//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Pass to verify generated machine code. The following is checked: // // Operand counts: All explicit operands must be present. // // Register classes: All physical and virtual register operands must be // compatible with the register class required by the instruction descriptor. // // Register live intervals: Registers must be defined only once, and must be // defined before use. // // The machine code verifier is enabled from LLVMTargetMachine.cpp with the // command-line option -verify-machineinstrs, or by defining the environment // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive // the verifier errors. //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; namespace { struct VISIBILITY_HIDDEN MachineVerifier : public MachineFunctionPass { static char ID; // Pass ID, replacement for typeid MachineVerifier(bool allowDoubleDefs = false) : MachineFunctionPass(&ID), allowVirtDoubleDefs(allowDoubleDefs), allowPhysDoubleDefs(allowDoubleDefs), OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) {} void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF); const bool allowVirtDoubleDefs; const bool allowPhysDoubleDefs; const char *const OutFileName; std::ostream *OS; const MachineFunction *MF; const TargetMachine *TM; const TargetRegisterInfo *TRI; const MachineRegisterInfo *MRI; unsigned foundErrors; typedef SmallVector RegVector; typedef DenseSet RegSet; typedef DenseMap RegMap; BitVector regsReserved; RegSet regsLive; RegVector regsDefined, regsDead, regsKilled; RegSet regsLiveInButUnused; // Add Reg and any sub-registers to RV void addRegWithSubRegs(RegVector &RV, unsigned Reg) { RV.push_back(Reg); if (TargetRegisterInfo::isPhysicalRegister(Reg)) for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) RV.push_back(*R); } struct BBInfo { // Is this MBB reachable from the MF entry point? bool reachable; // Vregs that must be live in because they are used without being // defined. Map value is the user. RegMap vregsLiveIn; // Vregs that must be dead in because they are defined without being // killed first. Map value is the defining instruction. RegMap vregsDeadIn; // Regs killed in MBB. They may be defined again, and will then be in both // regsKilled and regsLiveOut. RegSet regsKilled; // Regs defined in MBB and live out. Note that vregs passing through may // be live out without being mentioned here. RegSet regsLiveOut; // Vregs that pass through MBB untouched. This set is disjoint from // regsKilled and regsLiveOut. RegSet vregsPassed; BBInfo() : reachable(false) {} // Add register to vregsPassed if it belongs there. Return true if // anything changed. bool addPassed(unsigned Reg) { if (!TargetRegisterInfo::isVirtualRegister(Reg)) return false; if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) return false; return vregsPassed.insert(Reg).second; } // Same for a full set. bool addPassed(const RegSet &RS) { bool changed = false; for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) if (addPassed(*I)) changed = true; return changed; } // Live-out registers are either in regsLiveOut or vregsPassed. bool isLiveOut(unsigned Reg) const { return regsLiveOut.count(Reg) || vregsPassed.count(Reg); } }; // Extra register info per MBB. DenseMap MBBInfoMap; bool isReserved(unsigned Reg) { return Reg < regsReserved.size() && regsReserved.test(Reg); } void visitMachineFunctionBefore(); void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); void visitMachineInstrBefore(const MachineInstr *MI); void visitMachineOperand(const MachineOperand *MO, unsigned MONum); void visitMachineInstrAfter(const MachineInstr *MI); void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); void visitMachineFunctionAfter(); void report(const char *msg, const MachineFunction *MF); void report(const char *msg, const MachineBasicBlock *MBB); void report(const char *msg, const MachineInstr *MI); void report(const char *msg, const MachineOperand *MO, unsigned MONum); void markReachable(const MachineBasicBlock *MBB); void calcMaxRegsPassed(); void calcMinRegsPassed(); void checkPHIOps(const MachineBasicBlock *MBB); }; } char MachineVerifier::ID = 0; static RegisterPass MachineVer("machineverifier", "Verify generated machine code"); static const PassInfo *const MachineVerifyID = &MachineVer; FunctionPass * llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) { return new MachineVerifier(allowPhysDoubleDefs); } bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { std::ofstream OutFile; if (OutFileName) { OutFile.open(OutFileName, std::ios::out | std::ios::app); OS = &OutFile; } else { OS = cerr.stream(); } foundErrors = 0; this->MF = &MF; TM = &MF.getTarget(); TRI = TM->getRegisterInfo(); MRI = &MF.getRegInfo(); visitMachineFunctionBefore(); for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); MFI!=MFE; ++MFI) { visitMachineBasicBlockBefore(MFI); for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { visitMachineInstrBefore(MBBI); for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) visitMachineOperand(&MBBI->getOperand(I), I); visitMachineInstrAfter(MBBI); } visitMachineBasicBlockAfter(MFI); } visitMachineFunctionAfter(); if (OutFileName) OutFile.close(); else if (foundErrors) { std::string msg; raw_string_ostream Msg(msg); Msg << "Found " << foundErrors << " machine code errors."; llvm_report_error(Msg.str()); } // Clean up. regsLive.clear(); regsDefined.clear(); regsDead.clear(); regsKilled.clear(); regsLiveInButUnused.clear(); MBBInfoMap.clear(); return false; // no changes } void MachineVerifier::report(const char *msg, const MachineFunction *MF) { assert(MF); *OS << "\n"; if (!foundErrors++) MF->print(OS); *OS << "*** Bad machine code: " << msg << " ***\n" << "- function: " << MF->getFunction()->getNameStr() << "\n"; } void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { assert(MBB); report(msg, MBB->getParent()); *OS << "- basic block: " << MBB->getBasicBlock()->getNameStr() << " " << (void*)MBB << " (#" << MBB->getNumber() << ")\n"; } void MachineVerifier::report(const char *msg, const MachineInstr *MI) { assert(MI); report(msg, MI->getParent()); *OS << "- instruction: "; MI->print(OS, TM); } void MachineVerifier::report(const char *msg, const MachineOperand *MO, unsigned MONum) { assert(MO); report(msg, MO->getParent()); *OS << "- operand " << MONum << ": "; MO->print(*OS, TM); *OS << "\n"; } void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { BBInfo &MInfo = MBBInfoMap[MBB]; if (!MInfo.reachable) { MInfo.reachable = true; for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), SuE = MBB->succ_end(); SuI != SuE; ++SuI) markReachable(*SuI); } } void MachineVerifier::visitMachineFunctionBefore() { regsReserved = TRI->getReservedRegs(*MF); // A sub-register of a reserved register is also reserved for (int Reg = regsReserved.find_first(); Reg>=0; Reg = regsReserved.find_next(Reg)) { for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { // FIXME: This should probably be: // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); regsReserved.set(*Sub); } } markReachable(&MF->front()); } void MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { regsLive.clear(); for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) { if (!TargetRegisterInfo::isPhysicalRegister(*I)) { report("MBB live-in list contains non-physical register", MBB); continue; } regsLive.insert(*I); for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) regsLive.insert(*R); } regsLiveInButUnused = regsLive; regsKilled.clear(); regsDefined.clear(); } void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { const TargetInstrDesc &TI = MI->getDesc(); if (MI->getNumExplicitOperands() < TI.getNumOperands()) { report("Too few operands", MI); *OS << TI.getNumOperands() << " operands expected, but " << MI->getNumExplicitOperands() << " given.\n"; } if (!TI.isVariadic()) { if (MI->getNumExplicitOperands() > TI.getNumOperands()) { report("Too many operands", MI); *OS << TI.getNumOperands() << " operands expected, but " << MI->getNumExplicitOperands() << " given.\n"; } } } void MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { const MachineInstr *MI = MO->getParent(); const TargetInstrDesc &TI = MI->getDesc(); // The first TI.NumDefs operands must be explicit register defines if (MONum < TI.getNumDefs()) { if (!MO->isReg()) report("Explicit definition must be a register", MO, MONum); else if (!MO->isDef()) report("Explicit definition marked as use", MO, MONum); else if (MO->isImplicit()) report("Explicit definition marked as implicit", MO, MONum); } switch (MO->getType()) { case MachineOperand::MO_Register: { const unsigned Reg = MO->getReg(); if (!Reg) return; // Check Live Variables. if (MO->isUndef()) { // An doesn't refer to any register, so just skip it. } else if (MO->isUse()) { regsLiveInButUnused.erase(Reg); if (MO->isKill()) { addRegWithSubRegs(regsKilled, Reg); // Tied operands on two-address instuctions MUST NOT have a flag. if (MI->isRegTiedToDefOperand(MONum)) report("Illegal kill flag on two-address instruction operand", MO, MONum); } else { // TwoAddress instr modifying a reg is treated as kill+def. unsigned defIdx; if (MI->isRegTiedToDefOperand(MONum, &defIdx) && MI->getOperand(defIdx).getReg() == Reg) addRegWithSubRegs(regsKilled, Reg); } // Use of a dead register. if (!regsLive.count(Reg)) { if (TargetRegisterInfo::isPhysicalRegister(Reg)) { // Reserved registers may be used even when 'dead'. if (!isReserved(Reg)) report("Using an undefined physical register", MO, MONum); } else { BBInfo &MInfo = MBBInfoMap[MI->getParent()]; // We don't know which virtual registers are live in, so only complain // if vreg was killed in this MBB. Otherwise keep track of vregs that // must be live in. PHI instructions are handled separately. if (MInfo.regsKilled.count(Reg)) report("Using a killed virtual register", MO, MONum); else if (MI->getOpcode() != TargetInstrInfo::PHI) MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); } } } else { assert(MO->isDef()); // Register defined. // TODO: verify that earlyclobber ops are not used. if (MO->isDead()) addRegWithSubRegs(regsDead, Reg); else addRegWithSubRegs(regsDefined, Reg); } // Check register classes. if (MONum < TI.getNumOperands() && !MO->isImplicit()) { const TargetOperandInfo &TOI = TI.OpInfo[MONum]; unsigned SubIdx = MO->getSubReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { unsigned sr = Reg; if (SubIdx) { unsigned s = TRI->getSubReg(Reg, SubIdx); if (!s) { report("Invalid subregister index for physical register", MO, MONum); return; } sr = s; } if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { if (!DRC->contains(sr)) { report("Illegal physical register for instruction", MO, MONum); *OS << TRI->getName(sr) << " is not a " << DRC->getName() << " register.\n"; } } } else { // Virtual register. const TargetRegisterClass *RC = MRI->getRegClass(Reg); if (SubIdx) { if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) { report("Invalid subregister index for virtual register", MO, MONum); return; } RC = *(RC->subregclasses_begin()+SubIdx); } if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { if (RC != DRC && !RC->hasSuperClass(DRC)) { report("Illegal virtual register for instruction", MO, MONum); *OS << "Expected a " << DRC->getName() << " register, but got a " << RC->getName() << " register\n"; } } } } break; } // Can PHI instrs refer to MBBs not in the CFG? X86 and ARM do. // case MachineOperand::MO_MachineBasicBlock: // if (MI->getOpcode() == TargetInstrInfo::PHI) { // if (!MO->getMBB()->isSuccessor(MI->getParent())) // report("PHI operand is not in the CFG", MO, MONum); // } // break; default: break; } } void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { BBInfo &MInfo = MBBInfoMap[MI->getParent()]; set_union(MInfo.regsKilled, regsKilled); set_subtract(regsLive, regsKilled); regsKilled.clear(); // Verify that both and operands refer to dead registers. RegVector defs(regsDefined); defs.append(regsDead.begin(), regsDead.end()); for (RegVector::const_iterator I = defs.begin(), E = defs.end(); I != E; ++I) { if (regsLive.count(*I)) { if (TargetRegisterInfo::isPhysicalRegister(*I)) { if (!allowPhysDoubleDefs && !isReserved(*I) && !regsLiveInButUnused.count(*I)) { report("Redefining a live physical register", MI); *OS << "Register " << TRI->getName(*I) << " was defined but already live.\n"; } } else { if (!allowVirtDoubleDefs) { report("Redefining a live virtual register", MI); *OS << "Virtual register %reg" << *I << " was defined but already live.\n"; } } } else if (TargetRegisterInfo::isVirtualRegister(*I) && !MInfo.regsKilled.count(*I)) { // Virtual register defined without being killed first must be dead on // entry. MInfo.vregsDeadIn.insert(std::make_pair(*I, MI)); } } set_subtract(regsLive, regsDead); regsDead.clear(); set_union(regsLive, regsDefined); regsDefined.clear(); } void MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { MBBInfoMap[MBB].regsLiveOut = regsLive; regsLive.clear(); } // Calculate the largest possible vregsPassed sets. These are the registers that // can pass through an MBB live, but may not be live every time. It is assumed // that all vregsPassed sets are empty before the call. void MachineVerifier::calcMaxRegsPassed() { // First push live-out regs to successors' vregsPassed. Remember the MBBs that // have any vregsPassed. DenseSet todo; for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { const MachineBasicBlock &MBB(*MFI); BBInfo &MInfo = MBBInfoMap[&MBB]; if (!MInfo.reachable) continue; for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), SuE = MBB.succ_end(); SuI != SuE; ++SuI) { BBInfo &SInfo = MBBInfoMap[*SuI]; if (SInfo.addPassed(MInfo.regsLiveOut)) todo.insert(*SuI); } } // Iteratively push vregsPassed to successors. This will converge to the same // final state regardless of DenseSet iteration order. while (!todo.empty()) { const MachineBasicBlock *MBB = *todo.begin(); todo.erase(MBB); BBInfo &MInfo = MBBInfoMap[MBB]; for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), SuE = MBB->succ_end(); SuI != SuE; ++SuI) { if (*SuI == MBB) continue; BBInfo &SInfo = MBBInfoMap[*SuI]; if (SInfo.addPassed(MInfo.vregsPassed)) todo.insert(*SuI); } } } // Calculate the minimum vregsPassed set. These are the registers that always // pass live through an MBB. The calculation assumes that calcMaxRegsPassed has // been called earlier. void MachineVerifier::calcMinRegsPassed() { DenseSet todo; for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) todo.insert(MFI); while (!todo.empty()) { const MachineBasicBlock *MBB = *todo.begin(); todo.erase(MBB); BBInfo &MInfo = MBBInfoMap[MBB]; // Remove entries from vRegsPassed that are not live out from all // reachable predecessors. RegSet dead; for (RegSet::iterator I = MInfo.vregsPassed.begin(), E = MInfo.vregsPassed.end(); I != E; ++I) { for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), PrE = MBB->pred_end(); PrI != PrE; ++PrI) { BBInfo &PrInfo = MBBInfoMap[*PrI]; if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) { dead.insert(*I); break; } } } // If any regs removed, we need to recheck successors. if (!dead.empty()) { set_subtract(MInfo.vregsPassed, dead); todo.insert(MBB->succ_begin(), MBB->succ_end()); } } } // Check PHI instructions at the beginning of MBB. It is assumed that // calcMinRegsPassed has been run so BBInfo::isLiveOut is valid. void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) { DenseSet seen; for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); if (!Pre->isSuccessor(MBB)) continue; seen.insert(Pre); BBInfo &PrInfo = MBBInfoMap[Pre]; if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) report("PHI operand is not live-out from predecessor", &BBI->getOperand(i), i); } // Did we see all predecessors? for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), PrE = MBB->pred_end(); PrI != PrE; ++PrI) { if (!seen.count(*PrI)) { report("Missing PHI operand", BBI); *OS << "MBB #" << (*PrI)->getNumber() << " is a predecessor according to the CFG.\n"; } } } } void MachineVerifier::visitMachineFunctionAfter() { calcMaxRegsPassed(); // With the maximal set of vregsPassed we can verify dead-in registers. for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { BBInfo &MInfo = MBBInfoMap[MFI]; // Skip unreachable MBBs. if (!MInfo.reachable) continue; for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(), PrE = MFI->pred_end(); PrI != PrE; ++PrI) { BBInfo &PrInfo = MBBInfoMap[*PrI]; if (!PrInfo.reachable) continue; // Verify physical live-ins. EH landing pads have magic live-ins so we // ignore them. if (!MFI->isLandingPad()) { for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(), E = MFI->livein_end(); I != E; ++I) { if (TargetRegisterInfo::isPhysicalRegister(*I) && !isReserved (*I) && !PrInfo.isLiveOut(*I)) { report("Live-in physical register is not live-out from predecessor", MFI); *OS << "Register " << TRI->getName(*I) << " is not live-out from MBB #" << (*PrI)->getNumber() << ".\n"; } } } // Verify dead-in virtual registers. if (!allowVirtDoubleDefs) { for (RegMap::iterator I = MInfo.vregsDeadIn.begin(), E = MInfo.vregsDeadIn.end(); I != E; ++I) { // DeadIn register must be in neither regsLiveOut or vregsPassed of // any predecessor. if (PrInfo.isLiveOut(I->first)) { report("Live-in virtual register redefined", I->second); *OS << "Register %reg" << I->first << " was live-out from predecessor MBB #" << (*PrI)->getNumber() << ".\n"; } } } } } calcMinRegsPassed(); // With the minimal set of vregsPassed we can verify live-in virtual // registers, including PHI instructions. for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { BBInfo &MInfo = MBBInfoMap[MFI]; // Skip unreachable MBBs. if (!MInfo.reachable) continue; checkPHIOps(MFI); for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(), PrE = MFI->pred_end(); PrI != PrE; ++PrI) { BBInfo &PrInfo = MBBInfoMap[*PrI]; if (!PrInfo.reachable) continue; for (RegMap::iterator I = MInfo.vregsLiveIn.begin(), E = MInfo.vregsLiveIn.end(); I != E; ++I) { if (!PrInfo.isLiveOut(I->first)) { report("Used virtual register is not live-in", I->second); *OS << "Register %reg" << I->first << " is not live-out from predecessor MBB #" << (*PrI)->getNumber() << ".\n"; } } } } }