vaddh", 0b000, 0b010, 0, 0, 0, 0>; def A2_vaddw : T_VectALU_64 < "vaddw", 0b000, 0b101, 0, 0, 0, 0>; } // Rdd=vadd[u][bhw](Rss,Rtt):sat let Defs = [USR_OVF] in { def A2_vaddubs : T_VectALU_64 < "vaddub", 0b000, 0b001, 1, 0, 0, 0>; def A2_vaddhs : T_VectALU_64 < "vaddh", 0b000, 0b011, 1, 0, 0, 0>; def A2_vadduhs : T_VectALU_64 < "vadduh", 0b000, 0b100, 1, 0, 0, 0>; def A2_vaddws : T_VectALU_64 < "vaddw", 0b000, 0b110, 1, 0, 0, 0>; } // ALU64 - Vector average // Rdd=vavg[u][bhw](Rss,Rtt) let Itinerary = ALU64_tc_1_SLOT23 in { def A2_vavgub : T_VectALU_64 < "vavgub", 0b010, 0b000, 0, 0, 0, 0>; def A2_vavgh : T_VectALU_64 < "vavgh", 0b010, 0b010, 0, 0, 0, 0>; def A2_vavguh : T_VectALU_64 < "vavguh", 0b010, 0b101, 0, 0, 0, 0>; def A2_vavgw : T_VectALU_64 < "vavgw", 0b011, 0b000, 0, 0, 0, 0>; def A2_vavguw : T_VectALU_64 < "vavguw", 0b011, 0b011, 0, 0, 0, 0>; } // Rdd=vavg[u][bhw](Rss,Rtt)[:rnd|:crnd] def A2_vavgubr : T_VectALU_64 < "vavgub", 0b010, 0b001, 0, 1, 0, 0>; def A2_vavghr : T_VectALU_64 < "vavgh", 0b010, 0b011, 0, 1, 0, 0>; def A2_vavghcr : T_VectALU_64 < "vavgh", 0b010, 0b100, 0, 0, 1, 0>; def A2_vavguhr : T_VectALU_64 < "vavguh", 0b010, 0b110, 0, 1, 0, 0>; def A2_vavgwr : T_VectALU_64 < "vavgw", 0b011, 0b001, 0, 1, 0, 0>; def A2_vavgwcr : T_VectALU_64 < "vavgw", 0b011, 0b010, 0, 0, 1, 0>; def A2_vavguwr : T_VectALU_64 < "vavguw", 0b011, 0b100, 0, 1, 0, 0>; // Rdd=vnavg[bh](Rss,Rtt) let Itinerary = ALU64_tc_1_SLOT23 in { def A2_vnavgh : T_VectALU_64 < "vnavgh", 0b100, 0b000, 0, 0, 0, 1>; def A2_vnavgw : T_VectALU_64 < "vnavgw", 0b100, 0b011, 0, 0, 0, 1>; } // Rdd=vnavg[bh](Rss,Rtt)[:rnd|:crnd]:sat let Defs = [USR_OVF] in { def A2_vnavghr : T_VectALU_64 < "vnavgh", 0b100, 0b001, 1, 1, 0, 1>; def A2_vnavghcr : T_VectALU_64 < "vnavgh", 0b100, 0b010, 1, 0, 1, 1>; def A2_vnavgwr : T_VectALU_64 < "vnavgw", 0b100, 0b100, 1, 1, 0, 1>; def A2_vnavgwcr : T_VectALU_64 < "vnavgw", 0b100, 0b110, 1, 0, 1, 1>; } // Rdd=vsub[u][bh](Rss,Rtt) let Itinerary = ALU64_tc_1_SLOT23 in { def A2_vsubub : T_VectALU_64 < "vsubub", 0b001, 0b000, 0, 0, 0, 1>; def A2_vsubh : T_VectALU_64 < "vsubh", 0b001, 0b010, 0, 0, 0, 1>; def A2_vsubw : T_VectALU_64 < "vsubw", 0b001, 0b101, 0, 0, 0, 1>; } // Rdd=vsub[u][bh](Rss,Rtt):sat let Defs = [USR_OVF] in { def A2_vsububs : T_VectALU_64 < "vsubub", 0b001, 0b001, 1, 0, 0, 1>; def A2_vsubhs : T_VectALU_64 < "vsubh", 0b001, 0b011, 1, 0, 0, 1>; def A2_vsubuhs : T_VectALU_64 < "vsubuh", 0b001, 0b100, 1, 0, 0, 1>; def A2_vsubws : T_VectALU_64 < "vsubw", 0b001, 0b110, 1, 0, 0, 1>; } // Rdd=vmax[u][bhw](Rss,Rtt) def A2_vmaxb : T_VectALU_64 < "vmaxb", 0b110, 0b110, 0, 0, 0, 1>; def A2_vmaxub : T_VectALU_64 < "vmaxub", 0b110, 0b000, 0, 0, 0, 1>; def A2_vmaxh : T_VectALU_64 < "vmaxh", 0b110, 0b001, 0, 0, 0, 1>; def A2_vmaxuh : T_VectALU_64 < "vmaxuh", 0b110, 0b010, 0, 0, 0, 1>; def A2_vmaxw : T_VectALU_64 < "vmaxw", 0b110, 0b011, 0, 0, 0, 1>; def A2_vmaxuw : T_VectALU_64 < "vmaxuw", 0b101, 0b101, 0, 0, 0, 1>; // Rdd=vmin[u][bhw](Rss,Rtt) def A2_vminb : T_VectALU_64 < "vminb", 0b110, 0b111, 0, 0, 0, 1>; def A2_vminub : T_VectALU_64 < "vminub", 0b101, 0b000, 0, 0, 0, 1>; def A2_vminh : T_VectALU_64 < "vminh", 0b101, 0b001, 0, 0, 0, 1>; def A2_vminuh : T_VectALU_64 < "vminuh", 0b101, 0b010, 0, 0, 0, 1>; def A2_vminw : T_VectALU_64 < "vminw", 0b101, 0b011, 0, 0, 0, 1>; def A2_vminuw : T_VectALU_64 < "vminuw", 0b101, 0b100, 0, 0, 0, 1>; //===----------------------------------------------------------------------===// // Template class for vector compare //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_vcmp minOp> : ALU64_rr <(outs PredRegs:$Pd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Pd = "#Str#"($Rss, $Rtt)", [], "", ALU64_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1101; let Inst{27-23} = 0b00100; let Inst{13} = minOp{3}; let Inst{7-5} = minOp{2-0}; let Inst{1-0} = Pd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } class T_vcmp_pat : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))), (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>; // Vector compare bytes def A2_vcmpbeq : T_vcmp <"vcmpb.eq", 0b0110>; def A2_vcmpbgtu : T_vcmp <"vcmpb.gtu", 0b0111>; // Vector compare halfwords def A2_vcmpheq : T_vcmp <"vcmph.eq", 0b0011>; def A2_vcmphgt : T_vcmp <"vcmph.gt", 0b0100>; def A2_vcmphgtu : T_vcmp <"vcmph.gtu", 0b0101>; // Vector compare words def A2_vcmpweq : T_vcmp <"vcmpw.eq", 0b0000>; def A2_vcmpwgt : T_vcmp <"vcmpw.gt", 0b0001>; def A2_vcmpwgtu : T_vcmp <"vcmpw.gtu", 0b0010>; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; def: T_vcmp_pat; //===----------------------------------------------------------------------===// // ALU32/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PRED + //===----------------------------------------------------------------------===// // No bits needed. If cmp.ge is found the assembler parser will // transform it to cmp.gt subtracting 1 from the immediate. let isPseudo = 1 in { def C2_cmpgei: ALU32Inst < (outs PredRegs:$Pd), (ins IntRegs:$Rs, s8Ext:$s8), "$Pd = cmp.ge($Rs, #$s8)">; def C2_cmpgeui: ALU32Inst < (outs PredRegs:$Pd), (ins IntRegs:$Rs, u8Ext:$s8), "$Pd = cmp.geu($Rs, #$s8)">; } //===----------------------------------------------------------------------===// // ALU32/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/ALU + //===----------------------------------------------------------------------===// // Add. //===----------------------------------------------------------------------===// // Template Class // Add/Subtract halfword // Rd=add(Rt.L,Rs.[HL])[:sat] // Rd=sub(Rt.L,Rs.[HL])[:sat] // Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16] // Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_XTYPE_ADD_SUB LHbits, bit isSat, bit hasShift, bit isSub> : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), "$Rd = "#!if(isSub,"sub","add")#"($Rt." #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs." #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)")) #!if(isSat,":sat","") #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; let IClass = 0b1101; let Inst{27-23} = 0b01010; let Inst{22} = hasShift; let Inst{21} = isSub; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rd; let Inst{12-8} = Rt; let Inst{20-16} = Rs; } //Rd=sub(Rt.L,Rs.[LH]) def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>; def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>; //Rd=add(Rt.L,Rs.[LH]) def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>; def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>; let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in { //Rd=sub(Rt.L,Rs.[LH]):sat def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>; def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>; //Rd=add(Rt.L,Rs.[LH]):sat def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>; def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>; } //Rd=sub(Rt.[LH],Rs.[LH]):<<16 def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>; def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>; def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>; def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>; //Rd=add(Rt.[LH],Rs.[LH]):<<16 def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>; def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>; def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>; def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>; let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in { //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16 def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>; def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>; def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>; def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>; //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16 def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>; def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>; def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>; def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>; } // Add halfword. def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16), (A2_addh_l16_ll I32:$src1, I32:$src2)>; def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)), (A2_addh_l16_hl I32:$src1, I32:$src2)>; def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)), (A2_addh_h16_ll I32:$src1, I32:$src2)>; // Subtract halfword. def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16), (A2_subh_l16_ll I32:$src1, I32:$src2)>; def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)), (A2_subh_h16_ll I32:$src1, I32:$src2)>; let hasSideEffects = 0, hasNewValue = 1 in def S2_parityp: ALU64Inst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-24} = 0b0000; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4-0} = Rd; } let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned > : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","") #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; let IClass = 0b1101; let Inst{27-23} = 0b01011; let Inst{22-21} = !if(isMax, 0b10, 0b01); let Inst{7} = isUnsigned; let Inst{4-0} = Rd; let Inst{12-8} = !if(isMax, Rs, Rt); let Inst{20-16} = !if(isMax, Rt, Rs); } def A2_min : T_XTYPE_MIN_MAX < 0, 0 >; def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >; def A2_max : T_XTYPE_MIN_MAX < 1, 0 >; def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >; // Here, depending on the operand being selected, we'll either generate a // min or max instruction. // Ex: // (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected // is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'. // (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value // is selected and the corresponding HexagonInst is passed in 'SwapInst'. multiclass T_MinMax_pats { def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), (VT RC:$src1), (VT RC:$src2)), (Inst RC:$src1, RC:$src2)>; def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), (VT RC:$src2), (VT RC:$src1)), (SwapInst RC:$src1, RC:$src2)>; } multiclass MinMax_pats { defm: T_MinMax_pats; def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), i16), (Inst IntRegs:$src1, IntRegs:$src2)>; def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), (i32 PositiveHalfWord:$src2), (i32 PositiveHalfWord:$src1))), i16), (SwapInst IntRegs:$src1, IntRegs:$src2)>; } let AddedComplexity = 200 in { defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; } class T_cmp64_rr MinOp, bit IsComm> : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> { let isCompare = 1; let isCommutable = IsComm; let hasSideEffects = 0; bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0010100; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{1-0} = Pd; } def C2_cmpeqp : T_cmp64_rr<"cmp.eq", 0b000, 1>; def C2_cmpgtp : T_cmp64_rr<"cmp.gt", 0b010, 0>; def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>; class T_cmp64_rr_pat : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))), (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat>; def: T_cmp64_rr_pat>; def C2_vmux : ALU64_rr<(outs DoubleRegs:$Rd), (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt), "$Rd = vmux($Pu, $Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> { let hasSideEffects = 0; bits<5> Rd; bits<2> Pu; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-24} = 0b0001; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{6-5} = Pu; let Inst{4-0} = Rd; } class T_ALU64_rr RegType, bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm, string Op2Pfx> : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [], "", ALU64_tc_1_SLOT23> { let hasSideEffects = 0; let isCommutable = IsComm; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1101; let Inst{27-24} = RegType; let Inst{23-21} = MajOp; let Inst{20-16} = !if (OpsRev,Rt,Rs); let Inst{12-8} = !if (OpsRev,Rs,Rt); let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } class T_ALU64_arith MajOp, bits<3> MinOp, bit IsSat, bit OpsRev, bit IsComm> : T_ALU64_rr; def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>; def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>; def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>; class T_ALU64_logical MinOp, bit OpsRev, bit IsComm, bit IsNeg> : T_ALU64_rr; def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>; def A2_orp : T_ALU64_logical<"or", 0b010, 0, 1, 0>; def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>; def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (or I64:$Rs, I64:$Rt)), (A2_orp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>; //===----------------------------------------------------------------------===// // ALU64/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/BIT + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/PERM + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CR + //===----------------------------------------------------------------------===// // Logical reductions on predicates. // Looping instructions. // Pipelined looping instructions. // Logical operations on predicates. let hasSideEffects = 0 in class T_LOGICAL_1OP OpBits> : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps), "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> { bits<2> Pd; bits<2> Ps; let IClass = 0b0110; let Inst{27-23} = 0b10111; let Inst{22-21} = OpBits; let Inst{20} = 0b0; let Inst{17-16} = Ps; let Inst{13} = 0b0; let Inst{1-0} = Pd; } def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>; def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>; def C2_not : T_LOGICAL_1OP<"not", 0b10>; def: Pat<(i1 (not (i1 PredRegs:$Ps))), (C2_not PredRegs:$Ps)>; let hasSideEffects = 0 in class T_LOGICAL_2OP OpBits, bit IsNeg, bit Rev> : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt), "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)", [], "", CR_tc_2early_SLOT23> { bits<2> Pd; bits<2> Ps; bits<2> Pt; let IClass = 0b0110; let Inst{27-24} = 0b1011; let Inst{23-21} = OpBits; let Inst{20} = 0b0; let Inst{17-16} = !if(Rev,Pt,Ps); // Rs and Rt are reversed for some let Inst{13} = 0b0; // instructions. let Inst{9-8} = !if(Rev,Ps,Pt); let Inst{1-0} = Pd; } def C2_and : T_LOGICAL_2OP<"and", 0b000, 0, 1>; def C2_or : T_LOGICAL_2OP<"or", 0b001, 0, 1>; def C2_xor : T_LOGICAL_2OP<"xor", 0b010, 0, 0>; def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>; def C2_orn : T_LOGICAL_2OP<"or", 0b111, 1, 1>; def: Pat<(i1 (and I1:$Ps, I1:$Pt)), (C2_and I1:$Ps, I1:$Pt)>; def: Pat<(i1 (or I1:$Ps, I1:$Pt)), (C2_or I1:$Ps, I1:$Pt)>; def: Pat<(i1 (xor I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>; def: Pat<(i1 (or I1:$Ps, (not I1:$Pt))), (C2_orn I1:$Ps, I1:$Pt)>; let hasSideEffects = 0, hasNewValue = 1 in def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt), "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Ps; bits<2> Pt; let IClass = 0b1000; let Inst{27-24} = 0b1001; let Inst{22-21} = 0b00; let Inst{17-16} = Ps; let Inst{9-8} = Pt; let Inst{4-0} = Rd; } let hasSideEffects = 0 in def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt), "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Pt; let IClass = 0b1000; let Inst{27-24} = 0b0110; let Inst{9-8} = Pt; let Inst{4-0} = Rd; } // User control register transfer. //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // JR + //===----------------------------------------------------------------------===// def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; class CondStr { string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") "; } class JumpOpcStr { string S = Mnemonic # !if(Taken, ":t", !if(New, ":nt", "")); } let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0, isPredicable = 1, isExtendable = 1, opExtendable = 0, isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in class T_JMP : JInst<(outs), (ins brtarget:$dst), "jump " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23> { bits<24> dst; let IClass = 0b0101; let Inst{27-25} = 0b100; let Inst{24-16} = dst{23-15}; let Inst{13-1} = dst{14-2}; } let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1, isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in class T_JMP_c : JInst<(outs), (ins PredRegs:$src, brtarget:$dst), CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # JumpOpcStr<"jump", isPredNew, isTak>.S # " " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23>, ImmRegRel { let isTaken = isTak; let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<17> dst; let IClass = 0b0101; let Inst{27-24} = 0b1100; let Inst{21} = PredNot; let Inst{12} = isTak; let Inst{11} = isPredNew; let Inst{9-8} = src; let Inst{23-22} = dst{16-15}; let Inst{20-16} = dst{14-10}; let Inst{13} = dst{9}; let Inst{7-1} = dst{8-2}; } multiclass JMP_Pred { def NAME : T_JMP_c; // not taken // Predicate new def NAME#newpt : T_JMP_c; // taken def NAME#new : T_JMP_c; // not taken } multiclass JMP_base { let BaseOpcode = BaseOp in { def NAME : T_JMP; defm t : JMP_Pred<0, ExtStr>; defm f : JMP_Pred<1, ExtStr>; } } // Jumps to address stored in a register, JUMPR_MISC // if ([[!]P[.new]]) jumpr[:t/nt] Rs let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC], isPredicable = 1, hasSideEffects = 0, InputType = "reg" in class T_JMPr : JRInst<(outs), (ins IntRegs:$dst), "jumpr $dst", [], "", J_tc_2early_SLOT2> { bits<5> dst; let IClass = 0b0101; let Inst{27-21} = 0b0010100; let Inst{20-16} = dst; } let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1, hasSideEffects = 0, InputType = "reg" in class T_JMPr_c : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst), CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [], "", J_tc_2early_SLOT2> { let isTaken = isTak; let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<5> dst; let IClass = 0b0101; let Inst{27-22} = 0b001101; let Inst{21} = PredNot; let Inst{20-16} = dst; let Inst{12} = isTak; let Inst{11} = isPredNew; let Inst{9-8} = src; } multiclass JMPR_Pred { def NAME : T_JMPr_c; // not taken // Predicate new def NAME#newpt : T_JMPr_c; // taken def NAME#new : T_JMPr_c; // not taken } multiclass JMPR_base { let BaseOpcode = BaseOp in { def NAME : T_JMPr; defm t : JMPR_Pred<0>; defm f : JMPR_Pred<1>; } } let isCall = 1, hasSideEffects = 1 in class JUMPR_MISC_CALLR : JRInst<(outs), InputDag, !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs", "if ($Pu) callr $Rs"), "callr $Rs"), [], "", J_tc_2early_SLOT2> { bits<5> Rs; bits<2> Pu; let isPredicated = isPred; let isPredicatedFalse = isPredNot; let IClass = 0b0101; let Inst{27-25} = 0b000; let Inst{24-23} = !if (isPred, 0b10, 0b01); let Inst{22} = 0; let Inst{21} = isPredNot; let Inst{9-8} = !if (isPred, Pu, 0b00); let Inst{20-16} = Rs; } let Defs = VolatileV3.Regs in { def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>; def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>; } let isTerminator = 1, hasSideEffects = 0 in { defm J2_jump : JMP_base<"JMP", "">, PredNewRel; // Deal with explicit assembly // - never extened a jump #, always extend a jump ## let isAsmParserOnly = 1 in { defm J2_jump_ext : JMP_base<"JMP", "##">; defm J2_jump_noext : JMP_base<"JMP", "#">; } defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel; let isReturn = 1, isCodeGenOnly = 1 in defm JMPret : JMPR_base<"JMPret">, PredNewRel; } def: Pat<(br bb:$dst), (J2_jump brtarget:$dst)>; def: Pat<(retflag), (JMPret (i32 R31))>; def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset), (J2_jumpt PredRegs:$src1, bb:$offset)>; // A return through builtin_eh_return. let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0, isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in def EH_RETURN_JMPR : T_JMPr; def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>; def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)), (J2_jumpr IntRegs:$dst)>; def: Pat<(brind (i32 IntRegs:$dst)), (J2_jumpr IntRegs:$dst)>; //===----------------------------------------------------------------------===// // JR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// // Load - Base with Immediate offset addressing mode let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in class T_load_io MajOp, Operand ImmOp> : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel { bits<4> name; bits<5> dst; bits<5> src1; bits<14> offset; bits<11> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3}, !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2}, !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1}, /* s11_0Ext */ offset{10-0}))); let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, !if (!eq(ImmOpStr, "s11_2Ext"), 13, !if (!eq(ImmOpStr, "s11_1Ext"), 12, /* s11_0Ext */ 11))); let hasNewValue = !if (!eq(!cast(RC), "DoubleRegs"), 0, 1); let IClass = 0b1001; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13-5} = offsetBits{8-0}; let Inst{4-0} = dst; } let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in class T_pload_io MajOp, Operand ImmOp, bit isNot, bit isPredNew> : LDInst<(outs RC:$dst), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), "if ("#!if(isNot, "!$src1", "$src1") #!if(isPredNew, ".new", "") #") $dst = "#mnemonic#"($src2 + #$offset)", [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel { bits<5> dst; bits<2> src1; bits<5> src2; bits<9> offset; bits<6> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3}, !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2}, !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1}, /* u6_0Ext */ offset{5-0}))); let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, !if (!eq(ImmOpStr, "u6_2Ext"), 8, !if (!eq(ImmOpStr, "u6_1Ext"), 7, /* u6_0Ext */ 6))); let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1); let isPredicatedNew = isPredNew; let isPredicatedFalse = isNot; let IClass = 0b0100; let Inst{27} = 0b0; let Inst{27} = 0b0; let Inst{26} = isNot; let Inst{25} = isPredNew; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b0; let Inst{12-11} = src1; let Inst{10-5} = offsetBits; let Inst{4-0} = dst; } let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in multiclass LD_IdxdMajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { let isPredicable = 1 in def L2_#NAME#_io : T_load_io ; // Predicated def L2_p#NAME#t_io : T_pload_io ; def L2_p#NAME#f_io : T_pload_io ; // Predicated new def L2_p#NAME#tnew_io : T_pload_io ; def L2_p#NAME#fnew_io : T_pload_io ; } } let accessSize = ByteAccess in { defm loadrb: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>; defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>; } let accessSize = HalfWordAccess, opExtentAlign = 1 in { defm loadrh: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>; defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>; } let accessSize = WordAccess, opExtentAlign = 2 in defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>; let accessSize = DoubleWordAccess, opExtentAlign = 3 in defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>; let accessSize = HalfWordAccess, opExtentAlign = 1 in { def L2_loadbsw2_io: T_load_io<"membh", IntRegs, 0b0001, s11_1Ext>; def L2_loadbzw2_io: T_load_io<"memubh", IntRegs, 0b0011, s11_1Ext>; } let accessSize = WordAccess, opExtentAlign = 2 in { def L2_loadbzw4_io: T_load_io<"memubh", DoubleRegs, 0b0101, s11_2Ext>; def L2_loadbsw4_io: T_load_io<"membh", DoubleRegs, 0b0111, s11_2Ext>; } let addrMode = BaseImmOffset, isExtendable = 1, hasSideEffects = 0, opExtendable = 3, isExtentSigned = 1 in class T_loadalign_io MajOp, Operand ImmOp> : LDInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset), "$dst = "#str#"($src2 + #$offset)", [], "$src1 = $dst">, AddrModeRel { bits<4> name; bits<5> dst; bits<5> src2; bits<12> offset; bits<11> offsetBits; let offsetBits = !if (!eq(!cast(ImmOp), "s11_1Ext"), offset{11-1}, /* s11_0Ext */ offset{10-0}); let IClass = 0b1001; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13-5} = offsetBits{8-0}; let Inst{4-0} = dst; } let accessSize = HalfWordAccess, opExtentBits = 12, opExtentAlign = 1 in def L2_loadalignh_io: T_loadalign_io <"memh_fifo", 0b0010, s11_1Ext>; let accessSize = ByteAccess, opExtentBits = 11 in def L2_loadalignb_io: T_loadalign_io <"memb_fifo", 0b0100, s11_0Ext>; // Patterns to select load-indexed (i.e. load from base+offset). multiclass Loadx_pat { def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>; def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), (VT (MI AddrFI:$fi, imm:$Off))>; def: Pat<(VT (Load (add (i32 IntRegs:$Rs), ImmPred:$Off))), (VT (MI IntRegs:$Rs, imm:$Off))>; def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (MI IntRegs:$Rs, 0))>; } let AddedComplexity = 20 in { defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; defm: Loadx_pat; // No sextloadi1. } // Sign-extending loads of i1 need to replicate the lowest bit throughout // the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should // do the trick. let AddedComplexity = 20 in def: Pat<(i32 (sextloadi1 (i32 IntRegs:$Rs))), (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>; //===----------------------------------------------------------------------===// // Post increment load //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template class for non-predicated post increment loads with immediate offset. //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = PostInc in class T_load_pi MajOp > : LDInstPI <(outs RC:$dst, IntRegs:$dst2), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1++#$offset)" , [], "$src1 = $dst2" > , PredNewRel { bits<5> dst; bits<5> src1; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13-12} = 0b00; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Template class for predicated post increment loads with immediate offset. //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in class T_pload_pi MajOp, bit isPredNot, bit isPredNew > : LDInst <(outs RC:$dst, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($src2++#$offset)", [] , "$src2 = $dst2" > , PredNewRel { bits<5> dst; bits<2> src1; bits<5> src2; bits<7> offset; bits<4> offsetBits; let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b1; let Inst{12} = isPredNew; let Inst{11} = isPredNot; let Inst{10-9} = src1; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Multiclass for post increment loads with immediate offset. //===----------------------------------------------------------------------===// multiclass LD_PostInc MajOp> { let BaseOpcode = "POST_"#BaseOp in { let isPredicable = 1 in def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>; // Predicated def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>; def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>; // Predicated new def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>; def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>; } } // post increment byte loads with immediate offset let accessSize = ByteAccess in { defm loadrb : LD_PostInc <"memb", "LDrib", IntRegs, s4_0Imm, 0b1000>; defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>; } // post increment halfword loads with immediate offset let accessSize = HalfWordAccess, opExtentAlign = 1 in { defm loadrh : LD_PostInc <"memh", "LDrih", IntRegs, s4_1Imm, 0b1010>; defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>; } // post increment word loads with immediate offset let accessSize = WordAccess, opExtentAlign = 2 in defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>; // post increment doubleword loads with immediate offset let accessSize = DoubleWordAccess, opExtentAlign = 3 in defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>; // Rd=memb[u]h(Rx++#s4:1) // Rdd=memb[u]h(Rx++#s4:2) let accessSize = HalfWordAccess, opExtentAlign = 1 in { def L2_loadbsw2_pi : T_load_pi <"membh", IntRegs, s4_1Imm, 0b0001>; def L2_loadbzw2_pi : T_load_pi <"memubh", IntRegs, s4_1Imm, 0b0011>; } let accessSize = WordAccess, opExtentAlign = 2, hasNewValue = 0 in { def L2_loadbsw4_pi : T_load_pi <"membh", DoubleRegs, s4_2Imm, 0b0111>; def L2_loadbzw4_pi : T_load_pi <"memubh", DoubleRegs, s4_2Imm, 0b0101>; } //===----------------------------------------------------------------------===// // Template class for post increment fifo loads with immediate offset. //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = PostInc in class T_loadalign_pi MajOp > : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$dst2), (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset), "$dst = "#mnemonic#"($src2++#$offset)" , [], "$src2 = $dst2, $src1 = $dst" > , PredNewRel { bits<5> dst; bits<5> src2; bits<5> offset; bits<4> offsetBits; let offsetBits = !if (!eq(!cast(ImmOp), "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}); let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13-12} = 0b00; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } // Ryy=memh_fifo(Rx++#s4:1) // Ryy=memb_fifo(Rx++#s4:0) let accessSize = ByteAccess in def L2_loadalignb_pi : T_loadalign_pi <"memb_fifo", s4_0Imm, 0b0100>; let accessSize = HalfWordAccess, opExtentAlign = 1 in def L2_loadalignh_pi : T_loadalign_pi <"memh_fifo", s4_1Imm, 0b0010>; //===----------------------------------------------------------------------===// // Template class for post increment loads with register offset. //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = PostInc in class T_load_pr MajOp, MemAccessSize AccessSz> : LDInstPI <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$src1, ModRegs:$src2), "$dst = "#mnemonic#"($src1++$src2)" , [], "$src1 = $_dst_" > { bits<5> dst; bits<5> src1; bits<1> src2; let accessSize = AccessSz; let IClass = 0b1001; let Inst{27-25} = 0b110; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2; let Inst{12} = 0b0; let Inst{7} = 0b0; let Inst{4-0} = dst; } let hasNewValue = 1 in { def L2_loadrb_pr : T_load_pr <"memb", IntRegs, 0b1000, ByteAccess>; def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>; def L2_loadrh_pr : T_load_pr <"memh", IntRegs, 0b1010, HalfWordAccess>; def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>; def L2_loadri_pr : T_load_pr <"memw", IntRegs, 0b1100, WordAccess>; def L2_loadbzw2_pr : T_load_pr <"memubh", IntRegs, 0b0011, HalfWordAccess>; } def L2_loadrd_pr : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>; def L2_loadbzw4_pr : T_load_pr <"memubh", DoubleRegs, 0b0101, WordAccess>; // Load predicate. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in def LDriw_pred : LDInst<(outs PredRegs:$dst), (ins IntRegs:$addr, s11_2Ext:$off), ".error \"should not emit\"", []>; let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0 in def L2_deallocframe : LDInst<(outs), (ins), "deallocframe", []> { let IClass = 0b1001; let Inst{27-16} = 0b000000011110; let Inst{13} = 0b0; let Inst{4-0} = 0b11110; } // Load / Post increment circular addressing mode. let Uses = [CS], hasSideEffects = 0 in class T_load_pcr MajOp> : LDInst <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [], "$Rz = $_dst_" > { bits<5> dst; bits<5> Rz; bit Mu; let hasNewValue = !if (!eq(!cast(RC), "DoubleRegs"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{9} = 0b1; let Inst{7} = 0b0; let Inst{4-0} = dst; } let accessSize = ByteAccess in { def L2_loadrb_pcr : T_load_pcr <"memb", IntRegs, 0b1000>; def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>; } let accessSize = HalfWordAccess in { def L2_loadrh_pcr : T_load_pcr <"memh", IntRegs, 0b1010>; def L2_loadruh_pcr : T_load_pcr <"memuh", IntRegs, 0b1011>; def L2_loadbsw2_pcr : T_load_pcr <"membh", IntRegs, 0b0001>; def L2_loadbzw2_pcr : T_load_pcr <"memubh", IntRegs, 0b0011>; } let accessSize = WordAccess in { def L2_loadri_pcr : T_load_pcr <"memw", IntRegs, 0b1100>; let hasNewValue = 0 in { def L2_loadbzw4_pcr : T_load_pcr <"memubh", DoubleRegs, 0b0101>; def L2_loadbsw4_pcr : T_load_pcr <"membh", DoubleRegs, 0b0111>; } } let accessSize = DoubleWordAccess in def L2_loadrd_pcr : T_load_pcr <"memd", DoubleRegs, 0b1110>; // Load / Post increment circular addressing mode. let Uses = [CS], hasSideEffects = 0 in class T_loadalign_pcr MajOp, MemAccessSize AccessSz > : LDInst <(outs DoubleRegs:$dst, IntRegs:$_dst_), (ins DoubleRegs:$_src_, IntRegs:$Rz, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [], "$Rz = $_dst_, $dst = $_src_" > { bits<5> dst; bits<5> Rz; bit Mu; let accessSize = AccessSz; let IClass = 0b1001; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{9} = 0b1; let Inst{7} = 0b0; let Inst{4-0} = dst; } def L2_loadalignb_pcr : T_loadalign_pcr <"memb_fifo", 0b0100, ByteAccess>; def L2_loadalignh_pcr : T_loadalign_pcr <"memh_fifo", 0b0010, HalfWordAccess>; //===----------------------------------------------------------------------===// // Circular loads with immediate offset. //===----------------------------------------------------------------------===// let Uses = [CS], mayLoad = 1, hasSideEffects = 0 in class T_load_pci MajOp> : LDInstPI<(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [], "$Rz = $_dst_"> { bits<5> dst; bits<5> Rz; bits<1> Mu; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let hasNewValue = !if (!eq(!cast(RC), "DoubleRegs"), 0, 1); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let IClass = 0b1001; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{9} = 0b0; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } // Byte variants of circ load let accessSize = ByteAccess in { def L2_loadrb_pci : T_load_pci <"memb", IntRegs, s4_0Imm, 0b1000>; def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>; } // Half word variants of circ load let accessSize = HalfWordAccess in { def L2_loadrh_pci : T_load_pci <"memh", IntRegs, s4_1Imm, 0b1010>; def L2_loadruh_pci : T_load_pci <"memuh", IntRegs, s4_1Imm, 0b1011>; def L2_loadbzw2_pci : T_load_pci <"memubh", IntRegs, s4_1Imm, 0b0011>; def L2_loadbsw2_pci : T_load_pci <"membh", IntRegs, s4_1Imm, 0b0001>; } // Word variants of circ load let accessSize = WordAccess in def L2_loadri_pci : T_load_pci <"memw", IntRegs, s4_2Imm, 0b1100>; let accessSize = WordAccess, hasNewValue = 0 in { def L2_loadbzw4_pci : T_load_pci <"memubh", DoubleRegs, s4_2Imm, 0b0101>; def L2_loadbsw4_pci : T_load_pci <"membh", DoubleRegs, s4_2Imm, 0b0111>; } let accessSize = DoubleWordAccess, hasNewValue = 0 in def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>; //===----------------------------------------------------------------------===// // Circular loads - Pseudo // // Please note that the input operand order in the pseudo instructions // doesn't match with the real instructions. Pseudo instructions operand // order should mimics the ordering in the intrinsics. Also, 'src2' doesn't // appear in the AsmString because it's same as 'dst'. //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in class T_load_pci_pseudo : LDInstPI<(outs IntRegs:$_dst_, RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4Imm:$src4), ".error \"$dst = "#opc#"($src1++#$src4:circ($src3))\"", [], "$src1 = $_dst_">; def L2_loadrb_pci_pseudo : T_load_pci_pseudo <"memb", IntRegs>; def L2_loadrub_pci_pseudo : T_load_pci_pseudo <"memub", IntRegs>; def L2_loadrh_pci_pseudo : T_load_pci_pseudo <"memh", IntRegs>; def L2_loadruh_pci_pseudo : T_load_pci_pseudo <"memuh", IntRegs>; def L2_loadri_pci_pseudo : T_load_pci_pseudo <"memw", IntRegs>; def L2_loadrd_pci_pseudo : T_load_pci_pseudo <"memd", DoubleRegs>; // TODO: memb_fifo and memh_fifo must take destination register as input. // One-off circ loads - not enough in common to break into a class. let accessSize = ByteAccess in def L2_loadalignb_pci : T_load_pci <"memb_fifo", DoubleRegs, s4_0Imm, 0b0100>; let accessSize = HalfWordAccess, opExtentAlign = 1 in def L2_loadalignh_pci : T_load_pci <"memh_fifo", DoubleRegs, s4_1Imm, 0b0010>; // L[24]_load[wd]_locked: Load word/double with lock. let isSoloAX = 1 in class T_load_locked : LD0Inst <(outs RC:$dst), (ins IntRegs:$src), "$dst = "#mnemonic#"($src)"> { bits<5> dst; bits<5> src; let IClass = 0b1001; let Inst{27-21} = 0b0010000; let Inst{20-16} = src; let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00); let Inst{5} = 0; let Inst{4-0} = dst; } let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0 in def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>; let accessSize = DoubleWordAccess in def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>; // S[24]_store[wd]_locked: Store word/double conditionally. let isSoloAX = 1, isPredicateLate = 1 in class T_store_locked : ST0Inst <(outs PredRegs:$Pd), (ins IntRegs:$Rs, RC:$Rt), mnemonic#"($Rs, $Pd) = $Rt"> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1010; let Inst{27-23} = 0b00001; let Inst{22} = !if (!eq(mnemonic, "memw_locked"), 0b0, 0b1); let Inst{21} = 0b1; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{1-0} = Pd; } let accessSize = WordAccess in def S2_storew_locked : T_store_locked <"memw_locked", IntRegs>; let accessSize = DoubleWordAccess in def S4_stored_locked : T_store_locked <"memd_locked", DoubleRegs>; //===----------------------------------------------------------------------===// // Bit-reversed loads with auto-increment register //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_load_pbr majOp> : LDInst <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" , [] , "$Rz = $_dst_" > { let accessSize = addrSize; bits<5> dst; bits<5> Rz; bits<1> Mu; let IClass = 0b1001; let Inst{27-25} = 0b111; let Inst{24-21} = majOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{7} = 0b0; let Inst{4-0} = dst; } let hasNewValue =1, opNewValue = 0 in { def L2_loadrb_pbr : T_load_pbr <"memb", IntRegs, ByteAccess, 0b1000>; def L2_loadrub_pbr : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>; def L2_loadrh_pbr : T_load_pbr <"memh", IntRegs, HalfWordAccess, 0b1010>; def L2_loadruh_pbr : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>; def L2_loadbsw2_pbr : T_load_pbr <"membh", IntRegs, HalfWordAccess, 0b0001>; def L2_loadbzw2_pbr : T_load_pbr <"memubh", IntRegs, HalfWordAccess, 0b0011>; def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>; } def L2_loadbzw4_pbr : T_load_pbr <"memubh", DoubleRegs, WordAccess, 0b0101>; def L2_loadbsw4_pbr : T_load_pbr <"membh", DoubleRegs, WordAccess, 0b0111>; def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>; def L2_loadalignb_pbr :T_load_pbr <"memb_fifo", DoubleRegs, ByteAccess, 0b0100>; def L2_loadalignh_pbr :T_load_pbr <"memh_fifo", DoubleRegs, HalfWordAccess, 0b0010>; //===----------------------------------------------------------------------===// // Bit-reversed loads - Pseudo // // Please note that 'src2' doesn't appear in the AsmString because // it's same as 'dst'. //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in class T_load_pbr_pseudo : LDInstPI<(outs IntRegs:$_dst_, RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), ".error \"$dst = "#opc#"($src1++$src3:brev)\"", [], "$src1 = $_dst_">; def L2_loadrb_pbr_pseudo : T_load_pbr_pseudo <"memb", IntRegs>; def L2_loadrub_pbr_pseudo : T_load_pbr_pseudo <"memub", IntRegs>; def L2_loadrh_pbr_pseudo : T_load_pbr_pseudo <"memh", IntRegs>; def L2_loadruh_pbr_pseudo : T_load_pbr_pseudo <"memuh", IntRegs>; def L2_loadri_pbr_pseudo : T_load_pbr_pseudo <"memw", IntRegs>; def L2_loadrd_pbr_pseudo : T_load_pbr_pseudo <"memd", DoubleRegs>; //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords //Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd, bit hasShift, bit isUnsigned> : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isRnd,":rnd","") #!if(isSat,":sat",""), [], "", M_tc_3x_SLOT23 > { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b1100; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isRnd; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>; def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>; def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>; def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>; def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>; def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>; def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>; def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>; //Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>; def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>; def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>; def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>; def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>; def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>; def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>; def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>; //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>; def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>; def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>; def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>; def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>; def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>; def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>; def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>; //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat] //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] let Defs = [USR_OVF] in { def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>; def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>; def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>; def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>; def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>; def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>; def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>; def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>; def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>; def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>; def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>; def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>; def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>; def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>; def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>; def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>; } //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords and add/subtract the // result from the accumulator. //Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac, bit hasShift, bit isUnsigned > : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") #"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [], "$dst2 = $Rx", M_tc_3x_SLOT23 > { bits<5> Rx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b1110; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isNac; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>; def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>; def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>; def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>; def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>; def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>; def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>; def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>; //Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>; def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>; def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>; def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>; def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>; def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>; def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>; def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>; //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>; def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>; def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>; def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>; def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>; def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>; def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>; def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>; //Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1] def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>; def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>; def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>; def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>; def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>; def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>; def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>; def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>; //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>; def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>; def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>; def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>; def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>; def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>; def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>; def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>; //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>; def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>; def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>; def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>; def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>; def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>; def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>; def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>; //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords and add/subtract the // result from the 64-bit destination register. //Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] //===----------------------------------------------------------------------===// class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned> : MInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") #"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1",""), [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > { bits<5> Rxx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0110; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isNac; let Inst{7} = 0; let Inst{6-5} = LHbits; let Inst{4-0} = Rxx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>; def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>; def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>; def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>; def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>; def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>; def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>; def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>; def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>; def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>; def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>; def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>; def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>; def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>; def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>; def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>; def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>; def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>; def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>; def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>; def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>; def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>; def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>; def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>; def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>; def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>; def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>; def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>; def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>; def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>; def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>; def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>; //===----------------------------------------------------------------------===// // Template Class -- Vector Multipy // Used for complex multiply real or imaginary, dual multiply and even halfwords //===----------------------------------------------------------------------===// class T_M2_vmpy < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift, bit isRnd, bit isSat > : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rdd = "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") #!if(isRnd,":rnd","") #!if(isSat,":sat",""), [] > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1000; let Inst{23-21} = MajOp; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } // Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat let Defs = [USR_OVF] in { def M2_vcmpy_s1_sat_i: T_M2_vmpy <"vcmpyi", 0b110, 0b110, 1, 0, 1>; def M2_vcmpy_s0_sat_i: T_M2_vmpy <"vcmpyi", 0b010, 0b110, 0, 0, 1>; // Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat def M2_vcmpy_s1_sat_r: T_M2_vmpy <"vcmpyr", 0b101, 0b110, 1, 0, 1>; def M2_vcmpy_s0_sat_r: T_M2_vmpy <"vcmpyr", 0b001, 0b110, 0, 0, 1>; // Vector dual multiply: Rdd=vdmpy(Rss,Rtt)[:<<1]:sat def M2_vdmpys_s1: T_M2_vmpy <"vdmpy", 0b100, 0b100, 1, 0, 1>; def M2_vdmpys_s0: T_M2_vmpy <"vdmpy", 0b000, 0b100, 0, 0, 1>; // Vector multiply even halfwords: Rdd=vmpyeh(Rss,Rtt)[:<<1]:sat def M2_vmpy2es_s1: T_M2_vmpy <"vmpyeh", 0b100, 0b110, 1, 0, 1>; def M2_vmpy2es_s0: T_M2_vmpy <"vmpyeh", 0b000, 0b110, 0, 0, 1>; //Rdd=vmpywoh(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmpyh_s0: T_M2_vmpy <"vmpywoh", 0b000, 0b111, 0, 0, 1>; def M2_mmpyh_s1: T_M2_vmpy <"vmpywoh", 0b100, 0b111, 1, 0, 1>; def M2_mmpyh_rs0: T_M2_vmpy <"vmpywoh", 0b001, 0b111, 0, 1, 1>; def M2_mmpyh_rs1: T_M2_vmpy <"vmpywoh", 0b101, 0b111, 1, 1, 1>; //Rdd=vmpyweh(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmpyl_s0: T_M2_vmpy <"vmpyweh", 0b000, 0b101, 0, 0, 1>; def M2_mmpyl_s1: T_M2_vmpy <"vmpyweh", 0b100, 0b101, 1, 0, 1>; def M2_mmpyl_rs0: T_M2_vmpy <"vmpyweh", 0b001, 0b101, 0, 1, 1>; def M2_mmpyl_rs1: T_M2_vmpy <"vmpyweh", 0b101, 0b101, 1, 1, 1>; //Rdd=vmpywouh(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmpyuh_s0: T_M2_vmpy <"vmpywouh", 0b010, 0b111, 0, 0, 1>; def M2_mmpyuh_s1: T_M2_vmpy <"vmpywouh", 0b110, 0b111, 1, 0, 1>; def M2_mmpyuh_rs0: T_M2_vmpy <"vmpywouh", 0b011, 0b111, 0, 1, 1>; def M2_mmpyuh_rs1: T_M2_vmpy <"vmpywouh", 0b111, 0b111, 1, 1, 1>; //Rdd=vmpyweuh(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmpyul_s0: T_M2_vmpy <"vmpyweuh", 0b010, 0b101, 0, 0, 1>; def M2_mmpyul_s1: T_M2_vmpy <"vmpyweuh", 0b110, 0b101, 1, 0, 1>; def M2_mmpyul_rs0: T_M2_vmpy <"vmpyweuh", 0b011, 0b101, 0, 1, 1>; def M2_mmpyul_rs1: T_M2_vmpy <"vmpyweuh", 0b111, 0b101, 1, 1, 1>; } let hasNewValue = 1, opNewValue = 0 in class T_MType_mpy RegTyBits, RegisterClass RC, bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, string op2Suffix = "", bit isRaw = 0, bit isHi = 0 > : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2), "$dst = "#mnemonic #"($src1, $src2"#op2Suffix#")" #!if(MajOp{2}, ":<<1", "") #!if(isRnd, ":rnd", "") #!if(isSat, ":sat", "") #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1110; let Inst{27-24} = RegTyBits; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = 0b0; let Inst{12-8} = src2; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_MType_vrcmpy MajOp, bits<3> MinOp, bit isHi> : T_MType_mpy ; class T_MType_dd MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0 > : T_MType_mpy ; class T_MType_rr1 MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0 > : T_MType_mpy; class T_MType_rr2 MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, string op2str = "" > : T_MType_mpy; def M2_vradduh : T_MType_dd <"vradduh", 0b000, 0b001, 0, 0>; def M2_vdmpyrs_s0 : T_MType_dd <"vdmpy", 0b000, 0b000, 1, 1>; def M2_vdmpyrs_s1 : T_MType_dd <"vdmpy", 0b100, 0b000, 1, 1>; let CextOpcode = "mpyi", InputType = "reg" in def M2_mpyi : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel; def M2_mpy_up : T_MType_rr1 <"mpy", 0b000, 0b001>; def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>; def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>; def M2_vmpy2s_s0pack : T_MType_rr1 <"vmpyh", 0b001, 0b111, 1, 1>; def M2_vmpy2s_s1pack : T_MType_rr1 <"vmpyh", 0b101, 0b111, 1, 1>; def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">; def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">; def M2_cmpyrs_s0 : T_MType_rr2 <"cmpy", 0b001, 0b110, 1, 1>; def M2_cmpyrs_s1 : T_MType_rr2 <"cmpy", 0b101, 0b110, 1, 1>; def M2_cmpyrsc_s0 : T_MType_rr2 <"cmpy", 0b011, 0b110, 1, 1, "*">; def M2_cmpyrsc_s1 : T_MType_rr2 <"cmpy", 0b111, 0b110, 1, 1, "*">; // V4 Instructions def M2_vraddh : T_MType_dd <"vraddh", 0b001, 0b111, 0>; def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>; def M2_mpy_up_s1 : T_MType_rr1 <"mpy", 0b101, 0b010, 0>; def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>; def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">; def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">; def: Pat<(i32 (mul I32:$src1, I32:$src2)), (M2_mpyi I32:$src1, I32:$src2)>; def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up I32:$src1, I32:$src2)>; def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>; let hasNewValue = 1, opNewValue = 0 in class T_MType_mpy_ri pattern> : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8), "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" , pattern, "", M_tc_3x_SLOT23> { bits<5> Rd; bits<5> Rs; bits<8> u8; let IClass = 0b1110; let Inst{27-24} = 0b0000; let Inst{23} = isNeg; let Inst{13} = 0b0; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{12-5} = u8; } let isExtendable = 1, opExtentBits = 8, opExtendable = 2 in def M2_mpysip : T_MType_mpy_ri <0, u8Ext, [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u32ImmPred:$u8))]>; def M2_mpysin : T_MType_mpy_ri <1, u8Imm, [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs, u8ImmPred:$u8)))]>; // Assember mapped to M2_mpyi let isAsmParserOnly = 1 in def M2_mpyui : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyui($src1, $src2)">; // Rd=mpyi(Rs,#m9) // s9 is NOT the same as m9 - but it works.. so far. // Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8) // depending on the value of m9. See Arch Spec. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9, CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1, isAsmParserOnly = 1 in def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), "$dst = mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), s32ImmPred:$src2))]>, ImmRegRel; let hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 3, InputType = "imm" in class T_MType_acc_ri MajOp, Operand ImmOp, list pattern = []> : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3), "$dst "#mnemonic#"($src2, #$src3)", pattern, "$src1 = $dst", M_tc_2_SLOT23> { bits<5> dst; bits<5> src2; bits<8> src3; let IClass = 0b1110; let Inst{27-26} = 0b00; let Inst{25-23} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b0; let Inst{12-5} = src3; let Inst{4-0} = dst; } let InputType = "reg", hasNewValue = 1 in class T_MType_acc_rr MajOp, bits<3> MinOp, bit isSwap = 0, list pattern = [], bit hasNot = 0, bit isSat = 0, bit isShift = 0> : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)") #!if(isShift, ":<<1", "") #!if(isSat, ":sat", ""), pattern, "$src1 = $dst", M_tc_2_SLOT23 > { bits<5> dst; bits<5> src2; bits<5> src3; let IClass = 0b1110; let Inst{27-24} = 0b1111; let Inst{23-21} = MajOp; let Inst{20-16} = !if(isSwap, src3, src2); let Inst{13} = 0b0; let Inst{12-8} = !if(isSwap, src2, src3); let Inst{7-5} = MinOp; let Inst{4-0} = dst; } let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23 in { def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext, [(set (i32 IntRegs:$dst), (add (mul IntRegs:$src2, u32ImmPred:$src3), IntRegs:$src1))]>, ImmRegRel; def M2_maci : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0, [(set (i32 IntRegs:$dst), (add (mul IntRegs:$src2, IntRegs:$src3), IntRegs:$src1))]>, ImmRegRel; } let CextOpcode = "ADD_acc" in { let isExtentSigned = 1 in def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext, [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), s16_16ImmPred:$src3), (i32 IntRegs:$src1)))]>, ImmRegRel; def M2_acci : T_MType_acc_rr <"+= add", 0b000, 0b001, 0, [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))]>, ImmRegRel; } let CextOpcode = "SUB_acc" in { let isExtentSigned = 1 in def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel; def M2_nacci : T_MType_acc_rr <"-= add", 0b100, 0b001, 0>, ImmRegRel; } let Itinerary = M_tc_3x_SLOT23 in def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>; def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>; def M2_subacc : T_MType_acc_rr <"+= sub", 0b000, 0b011, 1>; class T_MType_acc_pat1 : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)), (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>; class T_MType_acc_pat2 : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))), (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def : T_MType_acc_pat2 ; def : T_MType_acc_pat1 ; def : T_MType_acc_pat1 ; def : T_MType_acc_pat2 ; //===----------------------------------------------------------------------===// // Template Class -- XType Vector Instructions //===----------------------------------------------------------------------===// class T_XTYPE_Vect < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj > : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rdd = "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"), [] > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1000; let Inst{23-21} = MajOp; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } class T_XTYPE_Vect_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj > : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rdd += "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"), [], "$dst2 = $Rdd",M_tc_3x_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1010; let Inst{23-21} = MajOp; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } class T_XTYPE_Vect_diff < bits<3> MajOp, string opc > : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rtt, DoubleRegs:$Rss), "$Rdd = "#opc#"($Rtt, $Rss)", [], "",M_tc_2_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1000; let Inst{23-21} = MajOp; let Inst{7-5} = 0b000; let Inst{4-0} = Rdd; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } // Vector reduce add unsigned bytes: Rdd32=vrmpybu(Rss32,Rtt32) def A2_vraddub: T_XTYPE_Vect <"vraddub", 0b010, 0b001, 0>; def A2_vraddub_acc: T_XTYPE_Vect_acc <"vraddub", 0b010, 0b001, 0>; // Vector sum of absolute differences unsigned bytes: Rdd=vrsadub(Rss,Rtt) def A2_vrsadub: T_XTYPE_Vect <"vrsadub", 0b010, 0b010, 0>; def A2_vrsadub_acc: T_XTYPE_Vect_acc <"vrsadub", 0b010, 0b010, 0>; // Vector absolute difference: Rdd=vabsdiffh(Rtt,Rss) def M2_vabsdiffh: T_XTYPE_Vect_diff<0b011, "vabsdiffh">; // Vector absolute difference words: Rdd=vabsdiffw(Rtt,Rss) def M2_vabsdiffw: T_XTYPE_Vect_diff<0b001, "vabsdiffw">; // Vector reduce complex multiply real or imaginary: // Rdd[+]=vrcmpy[ir](Rss,Rtt[*]) def M2_vrcmpyi_s0: T_XTYPE_Vect <"vrcmpyi", 0b000, 0b000, 0>; def M2_vrcmpyi_s0c: T_XTYPE_Vect <"vrcmpyi", 0b010, 0b000, 1>; def M2_vrcmaci_s0: T_XTYPE_Vect_acc <"vrcmpyi", 0b000, 0b000, 0>; def M2_vrcmaci_s0c: T_XTYPE_Vect_acc <"vrcmpyi", 0b010, 0b000, 1>; def M2_vrcmpyr_s0: T_XTYPE_Vect <"vrcmpyr", 0b000, 0b001, 0>; def M2_vrcmpyr_s0c: T_XTYPE_Vect <"vrcmpyr", 0b011, 0b001, 1>; def M2_vrcmacr_s0: T_XTYPE_Vect_acc <"vrcmpyr", 0b000, 0b001, 0>; def M2_vrcmacr_s0c: T_XTYPE_Vect_acc <"vrcmpyr", 0b011, 0b001, 1>; // Vector reduce halfwords: // Rdd[+]=vrmpyh(Rss,Rtt) def M2_vrmpy_s0: T_XTYPE_Vect <"vrmpyh", 0b000, 0b010, 0>; def M2_vrmac_s0: T_XTYPE_Vect_acc <"vrmpyh", 0b000, 0b010, 0>; //===----------------------------------------------------------------------===// // Template Class -- Vector Multipy with accumulation. // Used for complex multiply real or imaginary, dual multiply and even halfwords //===----------------------------------------------------------------------===// let Defs = [USR_OVF] in class T_M2_vmpy_acc_sat < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift, bit isRnd > : MInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") #!if(isRnd,":rnd","")#":sat", [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > { bits<5> Rxx; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1010; let Inst{23-21} = MajOp; let Inst{7-5} = MinOp; let Inst{4-0} = Rxx; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } class T_M2_vmpy_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift, bit isRnd > : MInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","") #!if(isRnd,":rnd",""), [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > { bits<5> Rxx; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1010; let Inst{23-21} = MajOp; let Inst{7-5} = MinOp; let Inst{4-0} = Rxx; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; } // Vector multiply word by signed half with accumulation // Rxx+=vmpyw[eo]h(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmacls_s1: T_M2_vmpy_acc_sat <"vmpyweh", 0b100, 0b101, 1, 0>; def M2_mmacls_s0: T_M2_vmpy_acc_sat <"vmpyweh", 0b000, 0b101, 0, 0>; def M2_mmacls_rs1: T_M2_vmpy_acc_sat <"vmpyweh", 0b101, 0b101, 1, 1>; def M2_mmacls_rs0: T_M2_vmpy_acc_sat <"vmpyweh", 0b001, 0b101, 0, 1>; def M2_mmachs_s1: T_M2_vmpy_acc_sat <"vmpywoh", 0b100, 0b111, 1, 0>; def M2_mmachs_s0: T_M2_vmpy_acc_sat <"vmpywoh", 0b000, 0b111, 0, 0>; def M2_mmachs_rs1: T_M2_vmpy_acc_sat <"vmpywoh", 0b101, 0b111, 1, 1>; def M2_mmachs_rs0: T_M2_vmpy_acc_sat <"vmpywoh", 0b001, 0b111, 0, 1>; // Vector multiply word by unsigned half with accumulation // Rxx+=vmpyw[eo]uh(Rss,Rtt)[:<<1][:rnd]:sat def M2_mmaculs_s1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b110, 0b101, 1, 0>; def M2_mmaculs_s0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b010, 0b101, 0, 0>; def M2_mmaculs_rs1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b111, 0b101, 1, 1>; def M2_mmaculs_rs0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b011, 0b101, 0, 1>; def M2_mmacuhs_s1: T_M2_vmpy_acc_sat <"vmpywouh", 0b110, 0b111, 1, 0>; def M2_mmacuhs_s0: T_M2_vmpy_acc_sat <"vmpywouh", 0b010, 0b111, 0, 0>; def M2_mmacuhs_rs1: T_M2_vmpy_acc_sat <"vmpywouh", 0b111, 0b111, 1, 1>; def M2_mmacuhs_rs0: T_M2_vmpy_acc_sat <"vmpywouh", 0b011, 0b111, 0, 1>; // Vector multiply even halfwords with accumulation // Rxx+=vmpyeh(Rss,Rtt)[:<<1][:sat] def M2_vmac2es: T_M2_vmpy_acc <"vmpyeh", 0b001, 0b010, 0, 0>; def M2_vmac2es_s1: T_M2_vmpy_acc_sat <"vmpyeh", 0b100, 0b110, 1, 0>; def M2_vmac2es_s0: T_M2_vmpy_acc_sat <"vmpyeh", 0b000, 0b110, 0, 0>; // Vector dual multiply with accumulation // Rxx+=vdmpy(Rss,Rtt)[:sat] def M2_vdmacs_s1: T_M2_vmpy_acc_sat <"vdmpy", 0b100, 0b100, 1, 0>; def M2_vdmacs_s0: T_M2_vmpy_acc_sat <"vdmpy", 0b000, 0b100, 0, 0>; // Vector complex multiply real or imaginary with accumulation // Rxx+=vcmpy[ir](Rss,Rtt):sat def M2_vcmac_s0_sat_r: T_M2_vmpy_acc_sat <"vcmpyr", 0b001, 0b100, 0, 0>; def M2_vcmac_s0_sat_i: T_M2_vmpy_acc_sat <"vcmpyi", 0b010, 0b100, 0, 0>; //===----------------------------------------------------------------------===// // Template Class -- Multiply signed/unsigned halfwords with and without // saturation and rounding //===----------------------------------------------------------------------===// class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned > : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isRnd,":rnd",""), [] > { bits<5> Rdd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0100; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isRnd; let Inst{6-5} = LHbits; let Inst{4-0} = Rdd; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>; def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>; def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>; def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>; def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>; def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>; def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>; def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>; def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>; def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>; def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>; def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>; def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>; def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>; def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>; def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>; //Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1] def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>; def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>; def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>; def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>; def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>; def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>; def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>; def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>; //===----------------------------------------------------------------------===// // Template Class for xtype mpy: // Vector multiply // Complex multiply // multiply 32X32 and use full result //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_XTYPE_mpy64 MajOp, bits<3> MinOp, bit isSat, bit hasShift, bit isConj> : MInst <(outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [] > { bits<5> Rdd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0101; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; } //===----------------------------------------------------------------------===// // Template Class for xtype mpy with accumulation into 64-bit: // Vector multiply // Complex multiply // multiply 32X32 and use full result //===----------------------------------------------------------------------===// class T_XTYPE_mpy64_acc MajOp, bits<3> MinOp, bit isSat, bit hasShift, bit isConj> : MInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [] , "$dst2 = $Rxx" > { bits<5> Rxx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0111; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rxx; } // MPY - Multiply and use full result // Rdd = mpy[u](Rs,Rt) def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>; def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>; // Rxx[+-]= mpy[u](Rs,Rt) def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy", "+", 0b000, 0b000, 0, 0, 0>; def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy", "-", 0b001, 0b000, 0, 0, 0>; def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>; def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>; // Complex multiply real or imaginary // Rxx=cmpy[ir](Rs,Rt) def M2_cmpyi_s0 : T_XTYPE_mpy64 < "cmpyi", 0b000, 0b001, 0, 0, 0>; def M2_cmpyr_s0 : T_XTYPE_mpy64 < "cmpyr", 0b000, 0b010, 0, 0, 0>; // Rxx+=cmpy[ir](Rs,Rt) def M2_cmaci_s0 : T_XTYPE_mpy64_acc < "cmpyi", "+", 0b000, 0b001, 0, 0, 0>; def M2_cmacr_s0 : T_XTYPE_mpy64_acc < "cmpyr", "+", 0b000, 0b010, 0, 0, 0>; // Complex multiply // Rdd=cmpy(Rs,Rt)[:<<]:sat def M2_cmpys_s0 : T_XTYPE_mpy64 < "cmpy", 0b000, 0b110, 1, 0, 0>; def M2_cmpys_s1 : T_XTYPE_mpy64 < "cmpy", 0b100, 0b110, 1, 1, 0>; // Rdd=cmpy(Rs,Rt*)[:<<]:sat def M2_cmpysc_s0 : T_XTYPE_mpy64 < "cmpy", 0b010, 0b110, 1, 0, 1>; def M2_cmpysc_s1 : T_XTYPE_mpy64 < "cmpy", 0b110, 0b110, 1, 1, 1>; // Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat def M2_cmacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b000, 0b110, 1, 0, 0>; def M2_cnacs_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b000, 0b111, 1, 0, 0>; def M2_cmacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b100, 0b110, 1, 1, 0>; def M2_cnacs_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b100, 0b111, 1, 1, 0>; // Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat def M2_cmacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b010, 0b110, 1, 0, 1>; def M2_cnacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b010, 0b111, 1, 0, 1>; def M2_cmacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b110, 0b110, 1, 1, 1>; def M2_cnacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b110, 0b111, 1, 1, 1>; // Vector multiply halfwords // Rdd=vmpyh(Rs,Rt)[:<<]:sat //let Defs = [USR_OVF] in { def M2_vmpy2s_s1 : T_XTYPE_mpy64 < "vmpyh", 0b100, 0b101, 1, 1, 0>; def M2_vmpy2s_s0 : T_XTYPE_mpy64 < "vmpyh", 0b000, 0b101, 1, 0, 0>; //} // Rxx+=vmpyh(Rs,Rt)[:<<1][:sat] def M2_vmac2 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b001, 0b001, 0, 0, 0>; def M2_vmac2s_s1 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b100, 0b101, 1, 1, 0>; def M2_vmac2s_s0 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b000, 0b101, 1, 0, 0>; def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))), (i64 (anyext (i32 IntRegs:$src2))))), (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>; def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2))))), (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>; def: Pat<(i64 (mul (is_sext_i32:$src1), (is_sext_i32:$src2))), (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>; // Multiply and accumulate, use full result. // Rxx[+-]=mpy(Rs,Rt) def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))))), (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))))), (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (zext (i32 IntRegs:$src2))), (i64 (zext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (zext (i32 IntRegs:$src2))), (i64 (zext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; //===----------------------------------------------------------------------===// // MTYPE/MPYH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ST + //===----------------------------------------------------------------------===// /// // Store doubleword. //===----------------------------------------------------------------------===// // Template class for non-predicated post increment stores with immediate offset //===----------------------------------------------------------------------===// let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in class T_store_pi MajOp, bit isHalf > : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""), [], "$src1 = $_dst_" >, AddrModeRel { bits<5> src1; bits<5> src2; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1010; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = 0b0; let Inst{12-8} = src2; let Inst{7} = 0b0; let Inst{6-3} = offsetBits; let Inst{1} = 0b0; } //===----------------------------------------------------------------------===// // Template class for predicated post increment stores with immediate offset //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in class T_pstore_pi MajOp, bit isHalf, bit isPredNot, bit isPredNew > : STInst <(outs IntRegs:$_dst_), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""), [], "$src2 = $_dst_" >, AddrModeRel { bits<2> src1; bits<5> src2; bits<7> offset; bits<5> src3; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; let IClass = 0b1010; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b1; let Inst{12-8} = src3; let Inst{7} = isPredNew; let Inst{6-3} = offsetBits; let Inst{2} = isPredNot; let Inst{1-0} = src1; } multiclass ST_PostInc MajOp, bit isHalf = 0 > { let BaseOpcode = "POST_"#BaseOp in { def S2_#NAME#_pi : T_store_pi ; // Predicated def S2_p#NAME#t_pi : T_pstore_pi ; def S2_p#NAME#f_pi : T_pstore_pi ; // Predicated new def S2_p#NAME#tnew_pi : T_pstore_pi ; def S2_p#NAME#fnew_pi : T_pstore_pi ; } } let accessSize = ByteAccess in defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>; let accessSize = HalfWordAccess in defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>; let accessSize = WordAccess in defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>; let accessSize = DoubleWordAccess in defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>; let accessSize = HalfWordAccess, isNVStorable = 0 in defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>; class Storepi_pat : Pat<(Store Value:$src1, I32:$src2, Offset:$offset), (MI I32:$src2, imm:$offset, Value:$src1)>; def: Storepi_pat; def: Storepi_pat; def: Storepi_pat; def: Storepi_pat; //===----------------------------------------------------------------------===// // Template class for post increment stores with register offset. //===----------------------------------------------------------------------===// let isNVStorable = 1 in class T_store_pr MajOp, MemAccessSize AccessSz, bit isHalf = 0> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ModRegs:$src2, RC:$src3), mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""), [], "$src1 = $_dst_" > { bits<5> src1; bits<1> src2; bits<5> src3; let accessSize = AccessSz; let IClass = 0b1010; let Inst{27-24} = 0b1101; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2; let Inst{12-8} = src3; let Inst{7} = 0b0; } def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>; def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>; def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>; def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>; def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>; let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in class T_store_io MajOp, bit isH = 0> : STInst <(outs), (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>, AddrModeRel, ImmRegRel { bits<5> src1; bits<14> src2; // Actual address offset bits<5> src3; bits<11> offsetBits; // Represents offset encoding string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, !if (!eq(ImmOpStr, "s11_2Ext"), 13, !if (!eq(ImmOpStr, "s11_1Ext"), 12, /* s11_0Ext */ 11))); let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3}, !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2}, !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1}, /* s11_0Ext */ src2{10-0}))); let IClass = 0b1010; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24} = 0b1; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = offsetBits{8}; let Inst{12-8} = src3; let Inst{7-0} = offsetBits{7-0}; } let opExtendable = 2, isPredicated = 1 in class T_pstore_io MajOp, bit PredNot, bit isPredNew, bit isH = 0> : STInst <(outs), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4), !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""), [],"",V2LDST_tc_st_SLOT01 >, AddrModeRel, ImmRegRel { bits<2> src1; bits<5> src2; bits<9> src3; // Actual address offset bits<5> src4; bits<6> offsetBits; // Represents offset encoding let isPredicatedNew = isPredNew; let isPredicatedFalse = PredNot; string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, !if (!eq(ImmOpStr, "u6_2Ext"), 8, !if (!eq(ImmOpStr, "u6_1Ext"), 7, /* u6_0Ext */ 6))); let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3}, !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2}, !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1}, /* u6_0Ext */ src3{5-0}))); let IClass = 0b0100; let Inst{27} = 0b0; let Inst{26} = PredNot; let Inst{25} = isPredNew; let Inst{24} = 0b0; let Inst{23-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = offsetBits{5}; let Inst{12-8} = src4; let Inst{7-3} = offsetBits{4-0}; let Inst{1-0} = src1; } let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in multiclass ST_Idxd MajOp, bit isH = 0> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { def S2_#NAME#_io : T_store_io ; // Predicated def S2_p#NAME#t_io : T_pstore_io; def S2_p#NAME#f_io : T_pstore_io; // Predicated new def S4_p#NAME#tnew_io : T_pstore_io ; def S4_p#NAME#fnew_io : T_pstore_io ; } } let addrMode = BaseImmOffset, InputType = "imm" in { let accessSize = ByteAccess in defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>; let accessSize = HalfWordAccess, opExtentAlign = 1 in defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>; let accessSize = WordAccess, opExtentAlign = 2 in defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>; let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b110>; let accessSize = HalfWordAccess, opExtentAlign = 1 in defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext, u6_1Ext, 0b011, 1>; } // Patterns for generating stores, where the address takes different forms: // - frameindex, // - frameindex + offset, // - base + offset, // - simple (base address without offset). // These would usually be used together (via Storex_pat defined below), but // in some cases one may want to apply different properties (such as // AddedComplexity) to the individual patterns. class Storex_fi_pat : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>; class Storex_fi_add_pat : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, Value:$Rs)>; class Storex_add_pat : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; class Storex_simple_pat : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)), (MI IntRegs:$Rs, 0, Value:$Rt)>; // Patterns for generating stores, where the address takes different forms, // and where the value being stored is transformed through the value modifier // ValueMod. The address forms are same as above. class Storexm_fi_pat : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>; class Storexm_fi_add_pat : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>; class Storexm_add_pat : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; class Storexm_simple_pat : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)), (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>; multiclass Storex_pat { def: Storex_fi_pat ; def: Storex_fi_add_pat ; def: Storex_add_pat ; } multiclass Storexm_pat { def: Storexm_fi_pat ; def: Storexm_fi_add_pat ; def: Storexm_add_pat ; } // Regular stores in the DAG have two operands: value and address. // Atomic stores also have two, but they are reversed: address, value. // To use atomic stores with the patterns, they need to have their operands // swapped. This relies on the knowledge that the F.Fragment uses names // "ptr" and "val". class SwapSt : PatFrag<(ops node:$val, node:$ptr), F.Fragment>; let AddedComplexity = 20 in { defm: Storex_pat; defm: Storex_pat; defm: Storex_pat; defm: Storex_pat; defm: Storex_pat, I32, s32_0ImmPred, S2_storerb_io>; defm: Storex_pat, I32, s31_1ImmPred, S2_storerh_io>; defm: Storex_pat, I32, s30_2ImmPred, S2_storeri_io>; defm: Storex_pat, I64, s29_3ImmPred, S2_storerd_io>; } // Simple patterns should be tried with the least priority. def: Storex_simple_pat; def: Storex_simple_pat; def: Storex_simple_pat; def: Storex_simple_pat; def: Storex_simple_pat, I32, S2_storerb_io>; def: Storex_simple_pat, I32, S2_storerh_io>; def: Storex_simple_pat, I32, S2_storeri_io>; def: Storex_simple_pat, I64, S2_storerd_io>; let AddedComplexity = 20 in { defm: Storexm_pat; defm: Storexm_pat; defm: Storexm_pat; } def: Storexm_simple_pat; def: Storexm_simple_pat; def: Storexm_simple_pat; // Store predicate. let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13, isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in def STriw_pred : STInst<(outs), (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1), ".error \"should not emit\"", []>; // S2_allocframe: Allocate stack frame. let Defs = [R29, R30], Uses = [R29, R31, R30], hasSideEffects = 0, accessSize = DoubleWordAccess in def S2_allocframe: ST0Inst < (outs), (ins u11_3Imm:$u11_3), "allocframe(#$u11_3)" > { bits<14> u11_3; let IClass = 0b1010; let Inst{27-16} = 0b000010011101; let Inst{13-11} = 0b000; let Inst{10-0} = u11_3{13-3}; } // S2_storer[bhwdf]_pci: Store byte/half/word/double. // S2_storer[bhwdf]_pci -> S2_storerbnew_pci let Uses = [CS], isNVStorable = 1 in class T_store_pci MajOp, MemAccessSize AlignSize, string RegSrc = "Rt"> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt), #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"", [] , "$Rz = $_dst_" > { bits<5> Rz; bits<7> offset; bits<1> Mu; bits<5> Rt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = Rt; let Inst{7} = 0b0; let Inst{6-3} = !if (!eq(!cast(AlignSize), "DoubleWordAccess"), offset{6-3}, !if (!eq(!cast(AlignSize), "WordAccess"), offset{5-2}, !if (!eq(!cast(AlignSize), "HalfWordAccess"), offset{4-1}, /* ByteAccess */ offset{3-0}))); let Inst{1} = 0b0; } def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000, ByteAccess>; def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010, HalfWordAccess>; def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011, HalfWordAccess, "Rt.h">; def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100, WordAccess>; def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110, DoubleWordAccess>; let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 4 in class T_storenew_pci MajOp, MemAccessSize AlignSize> : NVInst < (outs IntRegs:$_dst_), (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, IntRegs:$Nt), #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $Nt.new", [], "$Rz = $_dst_"> { bits<5> Rz; bits<6> offset; bits<1> Mu; bits<3> Nt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-21} = 0b1001101; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-11} = MajOp; let Inst{10-8} = Nt; let Inst{7} = 0b0; let Inst{6-3} = !if (!eq(!cast(AlignSize), "WordAccess"), offset{5-2}, !if (!eq(!cast(AlignSize), "HalfWordAccess"), offset{4-1}, /* ByteAccess */ offset{3-0})); let Inst{1} = 0b0; } def S2_storerbnew_pci : T_storenew_pci <"memb", s4_0Imm, 0b00, ByteAccess>; def S2_storerhnew_pci : T_storenew_pci <"memh", s4_1Imm, 0b01, HalfWordAccess>; def S2_storerinew_pci : T_storenew_pci <"memw", s4_2Imm, 0b10, WordAccess>; //===----------------------------------------------------------------------===// // Circular stores - Pseudo // // Please note that the input operand order in the pseudo instructions // doesn't match with the real instructions. Pseudo instructions operand // order should mimics the ordering in the intrinsics. //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in class T_store_pci_pseudo : STInstPI<(outs IntRegs:$_dst_), (ins IntRegs:$src1, RC:$src2, IntRegs:$src3, s4Imm:$src4), ".error \""#opc#"($src1++#$src4:circ($src3)) = $src2\"", [], "$_dst_ = $src1">; def S2_storerb_pci_pseudo : T_store_pci_pseudo <"memb", IntRegs>; def S2_storerh_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>; def S2_storerf_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>; def S2_storeri_pci_pseudo : T_store_pci_pseudo <"memw", IntRegs>; def S2_storerd_pci_pseudo : T_store_pci_pseudo <"memd", DoubleRegs>; //===----------------------------------------------------------------------===// // Circular stores with auto-increment register //===----------------------------------------------------------------------===// let Uses = [CS], isNVStorable = 1 in class T_store_pcr MajOp, MemAccessSize AlignSize, string RegSrc = "Rt"> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt), #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"", [], "$Rz = $_dst_" > { bits<5> Rz; bits<1> Mu; bits<5> Rt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = Rt; let Inst{7} = 0b0; let Inst{1} = 0b1; } def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>; def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>; def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>; def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>; def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011, HalfWordAccess, "Rt.h">; //===----------------------------------------------------------------------===// // Circular .new stores with auto-increment register //===----------------------------------------------------------------------===// let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in class T_storenew_pcr MajOp, MemAccessSize AlignSize> : NVInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt), #mnemonic#"($Rz ++ I:circ($Mu)) = $Nt.new" , [] , "$Rz = $_dst_"> { bits<5> Rz; bits<1> Mu; bits<3> Nt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-21} = 0b1001101; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-11} = MajOp; let Inst{10-8} = Nt; let Inst{7} = 0b0; let Inst{1} = 0b1; } def S2_storerbnew_pcr : T_storenew_pcr <"memb", 0b00, ByteAccess>; def S2_storerhnew_pcr : T_storenew_pcr <"memh", 0b01, HalfWordAccess>; def S2_storerinew_pcr : T_storenew_pcr <"memw", 0b10, WordAccess>; //===----------------------------------------------------------------------===// // Bit-reversed stores with auto-increment register //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_store_pbr majOp, bit isHalf = 0> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src), #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""), [], "$Rz = $_dst_" > { let accessSize = addrSize; bits<5> Rz; bits<1> Mu; bits<5> src; let IClass = 0b1010; let Inst{27-24} = 0b1111; let Inst{23-21} = majOp; let Inst{7} = 0b0; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = src; } let isNVStorable = 1 in { let BaseOpcode = "S2_storerb_pbr" in def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess, 0b000>, NewValueRel; let BaseOpcode = "S2_storerh_pbr" in def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b010>, NewValueRel; let BaseOpcode = "S2_storeri_pbr" in def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess, 0b100>, NewValueRel; } def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>; def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>; //===----------------------------------------------------------------------===// // Bit-reversed .new stores with auto-increment register //===----------------------------------------------------------------------===// let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3, hasSideEffects = 0 in class T_storenew_pbr majOp> : NVInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt), #mnemonic#"($Rz ++ $Mu:brev) = $Nt.new", [], "$Rz = $_dst_">, NewValueRel { let accessSize = addrSize; bits<5> Rz; bits<1> Mu; bits<3> Nt; let IClass = 0b1010; let Inst{27-21} = 0b1111101; let Inst{12-11} = majOp; let Inst{7} = 0b0; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{10-8} = Nt; } let BaseOpcode = "S2_storerb_pbr" in def S2_storerbnew_pbr : T_storenew_pbr<"memb", ByteAccess, 0b00>; let BaseOpcode = "S2_storerh_pbr" in def S2_storerhnew_pbr : T_storenew_pbr<"memh", HalfWordAccess, 0b01>; let BaseOpcode = "S2_storeri_pbr" in def S2_storerinew_pbr : T_storenew_pbr<"memw", WordAccess, 0b10>; //===----------------------------------------------------------------------===// // Bit-reversed stores - Pseudo // // Please note that the input operand order in the pseudo instructions // doesn't match with the real instructions. Pseudo instructions operand // order should mimics the ordering in the intrinsics. //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in class T_store_pbr_pseudo : STInstPI<(outs IntRegs:$_dst_), (ins IntRegs:$src1, RC:$src2, IntRegs:$src3), ".error \""#opc#"($src1++$src3:brev) = $src2\"", [], "$_dst_ = $src1">; def S2_storerb_pbr_pseudo : T_store_pbr_pseudo <"memb", IntRegs>; def S2_storerh_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>; def S2_storeri_pbr_pseudo : T_store_pbr_pseudo <"memw", IntRegs>; def S2_storerf_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>; def S2_storerd_pbr_pseudo : T_store_pbr_pseudo <"memd", DoubleRegs>; //===----------------------------------------------------------------------===// // ST - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template class for S_2op instructions. //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S2op_1 RegTyBits, RegisterClass RCOut, RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat> : SInst <(outs RCOut:$dst), (ins RCIn:$src), "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""), [], "", S_2op_tc_1_SLOT23 > { bits<5> dst; bits<5> src; let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23-22} = MajOp; let Inst{21} = 0b0; let Inst{20-16} = src; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S2op_1_di MajOp, bits<3> MinOp> : T_S2op_1 ; let hasNewValue = 1 in class T_S2op_1_id MajOp, bits<3> MinOp, bit isSat = 0> : T_S2op_1 ; let hasNewValue = 1 in class T_S2op_1_ii MajOp, bits<3> MinOp, bit isSat = 0> : T_S2op_1 ; // Vector sign/zero extend let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def S2_vsxtbh : T_S2op_1_di <"vsxtbh", 0b00, 0b000>; def S2_vsxthw : T_S2op_1_di <"vsxthw", 0b00, 0b100>; def S2_vzxtbh : T_S2op_1_di <"vzxtbh", 0b00, 0b010>; def S2_vzxthw : T_S2op_1_di <"vzxthw", 0b00, 0b110>; } // Vector splat bytes/halfwords let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def S2_vsplatrb : T_S2op_1_ii <"vsplatb", 0b01, 0b111>; def S2_vsplatrh : T_S2op_1_di <"vsplath", 0b01, 0b010>; } // Sign extend word to doubleword def A2_sxtw : T_S2op_1_di <"sxtw", 0b01, 0b000>; def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>; // Vector saturate and pack let Defs = [USR_OVF] in { def S2_svsathb : T_S2op_1_ii <"vsathb", 0b10, 0b000>; def S2_svsathub : T_S2op_1_ii <"vsathub", 0b10, 0b010>; def S2_vsathb : T_S2op_1_id <"vsathb", 0b00, 0b110>; def S2_vsathub : T_S2op_1_id <"vsathub", 0b00, 0b000>; def S2_vsatwh : T_S2op_1_id <"vsatwh", 0b00, 0b010>; def S2_vsatwuh : T_S2op_1_id <"vsatwuh", 0b00, 0b100>; } // Vector truncate def S2_vtrunohb : T_S2op_1_id <"vtrunohb", 0b10, 0b000>; def S2_vtrunehb : T_S2op_1_id <"vtrunehb", 0b10, 0b010>; // Swizzle the bytes of a word def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>; // Saturate let Defs = [USR_OVF] in { def A2_sat : T_S2op_1_id <"sat", 0b11, 0b000>; def A2_satb : T_S2op_1_ii <"satb", 0b11, 0b111>; def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>; def A2_sath : T_S2op_1_ii <"sath", 0b11, 0b100>; def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>; def A2_roundsat : T_S2op_1_id <"round", 0b11, 0b001, 0b1>; } let Itinerary = S_2op_tc_2_SLOT23 in { // Vector round and pack def S2_vrndpackwh : T_S2op_1_id <"vrndwh", 0b10, 0b100>; let Defs = [USR_OVF] in def S2_vrndpackwhs : T_S2op_1_id <"vrndwh", 0b10, 0b110, 1>; // Bit reverse def S2_brev : T_S2op_1_ii <"brev", 0b01, 0b110>; // Absolute value word def A2_abs : T_S2op_1_ii <"abs", 0b10, 0b100>; let Defs = [USR_OVF] in def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>; // Negate with saturation let Defs = [USR_OVF] in def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>; } def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)), (i32 (sub 0, (i32 IntRegs:$src))), (i32 IntRegs:$src))), (A2_abs IntRegs:$src)>; let AddedComplexity = 50 in def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)), (i32 IntRegs:$src)), (sra (i32 IntRegs:$src), (i32 31)))), (A2_abs IntRegs:$src)>; class T_S2op_2 RegTyBits, RegisterClass RCOut, RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp, bit isSat, bit isRnd, list pattern = []> : SInst <(outs RCOut:$dst), (ins RCIn:$src, u5Imm:$u5), "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "") #!if(isRnd, ":rnd", ""), pattern, "", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23-21} = MajOp; let Inst{20-16} = src; let Inst{13} = 0b0; let Inst{12-8} = u5; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S2op_2_di MajOp, bits<3> MinOp> : T_S2op_2 ; let hasNewValue = 1 in class T_S2op_2_id MajOp, bits<3> MinOp> : T_S2op_2 ; let hasNewValue = 1 in class T_S2op_2_ii MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, list pattern = []> : T_S2op_2 ; class T_S2op_shift MajOp, bits<3> MinOp, SDNode OpNd> : T_S2op_2_ii ; // Vector arithmetic shift right by immediate with truncate and pack def S2_asr_i_svw_trun : T_S2op_2_id <"vasrw", 0b110, 0b010>; // Arithmetic/logical shift right/left by immediate let Itinerary = S_2op_tc_1_SLOT23 in { def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>; def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>; def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>; } // Shift left by immediate with saturation let Defs = [USR_OVF] in def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>; // Shift right with round def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>; let isAsmParserOnly = 1 in def S2_asr_i_r_rnd_goodsyntax : SInst <(outs IntRegs:$dst), (ins IntRegs:$src, u5Imm:$u5), "$dst = asrrnd($src, #$u5)", [], "", S_2op_tc_1_SLOT23>; let isAsmParserOnly = 1 in def A2_not: ALU32_rr<(outs IntRegs:$dst),(ins IntRegs:$src), "$dst = not($src)">; def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)), (i32 1))), (i32 1))), (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>; class T_S2op_3MajOp, bits<3>minOp, bits<1> sat = 0> : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss), "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> { bits<5> Rss; bits<5> Rdd; let IClass = 0b1000; let Inst{27-24} = 0; let Inst{23-22} = MajOp; let Inst{20-16} = Rss; let Inst{7-5} = minOp; let Inst{4-0} = Rdd; } def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>; def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>; def A2_notp : T_S2op_3 <"not", 0b10, 0b100>; // Innterleave/deinterleave def S2_interleave : T_S2op_3 <"interleave", 0b11, 0b101>; def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>; // Vector Complex conjugate def A2_vconj : T_S2op_3 <"vconj", 0b10, 0b111, 1>; // Vector saturate without pack def S2_vsathb_nopack : T_S2op_3 <"vsathb", 0b00, 0b111>; def S2_vsathub_nopack : T_S2op_3 <"vsathub", 0b00, 0b100>; def S2_vsatwh_nopack : T_S2op_3 <"vsatwh", 0b00, 0b110>; def S2_vsatwuh_nopack : T_S2op_3 <"vsatwuh", 0b00, 0b101>; // Vector absolute value halfwords with and without saturation // Rdd64=vabsh(Rss64)[:sat] def A2_vabsh : T_S2op_3 <"vabsh", 0b01, 0b100>; def A2_vabshsat : T_S2op_3 <"vabsh", 0b01, 0b101, 1>; // Vector absolute value words with and without saturation def A2_vabsw : T_S2op_3 <"vabsw", 0b01, 0b110>; def A2_vabswsat : T_S2op_3 <"vabsw", 0b01, 0b111, 1>; def : Pat<(not (i64 DoubleRegs:$src1)), (A2_notp DoubleRegs:$src1)>; //===----------------------------------------------------------------------===// // STYPE/BIT + //===----------------------------------------------------------------------===// // Bit count let hasSideEffects = 0, hasNewValue = 1 in class T_COUNT_LEADING MajOp, bits<3> MinOp, bit Is32, dag Out, dag Inp> : SInst { bits<5> Rs; bits<5> Rd; let IClass = 0b1000; let Inst{27} = 0b1; let Inst{26} = Is32; let Inst{25-24} = 0b00; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } class T_COUNT_LEADING_32 MajOp, bits<3> MinOp> : T_COUNT_LEADING; class T_COUNT_LEADING_64 MajOp, bits<3> MinOp> : T_COUNT_LEADING; def S2_cl0 : T_COUNT_LEADING_32<"cl0", 0b000, 0b101>; def S2_cl1 : T_COUNT_LEADING_32<"cl1", 0b000, 0b110>; def S2_ct0 : T_COUNT_LEADING_32<"ct0", 0b010, 0b100>; def S2_ct1 : T_COUNT_LEADING_32<"ct1", 0b010, 0b101>; def S2_cl0p : T_COUNT_LEADING_64<"cl0", 0b010, 0b010>; def S2_cl1p : T_COUNT_LEADING_64<"cl1", 0b010, 0b100>; def S2_clb : T_COUNT_LEADING_32<"clb", 0b000, 0b100>; def S2_clbp : T_COUNT_LEADING_64<"clb", 0b010, 0b000>; def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>; def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>; def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>; def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>; def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>; def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; // Bit set/clear/toggle let hasSideEffects = 0, hasNewValue = 1 in class T_SCT_BIT_IMM MinOp> : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5), "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-21} = 0b1100110; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = u5; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } let hasSideEffects = 0, hasNewValue = 1 in class T_SCT_BIT_REG MinOp> : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-22} = 0b011010; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-6} = MinOp; let Inst{4-0} = Rd; } def S2_clrbit_i : T_SCT_BIT_IMM<"clrbit", 0b001>; def S2_setbit_i : T_SCT_BIT_IMM<"setbit", 0b000>; def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>; def S2_clrbit_r : T_SCT_BIT_REG<"clrbit", 0b01>; def S2_setbit_r : T_SCT_BIT_REG<"setbit", 0b00>; def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>; def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))), (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))), (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; // Bit test let hasSideEffects = 0 in class T_TEST_BIT_IMM MajOp> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5), "$Pd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = 0b0101; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{13} = 0; let Inst{12-8} = u5; let Inst{1-0} = Pd; } let hasSideEffects = 0 in class T_TEST_BIT_REG : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-22} = 0b011100; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{1-0} = Pd; } def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>; def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>; let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)), (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)), (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (trunc (i32 IntRegs:$Rs))), (S2_tstbit_i IntRegs:$Rs, 0)>; def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))), (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; } let hasSideEffects = 0 in class T_TEST_BITS_IMM MajOp, bit IsNeg> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6), "$Pd = "#MnOp#"($Rs, #$u6)", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<6> u6; let IClass = 0b1000; let Inst{27-24} = 0b0101; let Inst{23-22} = MajOp; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{13-8} = u6; let Inst{1-0} = Pd; } let hasSideEffects = 0 in class T_TEST_BITS_REG MajOp, bit IsNeg> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b0111; let Inst{23-22} = MajOp; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{1-0} = Pd; } def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>; def C2_bitsclr : T_TEST_BITS_REG<"bitsclr", 0b10, 0>; def C2_bitsset : T_TEST_BITS_REG<"bitsset", 0b01, 0>; let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)), (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>; def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)), (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; } let AddedComplexity = 10 in // Complexity greater than compare reg-reg. def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)), (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; //===----------------------------------------------------------------------===// // STYPE/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/PERM + //===----------------------------------------------------------------------===// def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add (i32 IntRegs:$b), 3))), (i32 8)), (i32 (zextloadi8 (add (i32 IntRegs:$b), 2)))), (i32 16)), (shl (i32 (zextloadi8 (add (i32 IntRegs:$b), 1))), (i32 8))), (zextloadi8 (i32 IntRegs:$b))), (A2_swiz (L2_loadri_io IntRegs:$b, 0))>; //===----------------------------------------------------------------------===// // XTYPE/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/PRED + //===----------------------------------------------------------------------===// // Predicate transfer. let hasSideEffects = 0, hasNewValue = 1 in def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps), "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Ps; let IClass = 0b1000; let Inst{27-24} = 0b1001; let Inst{22} = 0b1; let Inst{17-16} = Ps; let Inst{4-0} = Rd; } // Transfer general register to predicate. let hasSideEffects = 0 in def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs), "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; let IClass = 0b1000; let Inst{27-21} = 0b0101010; let Inst{20-16} = Rs; let Inst{1-0} = Pd; } let hasSideEffects = 0, isCodeGenOnly = 1 in def C2_pxfer_map: SInst<(outs PredRegs:$dst), (ins PredRegs:$src), "$dst = $src">; // Patterns for loads of i1: def: Pat<(i1 (load AddrFI:$fi)), (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>; def: Pat<(i1 (load (add (i32 IntRegs:$Rs), s32ImmPred:$Off))), (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>; def: Pat<(i1 (load (i32 IntRegs:$Rs))), (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>; def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>; def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_tfrrp (i32 $Rs)))>; defm: Storexm_pat; def: Storexm_simple_pat; //===----------------------------------------------------------------------===// // STYPE/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/SHIFT + //===----------------------------------------------------------------------===// class S_2OpInstImmMajOp, bits<3>MinOp, Operand Imm, list pattern = [], bit isRnd = 0> : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2), "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""), pattern> { bits<5> src1; bits<5> dst; let IClass = 0b1000; let Inst{27-24} = 0; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class S_2OpInstImmI6MinOp> : S_2OpInstImm { bits<6> src2; let Inst{13-8} = src2; } // Shift by immediate. def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>; def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>; def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>; // Shift left by small amount and add. let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0 in def S2_addasl_rrri: SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3), "$Rd = addasl($Rt, $Rs, #$u3)" , [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt), (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))], "", S_3op_tc_2_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; bits<3> u3; let IClass = 0b1100; let Inst{27-21} = 0b0100000; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7-5} = u3; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // STYPE/SHIFT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/SUPER + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/USER + //===----------------------------------------------------------------------===// def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>; let hasSideEffects = 1, isSoloAX = 1 in def Y2_barrier : SYSInst<(outs), (ins), "barrier", [(HexagonBARRIER)],"",ST_tc_st_SLOT0> { let Inst{31-28} = 0b1010; let Inst{27-21} = 0b1000000; } //===----------------------------------------------------------------------===// // SYSTEM/SUPER - //===----------------------------------------------------------------------===// // Generate frameindex addresses. let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1, isPseudo = 1, isCodeGenOnly = 1 in def TFR_FI: ALU32_ri<(outs IntRegs:$Rd), (ins FrameIndex:$fi), ".error", [(set (i32 IntRegs:$Rd), ADDRri:$fi)]>; //===----------------------------------------------------------------------===// // CRUSER - Type. //===----------------------------------------------------------------------===// // HW loop let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, hasSideEffects = 0 in class LOOP_iBase : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2), #mnemonic#"($offset, #$src2)", [], "" , CR_tc_3x_SLOT3> { bits<9> offset; bits<10> src2; let IClass = 0b0110; let Inst{27-22} = 0b100100; let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); let Inst{20-16} = src2{9-5}; let Inst{12-8} = offset{8-4}; let Inst{7-5} = src2{4-2}; let Inst{4-3} = offset{3-2}; let Inst{1-0} = src2{1-0}; } let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, hasSideEffects = 0 in class LOOP_rBase : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2), #mnemonic#"($offset, $src2)", [], "" ,CR_tc_3x_SLOT3> { bits<9> offset; bits<5> src2; let IClass = 0b0110; let Inst{27-22} = 0b000000; let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); let Inst{20-16} = src2; let Inst{12-8} = offset{8-4}; let Inst{4-3} = offset{3-2}; } multiclass LOOP_ri { def i : LOOP_iBase; def r : LOOP_rBase; let isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in { def iext: LOOP_iBase; def rext: LOOP_rBase; } } let Defs = [SA0, LC0, USR] in defm J2_loop0 : LOOP_ri<"loop0">; // Interestingly only loop0's appear to set usr.lpcfg let Defs = [SA1, LC1] in defm J2_loop1 : LOOP_ri<"loop1">; let isBranch = 1, isTerminator = 1, hasSideEffects = 0, Defs = [PC, LC0], Uses = [SA0, LC0] in { def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), ":endloop0", []>; } let isBranch = 1, isTerminator = 1, hasSideEffects = 0, Defs = [PC, LC1], Uses = [SA1, LC1] in { def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset), ":endloop1", []>; } // Pipelined loop instructions, sp[123]loop0 let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, isPredicateLate = 1 in class SPLOOP_iBase op> : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10), "p3 = sp"#SP#"loop0($r7_2, #$U10)" > { bits<9> r7_2; bits<10> U10; let IClass = 0b0110; let Inst{22-21} = op; let Inst{27-23} = 0b10011; let Inst{20-16} = U10{9-5}; let Inst{12-8} = r7_2{8-4}; let Inst{7-5} = U10{4-2}; let Inst{4-3} = r7_2{3-2}; let Inst{1-0} = U10{1-0}; } let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, isPredicateLate = 1 in class SPLOOP_rBase op> : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs), "p3 = sp"#SP#"loop0($r7_2, $Rs)" > { bits<9> r7_2; bits<5> Rs; let IClass = 0b0110; let Inst{22-21} = op; let Inst{27-23} = 0b00001; let Inst{20-16} = Rs; let Inst{12-8} = r7_2{8-4}; let Inst{4-3} = r7_2{3-2}; } multiclass SPLOOP_ri op> { def i : SPLOOP_iBase; def r : SPLOOP_rBase; } defm J2_ploop1s : SPLOOP_ri<"1", 0b01>; defm J2_ploop2s : SPLOOP_ri<"2", 0b10>; defm J2_ploop3s : SPLOOP_ri<"3", 0b11>; // if (Rs[!>=<]=#0) jump:[t/nt] let Defs = [PC], isPredicated = 1, isBranch = 1, hasSideEffects = 0, hasSideEffects = 0 in class J2_jump_0_Base op> : CRInst <(outs), (ins IntRegs:$Rs, brtarget:$r13_2), "if ($Rs"#compare#"#0) jump"#!if(isTak, ":t", ":nt")#" $r13_2" > { bits<5> Rs; bits<15> r13_2; let IClass = 0b0110; let Inst{27-24} = 0b0001; let Inst{23-22} = op; let Inst{12} = isTak; let Inst{21} = r13_2{14}; let Inst{20-16} = Rs; let Inst{11-1} = r13_2{12-2}; let Inst{13} = r13_2{13}; } multiclass J2_jump_compare_0 op> { def NAME : J2_jump_0_Base; def NAME#pt : J2_jump_0_Base; } defm J2_jumprz : J2_jump_compare_0<"!=", 0b00>; defm J2_jumprgtez : J2_jump_compare_0<">=", 0b01>; defm J2_jumprnz : J2_jump_compare_0<"==", 0b10>; defm J2_jumprltez : J2_jump_compare_0<"<=", 0b11>; // Transfer to/from Control/GPR Guest/GPR let hasSideEffects = 0 in class TFR_CR_RS_base : CRInst <(outs CTRC:$dst), (ins RC:$src), "$dst = $src", [], "", CR_tc_3x_SLOT3> { bits<5> dst; bits<5> src; let IClass = 0b0110; let Inst{27-25} = 0b001; let Inst{24} = isDouble; let Inst{23-21} = 0b001; let Inst{20-16} = src; let Inst{4-0} = dst; } def A2_tfrrcr : TFR_CR_RS_base; def A4_tfrpcp : TFR_CR_RS_base; def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>; def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>; let hasSideEffects = 0 in class TFR_RD_CR_base : CRInst <(outs RC:$dst), (ins CTRC:$src), "$dst = $src", [], "", CR_tc_3x_SLOT3> { bits<5> dst; bits<5> src; let IClass = 0b0110; let Inst{27-26} = 0b10; let Inst{25} = isSingle; let Inst{24-21} = 0b0000; let Inst{20-16} = src; let Inst{4-0} = dst; } let hasNewValue = 1, opNewValue = 0 in def A2_tfrcrr : TFR_RD_CR_base; def A4_tfrcpp : TFR_RD_CR_base; def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>; def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>; // Y4_trace: Send value to etm trace. let isSoloAX = 1, hasSideEffects = 0 in def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs), "trace($Rs)"> { bits<5> Rs; let IClass = 0b0110; let Inst{27-21} = 0b0010010; let Inst{20-16} = Rs; } // Support for generating global address. // Taken from X86InstrInfo.td. def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; // HI/LO Instructions let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class REG_IMMED MajOp, bit MinOp> : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst"#RegHalf#" = #"#Op#"($imm_value)", []> { bits<5> dst; bits<32> imm_value; let IClass = 0b0111; let Inst{27} = Rs; let Inst{26-24} = MajOp; let Inst{21} = MinOp; let Inst{20-16} = dst; let Inst{23-22} = !if (!eq(Op, "LO"), imm_value{15-14}, imm_value{31-30}); let Inst{13-0} = !if (!eq(Op, "LO"), imm_value{13-0}, imm_value{29-16}); } let isAsmParserOnly = 1 in { def LO : REG_IMMED<".l", "LO", 0b0, 0b001, 0b1>; def LO_H : REG_IMMED<".l", "HI", 0b0, 0b001, 0b1>; def HI : REG_IMMED<".h", "HI", 0b0, 0b010, 0b1>; def HI_L : REG_IMMED<".h", "LO", 0b0, 0b010, 0b1>; } let isMoveImm = 1, isCodeGenOnly = 1 in def LO_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.l = #LO($label@GOTREL)", []>; let isMoveImm = 1, isCodeGenOnly = 1 in def HI_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.h = #HI($label@GOTREL)", []>; let isReMaterializable = 1, isMoveImm = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def HI_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.h = #HI($global@GOT)", []>; let isReMaterializable = 1, isMoveImm = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def LO_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.l = #LO($global@GOT)", []>; let isReMaterializable = 1, isMoveImm = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def HI_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.h = #HI($global@GOTREL)", []>; let isReMaterializable = 1, isMoveImm = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def LO_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.l = #LO($global@GOTREL)", []>; // This pattern is incorrect. When we add small data, we should change // this pattern to use memw(#foo). // This is for sdata. let isMoveImm = 1, isAsmParserOnly = 1 in def CONST32 : CONSTLDInst<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set_jt : CONSTLDInst<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst = CONST32(#$jt)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tjumptable:$jt))]>; let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in def CONST32_Int_Real : CONSTLDInst<(outs IntRegs:$dst), (ins i32imm:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), imm:$global) ]>; // Map TLS addressses to a CONST32 instruction def: Pat<(HexagonCONST32 tglobaltlsaddr:$addr), (A2_tfrsi s16Ext:$addr)>; def: Pat<(HexagonCONST32 bbl:$label), (A2_tfrsi s16Ext:$label)>; let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), "$dst = CONST32($label)", [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in def CONST64_Int_Real : CONSTLDInst<(outs DoubleRegs:$dst), (ins i64imm:$global), "$dst = CONST64(#$global)", [(set (i64 DoubleRegs:$dst), imm:$global)]>; let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1, isCodeGenOnly = 1 in def TFR_PdTrue : SInst<(outs PredRegs:$dst), (ins), "", [(set (i1 PredRegs:$dst), 1)]>; let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1, isCodeGenOnly = 1 in def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)", [(set (i1 PredRegs:$dst), 0)]>; // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, // Optional Flag and Variable Arguments. // Its 1 Operand has pointer type. def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), ".error \"should not emit\" ", [(callseq_start timm:$amt)]>; let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), ".error \"should not emit\" ", [(callseq_end timm:$amt1, timm:$amt2)]>; // Call subroutine indirectly. let Defs = VolatileV3.Regs in def J2_callr : JUMPR_MISC_CALLR<0, 1>; // Indirect tail-call. let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, isTerminator = 1, isCodeGenOnly = 1 in def TCRETURNr : T_JMPr; // Direct tail-calls. let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, isTerminator = 1, isCodeGenOnly = 1 in def TCRETURNi : JInst<(outs), (ins calltarget:$dst), "", []>; //Tail calls. def: Pat<(HexagonTCRet tglobaladdr:$dst), (TCRETURNi tglobaladdr:$dst)>; def: Pat<(HexagonTCRet texternalsym:$dst), (TCRETURNi texternalsym:$dst)>; def: Pat<(HexagonTCRet (i32 IntRegs:$dst)), (TCRETURNr IntRegs:$dst)>; // Map from r0 = and(r1, 65535) to r0 = zxth(r1) def: Pat<(and (i32 IntRegs:$src1), 65535), (A2_zxth IntRegs:$src1)>; // Map from r0 = and(r1, 255) to r0 = zxtb(r1). def: Pat<(and (i32 IntRegs:$src1), 255), (A2_zxtb IntRegs:$src1)>; // Map Add(p1, true) to p1 = not(p1). // Add(p1, false) should never be produced, // if it does, it got to be mapped to NOOP. def: Pat<(add (i1 PredRegs:$src1), -1), (C2_not PredRegs:$src1)>; // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). def: Pat<(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s32ImmPred:$src3), (C2_muxii PredRegs:$src1, s32ImmPred:$src3, s8ImmPred:$src2)>; // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) // => r0 = C2_muxir(p0, r1, #i) def: Pat<(select (not (i1 PredRegs:$src1)), s32ImmPred:$src2, (i32 IntRegs:$src3)), (C2_muxir PredRegs:$src1, IntRegs:$src3, s32ImmPred:$src2)>; // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) // => r0 = C2_muxri (p0, #i, r1) def: Pat<(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s32ImmPred:$src3), (C2_muxri PredRegs:$src1, s32ImmPred:$src3, IntRegs:$src2)>; // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. def: Pat<(brcond (not (i1 PredRegs:$src1)), bb:$offset), (J2_jumpf PredRegs:$src1, bb:$offset)>; // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo). def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), (A2_sxtw (LoReg DoubleRegs:$src1))>; // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)). def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>; // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)). def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>; // We want to prevent emitting pnot's as much as possible. // Map brcond with an unsupported setcc to a J2_jumpf. def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), bb:$offset), (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), (J2_jumpf PredRegs:$src1, bb:$offset)>; def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), (J2_jumpt PredRegs:$src1, bb:$offset)>; // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1) def: Pat<(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset), (J2_jumpf (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. def: Pat<(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src3)), (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2), (HiReg DoubleRegs:$src3)), (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2), (LoReg DoubleRegs:$src3)))>; // Map from a 1-bit select to logical ops. // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). def: Pat<(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)), (C2_or (C2_and PredRegs:$src1, PredRegs:$src2), (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>; // Map for truncating from 64 immediates to 32 bit immediates. def: Pat<(i32 (trunc (i64 DoubleRegs:$src))), (LoReg DoubleRegs:$src)>; // Map for truncating from i64 immediates to i1 bit immediates. def: Pat<(i1 (trunc (i64 DoubleRegs:$src))), (C2_tfrrp (LoReg DoubleRegs:$src))>; // rs <= rt -> !(rs > rt). let AddedComplexity = 30 in def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)), (C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>; // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Rss <= Rtt -> !(Rss > Rtt). def: Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>; // Map cmpne -> cmpeq. // Hexagon_TODO: We should improve on this. // rs != rt -> !(rs == rt). let AddedComplexity = 30 in def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)), (C2_not (C2_cmpeqi IntRegs:$src1, s32ImmPred:$src2))>; // Convert setne back to xor for hexagon since we compute w/ pred registers. def: Pat<(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), (C2_xor PredRegs:$src1, PredRegs:$src2)>; // Map cmpne(Rss) -> !cmpew(Rss). // rs != rt -> !(rs == rt). def: Pat<(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>; // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1) let AddedComplexity = 30 in def: Pat<(i1 (setge (i32 IntRegs:$src1), s32ImmPred:$src2)), (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>; // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). // rss >= rtt -> !(rtt > rss). def: Pat<(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>; // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1). // rs < rt -> !(rs >= rt). let AddedComplexity = 30 in def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)), (C2_not (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2)))>; // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs) def: Pat<(i1 (setuge (i32 IntRegs:$src1), 0)), (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>; // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1) def: Pat<(i1 (setuge (i32 IntRegs:$src1), u32ImmPred:$src2)), (C2_cmpgtui IntRegs:$src1, (DEC_CONST_UNSIGNED u32ImmPred:$src2))>; // Generate cmpgtu(Rs, #u9) def: Pat<(i1 (setugt (i32 IntRegs:$src1), u32ImmPred:$src2)), (C2_cmpgtui IntRegs:$src1, u32ImmPred:$src2)>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def: Pat<(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>; // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). // Map from (Rs <= Rt) -> !(Rs > Rt). def: Pat<(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>; // Sign extends. // i1 -> i32 def: Pat<(i32 (sext (i1 PredRegs:$src1))), (C2_muxii PredRegs:$src1, -1, 0)>; // i1 -> i64 def: Pat<(i64 (sext (i1 PredRegs:$src1))), (A2_combinew (A2_tfrsi -1), (C2_muxii PredRegs:$src1, -1, 0))>; // Convert sign-extended load back to load and sign extend. // i32 -> i64 def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), (i64 (A2_sxtw (L2_loadri_io AddrFI:$src1, 0)))>; // Zero extends. // i1 -> i32 def: Pat<(i32 (zext (i1 PredRegs:$src1))), (C2_muxii PredRegs:$src1, 1, 0)>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def: Pat<(i32 (anyext (i1 PredRegs:$src1))), (C2_muxii PredRegs:$src1, 1, 0)>; // Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) def: Pat<(i64 (anyext (i1 PredRegs:$src1))), (A2_sxtw (C2_muxii PredRegs:$src1, 1, 0))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (L2_loadri_io AddrFI:$srcLow, 0)))>; // Multiply 64-bit unsigned and use upper result. def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (A2_addp (M2_dpmpyuu_acc_s0 (S2_lsr_i_p (A2_addp (M2_dpmpyuu_acc_s0 (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (LoReg $src2)), 32), (HiReg $src1), (LoReg $src2)), (A2_combinew (A2_tfrsi 0), (LoReg (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2))))), 32), (HiReg $src1), (HiReg $src2)), (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2)), 32) )>; // Hexagon specific ISD nodes. def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", SDTHexagonADJDYNALLOC>; def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; // Needed to tag these instructions for stack layout. let isCodeGenOnly = 1, usesCustomInserter = 1 in def ADJDYNALLOC : T_Addri; def: Pat<(Hexagon_ADJDYNALLOC I32:$Rs, s16ImmPred:$s16), (ADJDYNALLOC I32:$Rs, imm:$s16)>; let isCodeGenOnly = 1 in def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", [(set (i32 IntRegs:$dst), (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; let AddedComplexity = 100 in def: Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), (i32 IntRegs:$src1)>; def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>; def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>; def: Pat<(HexagonJT tjumptable:$dst), (CONST32_set_jt tjumptable:$dst)>; def: Pat<(HexagonCP tconstpool :$dst), (CONST32_set_jt tconstpool:$dst)>; // XTYPE/SHIFT // //===----------------------------------------------------------------------===// // Template Class // Shift by immediate/register and accumulate/logical //===----------------------------------------------------------------------===// // Rx[+-&|]=asr(Rs,#u5) // Rx[+-&|^]=lsr(Rs,#u5) // Rx[+-&|^]=asl(Rs,#u5) let hasNewValue = 1, opNewValue = 0 in class T_shift_imm_acc_r majOp, bits<2> minOp> : SInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5), "$Rx "#opc2#opc1#"($Rs, #$u5)", [(set (i32 IntRegs:$Rx), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))], "$src1 = $Rx", S_2op_tc_2_SLOT23> { bits<5> Rx; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = 0b1110; let Inst{23-22} = majOp{2-1}; let Inst{13} = 0b0; let Inst{7} = majOp{0}; let Inst{6-5} = minOp; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = u5; } // Rx[+-&|]=asr(Rs,Rt) // Rx[+-&|^]=lsr(Rs,Rt) // Rx[+-&|^]=asl(Rs,Rt) let hasNewValue = 1, opNewValue = 0 in class T_shift_reg_acc_r majOp, bits<2> minOp> : SInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt), "$Rx "#opc2#opc1#"($Rs, $Rt)", [(set (i32 IntRegs:$Rx), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))], "$src1 = $Rx", S_3op_tc_2_SLOT23 > { bits<5> Rx; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b1100; let Inst{23-22} = majOp; let Inst{7-6} = minOp; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } // Rxx[+-&|]=asr(Rss,#u6) // Rxx[+-&|^]=lsr(Rss,#u6) // Rxx[+-&|^]=asl(Rss,#u6) class T_shift_imm_acc_p majOp, bits<2> minOp> : SInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6), "$Rxx "#opc2#opc1#"($Rss, #$u6)", [(set (i64 DoubleRegs:$Rxx), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))], "$src1 = $Rxx", S_2op_tc_2_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<6> u6; let IClass = 0b1000; let Inst{27-24} = 0b0010; let Inst{23-22} = majOp{2-1}; let Inst{7} = majOp{0}; let Inst{6-5} = minOp; let Inst{4-0} = Rxx; let Inst{20-16} = Rss; let Inst{13-8} = u6; } // Rxx[+-&|]=asr(Rss,Rt) // Rxx[+-&|^]=lsr(Rss,Rt) // Rxx[+-&|^]=asl(Rss,Rt) // Rxx[+-&|^]=lsl(Rss,Rt) class T_shift_reg_acc_p majOp, bits<2> minOp> : SInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt), "$Rxx "#opc2#opc1#"($Rss, $Rt)", [(set (i64 DoubleRegs:$Rxx), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))], "$src1 = $Rxx", S_3op_tc_2_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b1011; let Inst{23-21} = majOp; let Inst{20-16} = Rss; let Inst{12-8} = Rt; let Inst{7-6} = minOp; let Inst{4-0} = Rxx; } //===----------------------------------------------------------------------===// // Multi-class for the shift instructions with logical/arithmetic operators. //===----------------------------------------------------------------------===// multiclass xtype_imm_base majOp, bits<2> minOp > { def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1, OpNode2, majOp, minOp >; def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1, OpNode2, majOp, minOp >; } multiclass xtype_imm_accminOp> { let AddedComplexity = 100 in defm _acc : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>; defm _nac : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>; defm _and : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>; defm _or : xtype_imm_base< opc1, "|= ", OpNode, or, 0b011, minOp>; } multiclass xtype_xor_imm_accminOp> { let AddedComplexity = 100 in defm _xacc : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>; } defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>; defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>, xtype_xor_imm_acc<"lsr", srl, 0b01>; defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>, xtype_xor_imm_acc<"asl", shl, 0b10>; multiclass xtype_reg_acc_rminOp> { let AddedComplexity = 100 in def _acc : T_shift_reg_acc_r ; defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>; defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>; defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>; //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_1 MajOp, bits<3> MinOp, bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0> : SInst <(outs RC:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "") #!if(hasShift,":>>1","") #!if(isSat, ":sat", ""), [], "", S_3op_tc_2_SLOT23 > { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1100; let Inst{27-24} = 0b0001; let Inst{23-22} = MajOp; let Inst{20-16} = !if (SwapOps, src2, src1); let Inst{12-8} = !if (SwapOps, src1, src2); let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S3op_64 MajOp, bits<3> MinOp, bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0 > : T_S3op_1 ; let Itinerary = S_3op_tc_1_SLOT23 in { def S2_shuffeb : T_S3op_64 < "shuffeb", 0b00, 0b010, 0>; def S2_shuffeh : T_S3op_64 < "shuffeh", 0b00, 0b110, 0>; def S2_shuffob : T_S3op_64 < "shuffob", 0b00, 0b100, 1>; def S2_shuffoh : T_S3op_64 < "shuffoh", 0b10, 0b000, 1>; def S2_vtrunewh : T_S3op_64 < "vtrunewh", 0b10, 0b010, 0>; def S2_vtrunowh : T_S3op_64 < "vtrunowh", 0b10, 0b100, 0>; } def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>; let hasSideEffects = 0 in class T_S3op_2 MajOp, bit SwapOps> : SInst < (outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu), "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu)", [], "", S_3op_tc_1_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; bits<2> Pu; let IClass = 0b1100; let Inst{27-24} = 0b0010; let Inst{23-21} = MajOp; let Inst{20-16} = !if (SwapOps, Rtt, Rss); let Inst{12-8} = !if (SwapOps, Rss, Rtt); let Inst{6-5} = Pu; let Inst{4-0} = Rdd; } def S2_valignrb : T_S3op_2 < "valignb", 0b000, 1>; def S2_vsplicerb : T_S3op_2 < "vspliceb", 0b100, 0>; //===----------------------------------------------------------------------===// // Template class used by vector shift, vector rotate, vector neg, // 32-bit shift, 64-bit shifts, etc. //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_3 MajOp, bits<2> MinOp, bit isSat = 0, list pattern = [] > : SInst <(outs RC:$dst), (ins RC:$src1, IntRegs:$src2), "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""), pattern, "", S_3op_tc_1_SLOT23> { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1100; let Inst{27-24} = !if(!eq(!cast(RC), "IntRegs"), 0b0110, 0b0011); let Inst{23-22} = MajOp; let Inst{20-16} = src1; let Inst{12-8} = src2; let Inst{7-6} = MinOp; let Inst{4-0} = dst; } let hasNewValue = 1 in class T_S3op_shift32 MinOp> : T_S3op_3 ; let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in class T_S3op_shift32_Sat MinOp> : T_S3op_3 ; class T_S3op_shift64 MinOp> : T_S3op_3 ; class T_S3op_shiftVect MajOp, bits<2> MinOp> : T_S3op_3 ; // Shift by register // Rdd=[asr|lsr|asl|lsl](Rss,Rt) def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>; def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>; def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>; def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>; // Rd=[asr|lsr|asl|lsl](Rs,Rt) def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>; def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>; def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>; def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>; // Shift by register with saturation // Rd=asr(Rs,Rt):sat // Rd=asl(Rs,Rt):sat let Defs = [USR_OVF] in { def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>; def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>; } let hasNewValue = 1, hasSideEffects = 0 in class T_S3op_8 MinOp, bit isSat, bit isRnd, bit hasShift, bit hasSplat = 0> : SInst < (outs IntRegs:$Rd), (ins DoubleRegs:$Rss, IntRegs:$Rt), "$Rd = "#opc#"($Rss, $Rt"#!if(hasSplat, "*", "")#")" #!if(hasShift, ":<<1", "") #!if(isRnd, ":rnd", "") #!if(isSat, ":sat", ""), [], "", S_3op_tc_1_SLOT23 > { bits<5> Rd; bits<5> Rss; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b0101; let Inst{20-16} = Rss; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } def S2_asr_r_svw_trun : T_S3op_8<"vasrw", 0b010, 0, 0, 0>; let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in def S2_vcrotate : T_S3op_shiftVect < "vcrotate", 0b11, 0b00>; let hasSideEffects = 0 in class T_S3op_7 : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, u3Imm:$u3), "$Rdd = "#mnemonic#"($Rss, $Rtt, #$u3)" , [], "", S_3op_tc_1_SLOT23 > { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; bits<3> u3; let IClass = 0b1100; let Inst{27-24} = 0b0000; let Inst{23} = MajOp; let Inst{20-16} = !if(MajOp, Rss, Rtt); let Inst{12-8} = !if(MajOp, Rtt, Rss); let Inst{7-5} = u3; let Inst{4-0} = Rdd; } def S2_valignib : T_S3op_7 < "valignb", 0>; def S2_vspliceib : T_S3op_7 < "vspliceb", 1>; //===----------------------------------------------------------------------===// // Template class for 'insert bitfield' instructions //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_insert : SInst <(outs RC:$dst), (ins RC:$src1, RC:$src2, DoubleRegs:$src3), "$dst = "#mnemonic#"($src2, $src3)" , [], "$src1 = $dst", S_3op_tc_1_SLOT23 > { bits<5> dst; bits<5> src2; bits<5> src3; let IClass = 0b1100; let Inst{27-26} = 0b10; let Inst{25-24} = !if(!eq(!cast(RC), "IntRegs"), 0b00, 0b10); let Inst{23} = 0b0; let Inst{20-16} = src2; let Inst{12-8} = src3; let Inst{4-0} = dst; } let hasSideEffects = 0 in class T_S2op_insert RegTyBits, RegisterClass RC, Operand ImmOp> : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3), "$dst = insert($src1, #$src2, #$src3)", [], "$dst2 = $dst", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src1; bits<6> src2; bits<6> src3; bit bit23; bit bit13; string ImmOpStr = !cast(ImmOp); let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0); let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23} = bit23; let Inst{22-21} = src3{4-3}; let Inst{20-16} = src1; let Inst{13} = bit13; let Inst{12-8} = src2{4-0}; let Inst{7-5} = src3{2-0}; let Inst{4-0} = dst; } // Rx=insert(Rs,Rtt) // Rx=insert(Rs,#u5,#U5) let hasNewValue = 1 in { def S2_insert_rp : T_S3op_insert <"insert", IntRegs>; def S2_insert : T_S2op_insert <0b1111, IntRegs, u5Imm>; } // Rxx=insert(Rss,Rtt) // Rxx=insert(Rss,#u6,#U6) def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>; def S2_insertp : T_S2op_insert <0b0011, DoubleRegs, u6Imm>; def SDTHexagonINSERT_ri : SDTypeProfile<1, 4, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; def SDTHexagonINSERT_rd : SDTypeProfile<1, 4, [SDTCisVT<0, i64>, SDTCisVT<1, i64>, SDTCisVT<2, i64>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; def SDTHexagonINSERT_riv : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i64>]>; def SDTHexagonINSERT_rdv : SDTypeProfile<1, 3, [SDTCisVT<0, i64>, SDTCisVT<1, i64>, SDTCisVT<2, i64>, SDTCisVT<3, i64>]>; def HexagonINSERT_ri : SDNode<"HexagonISD::INSERT_ri", SDTHexagonINSERT_ri>; def HexagonINSERT_rd : SDNode<"HexagonISD::INSERT_rd", SDTHexagonINSERT_rd>; def HexagonINSERT_riv: SDNode<"HexagonISD::INSERT_riv", SDTHexagonINSERT_riv>; def HexagonINSERT_rdv: SDNode<"HexagonISD::INSERT_rdv", SDTHexagonINSERT_rdv>; def: Pat<(HexagonINSERT_ri I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2), (S2_insert I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2)>; def: Pat<(HexagonINSERT_rd I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2), (S2_insertp I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2)>; def: Pat<(HexagonINSERT_riv I32:$Rs, I32:$Rt, I64:$Ru), (S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>; def: Pat<(HexagonINSERT_rdv I64:$Rs, I64:$Rt, I64:$Ru), (S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>; //===----------------------------------------------------------------------===// // Template class for 'extract bitfield' instructions //===----------------------------------------------------------------------===// let hasNewValue = 1, hasSideEffects = 0 in class T_S3op_extract MinOp> : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt), "$Rd = "#mnemonic#"($Rs, $Rtt)", [], "", S_3op_tc_2_SLOT23 > { bits<5> Rd; bits<5> Rs; bits<5> Rtt; let IClass = 0b1100; let Inst{27-22} = 0b100100; let Inst{20-16} = Rs; let Inst{12-8} = Rtt; let Inst{7-6} = MinOp; let Inst{4-0} = Rd; } let hasSideEffects = 0 in class T_S2op_extract RegTyBits, RegisterClass RC, Operand ImmOp> : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3), "$dst = "#mnemonic#"($src1, #$src2, #$src3)", [], "", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src1; bits<6> src2; bits<6> src3; bit bit23; bit bit13; string ImmOpStr = !cast(ImmOp); let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, !if (!eq(mnemonic, "extractu"), 0, 1)); let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23} = bit23; let Inst{22-21} = src3{4-3}; let Inst{20-16} = src1; let Inst{13} = bit13; let Inst{12-8} = src2{4-0}; let Inst{7-5} = src3{2-0}; let Inst{4-0} = dst; } // Extract bitfield // Rdd=extractu(Rss,Rtt) // Rdd=extractu(Rss,#u6,#U6) def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>; def S2_extractup : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>; // Rd=extractu(Rs,Rtt) // Rd=extractu(Rs,#u5,#U5) let hasNewValue = 1 in { def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>; def S2_extractu : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>; } def SDTHexagonEXTRACTU_ri : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def SDTHexagonEXTRACTU_rd : SDTypeProfile<1, 3, [SDTCisVT<0, i64>, SDTCisVT<1, i64>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def SDTHexagonEXTRACTU_riv : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i64>]>; def SDTHexagonEXTRACTU_rdv : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i64>, SDTCisVT<2, i64>]>; def HexagonEXTRACTU_ri : SDNode<"HexagonISD::EXTRACTU_ri", SDTHexagonEXTRACTU_ri>; def HexagonEXTRACTU_rd : SDNode<"HexagonISD::EXTRACTU_rd", SDTHexagonEXTRACTU_rd>; def HexagonEXTRACTU_riv: SDNode<"HexagonISD::EXTRACTU_riv", SDTHexagonEXTRACTU_riv>; def HexagonEXTRACTU_rdv: SDNode<"HexagonISD::EXTRACTU_rdv", SDTHexagonEXTRACTU_rdv>; def: Pat<(HexagonEXTRACTU_ri I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3), (S2_extractu I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3)>; def: Pat<(HexagonEXTRACTU_rd I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3), (S2_extractup I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3)>; def: Pat<(HexagonEXTRACTU_riv I32:$src1, I64:$src2), (S2_extractu_rp I32:$src1, I64:$src2)>; def: Pat<(HexagonEXTRACTU_rdv I64:$src1, I64:$src2), (S2_extractup_rp I64:$src1, I64:$src2)>; // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) def: Pat<(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), (M2_mpysin IntRegs:$src1, u8ImmPred:$src2)>; //===----------------------------------------------------------------------===// // :raw for of tableindx[bdhw] insns //===----------------------------------------------------------------------===// let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class tableidxRawMinOp> : SInst <(outs IntRegs:$Rx), (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6), "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw", [], "$Rx = $_dst_" > { bits<5> Rx; bits<5> Rs; bits<4> u4; bits<6> S6; let IClass = 0b1000; let Inst{27-24} = 0b0111; let Inst{23-22} = MinOp; let Inst{21} = u4{3}; let Inst{20-16} = Rs; let Inst{13-8} = S6; let Inst{7-5} = u4{2-0}; let Inst{4-0} = Rx; } def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>; def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>; def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>; def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>; //===----------------------------------------------------------------------===// // Template class for 'table index' instructions which are assembler mapped // to their :raw format. //===----------------------------------------------------------------------===// let isPseudo = 1 in class tableidx_goodsyntax : SInst <(outs IntRegs:$Rx), (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, u5Imm:$u5), "$Rx = "#mnemonic#"($Rs, #$u4, #$u5)", [], "$Rx = $_dst_" >; def S2_tableidxb_goodsyntax : tableidx_goodsyntax<"tableidxb">; def S2_tableidxh_goodsyntax : tableidx_goodsyntax<"tableidxh">; def S2_tableidxw_goodsyntax : tableidx_goodsyntax<"tableidxw">; def S2_tableidxd_goodsyntax : tableidx_goodsyntax<"tableidxd">; //===----------------------------------------------------------------------===// // V3 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV3.td" //===----------------------------------------------------------------------===// // V3 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V4 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV4.td" //===----------------------------------------------------------------------===// // V4 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V5 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV5.td" //===----------------------------------------------------------------------===// // V5 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/64/Vector + //===----------------------------------------------------------------------===/// include "HexagonInstrInfoVector.td"