//===- PostDominators.cpp - Post-Dominator Calculation --------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the post-dominator construction algorithms. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PostDominators.h" #include "llvm/Instructions.h" #include "llvm/Support/CFG.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" using namespace llvm; //===----------------------------------------------------------------------===// // PostDominatorSet Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis B("postdomset", "Post-Dominator Set Construction", true); // Postdominator set construction. This converts the specified function to only // have a single exit node (return stmt), then calculates the post dominance // sets for the function. // bool PostDominatorSet::runOnFunction(Function &F) { Doms.clear(); // Reset from the last time we were run... // Scan the function looking for the root nodes of the post-dominance // relationships. These blocks end with return and unwind instructions. // While we are iterating over the function, we also initialize all of the // domsets to empty. Roots.clear(); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { Doms[I]; // Initialize to empty if (succ_begin(I) == succ_end(I)) Roots.push_back(I); } // If there are no exit nodes for the function, postdomsets are all empty. // This can happen if the function just contains an infinite loop, for // example. if (Roots.empty()) return false; // If we have more than one root, we insert an artificial "null" exit, which // has "virtual edges" to each of the real exit nodes. if (Roots.size() > 1) Doms[0].insert(0); bool Changed; do { Changed = false; std::set Visited; DomSetType WorkingSet; for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (idf_ext_iterator It = idf_ext_begin(Roots[i], Visited), E = idf_ext_end(Roots[i], Visited); It != E; ++It) { BasicBlock *BB = *It; succ_iterator SI = succ_begin(BB), SE = succ_end(BB); if (SI != SE) { // Is there SOME successor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*SI].size() == 0) ++SI; WorkingSet = Doms[*SI]; for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets DomSetType &SuccSet = Doms[*SI]; if (SuccSet.size()) set_intersect(WorkingSet, SuccSet); } } else { // If this node has no successors, it must be one of the root nodes. // We will already take care of the notion that the node // post-dominates itself. The only thing we have to add is that if // there are multiple root nodes, we want to insert a special "null" // exit node which dominates the roots as well. if (Roots.size() > 1) WorkingSet.insert(0); } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); return false; } //===----------------------------------------------------------------------===// // ImmediatePostDominators Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis D("postidom", "Immediate Post-Dominators Construction", true); // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { IDoms[BB] = *I; break; } } } } //===----------------------------------------------------------------------===// // PostDominatorTree Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis F("postdomtree", "Post-Dominator Tree Construction", true); void PostDominatorTree::calculate(const PostDominatorSet &DS) { if (Roots.empty()) return; BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (idf_iterator I = idf_begin(Roots[i]), E = idf_end(Roots[i]); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // If we have already computed the immediate dominator for this node, // don't revisit. This can happen due to nodes reachable from multiple // roots, but which the idf_iterator doesn't know about. if (Nodes.find(BB) != Nodes.end()) continue; // Loop over all dominators of this node. This corresponds to looping // over nodes in the dominator chain, looking for a node whose dominator // set is equal to the current nodes, except that the current node does // not exist in it. This means that it is one level higher in the dom // chain than the current node, and it is our idom! We know that we have // already added a DominatorTree node for our idom, because the idom must // be a predecessor in the depth first order that we are iterating through // the function. // for (DominatorSet::DomSetType::const_iterator I = Dominators.begin(), E = Dominators.end(); I != E; ++I) { // Iterate over dominators. // All of our dominators should form a chain, where the number // of elements in the dominator set indicates what level the // node is at in the chain. We want the node immediately // above us, so it will have an identical dominator set, // except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } //===----------------------------------------------------------------------===// // PostDominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis H("postdomfrontier", "Post-Dominance Frontier Construction", true); const DominanceFrontier::DomSetType & PostDominanceFrontier::calculate(const PostDominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getBlock(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (getRoots().empty()) return S; if (BB) for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) // Does Node immediately dominate this predecessor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (PostDominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->properlyDominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } // stub - a dummy function to make linking work ok. void PostDominanceFrontier::stub() { }