//===-- Execution.cpp - Implement code to simulate the program ------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "ExecutionAnnotations.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Assembly/Writer.h" #include "Support/CommandLine.h" #include "Support/Statistic.h" #include // For fmod #include #include Interpreter *TheEE = 0; namespace { Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); cl::opt QuietMode("quiet", cl::desc("Do not emit any non-program output"), cl::init(true)); cl::alias QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); cl::opt ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); cl::opt AbortOnExceptions("abort-on-exception", cl::desc("Halt execution on a machine exception")); } // Create a TargetData structure to handle memory addressing and size/alignment // computations // CachedWriter CW; // Object to accelerate printing of LLVM #ifdef PROFILE_STRUCTURE_FIELDS static cl::opt ProfileStructureFields("profilestructfields", cl::desc("Profile Structure Field Accesses")); #include static std::map > FieldAccessCounts; #endif sigjmp_buf SignalRecoverBuffer; static bool InInstruction = false; extern "C" { static void SigHandler(int Signal) { if (InInstruction) siglongjmp(SignalRecoverBuffer, Signal); } } static void initializeSignalHandlers() { struct sigaction Action; Action.sa_handler = SigHandler; Action.sa_flags = SA_SIGINFO; sigemptyset(&Action.sa_mask); sigaction(SIGSEGV, &Action, 0); sigaction(SIGBUS, &Action, 0); sigaction(SIGINT, &Action, 0); sigaction(SIGFPE, &Action, 0); } //===----------------------------------------------------------------------===// // Value Manipulation code //===----------------------------------------------------------------------===// static unsigned getOperandSlot(Value *V) { SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); assert(SN && "Operand does not have a slot number annotation!"); return SN->SlotNum; } // Operations used by constant expr implementations... static GenericValue executeCastOperation(Value *Src, const Type *DestTy, ExecutionContext &SF); static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast(V)) { switch (CE->getOpcode()) { case Instruction::Cast: return executeCastOperation(CE->getOperand(0), CE->getType(), SF); case Instruction::GetElementPtr: return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1, CE->op_end(), SF); case Instruction::Add: return executeAddInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getType()); default: std::cerr << "Unhandled ConstantExpr: " << CE << "\n"; abort(); return GenericValue(); } } else if (Constant *CPV = dyn_cast(V)) { return TheEE->getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { return PTOGV(TheEE->getPointerToGlobal(GV)); } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned OpSlot = getOperandSlot(V); assert(TyP < SF.Values.size() && OpSlot < SF.Values[TyP].size() && "Value out of range!"); return SF.Values[TyP][getOperandSlot(V)]; } } static void printOperandInfo(Value *V, ExecutionContext &SF) { if (isa(V)) { std::cout << "Constant Pool Value\n"; } else if (isa(V)) { std::cout << "Global Value\n"; } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned Slot = getOperandSlot(V); std::cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF << " Contents=0x"; const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot]; for (unsigned i = 0; i < sizeof(GenericValue); ++i) { unsigned char Cur = Buf[i]; std::cout << ( Cur >= 160?char((Cur>>4)+'A'-10):char((Cur>>4) + '0')) << ((Cur&15) >= 10?char((Cur&15)+'A'-10):char((Cur&15) + '0')); } std::cout << "\n"; } } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n"; SF.Values[TyP][getOperandSlot(V)] = Val; } //===----------------------------------------------------------------------===// // Annotation Wrangling code //===----------------------------------------------------------------------===// void Interpreter::initializeExecutionEngine() { TheEE = this; AnnotationManager::registerAnnotationFactory(FunctionInfoAID, &FunctionInfo::Create); initializeSignalHandlers(); } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(+, UByte); IMPLEMENT_BINARY_OPERATOR(+, SByte); IMPLEMENT_BINARY_OPERATOR(+, UShort); IMPLEMENT_BINARY_OPERATOR(+, Short); IMPLEMENT_BINARY_OPERATOR(+, UInt); IMPLEMENT_BINARY_OPERATOR(+, Int); IMPLEMENT_BINARY_OPERATOR(+, ULong); IMPLEMENT_BINARY_OPERATOR(+, Long); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(-, UByte); IMPLEMENT_BINARY_OPERATOR(-, SByte); IMPLEMENT_BINARY_OPERATOR(-, UShort); IMPLEMENT_BINARY_OPERATOR(-, Short); IMPLEMENT_BINARY_OPERATOR(-, UInt); IMPLEMENT_BINARY_OPERATOR(-, Int); IMPLEMENT_BINARY_OPERATOR(-, ULong); IMPLEMENT_BINARY_OPERATOR(-, Long); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(*, UByte); IMPLEMENT_BINARY_OPERATOR(*, SByte); IMPLEMENT_BINARY_OPERATOR(*, UShort); IMPLEMENT_BINARY_OPERATOR(*, Short); IMPLEMENT_BINARY_OPERATOR(*, UInt); IMPLEMENT_BINARY_OPERATOR(*, Int); IMPLEMENT_BINARY_OPERATOR(*, ULong); IMPLEMENT_BINARY_OPERATOR(*, Long); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: std::cout << "Unhandled type for Mul instruction: " << Ty << "\n"; abort(); } return Dest; } static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(/, UByte); IMPLEMENT_BINARY_OPERATOR(/, SByte); IMPLEMENT_BINARY_OPERATOR(/, UShort); IMPLEMENT_BINARY_OPERATOR(/, Short); IMPLEMENT_BINARY_OPERATOR(/, UInt); IMPLEMENT_BINARY_OPERATOR(/, Int); IMPLEMENT_BINARY_OPERATOR(/, ULong); IMPLEMENT_BINARY_OPERATOR(/, Long); IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(%, UByte); IMPLEMENT_BINARY_OPERATOR(%, SByte); IMPLEMENT_BINARY_OPERATOR(%, UShort); IMPLEMENT_BINARY_OPERATOR(%, Short); IMPLEMENT_BINARY_OPERATOR(%, UInt); IMPLEMENT_BINARY_OPERATOR(%, Int); IMPLEMENT_BINARY_OPERATOR(%, ULong); IMPLEMENT_BINARY_OPERATOR(%, Long); case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; case Type::DoubleTyID: Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(&, Bool); IMPLEMENT_BINARY_OPERATOR(&, UByte); IMPLEMENT_BINARY_OPERATOR(&, SByte); IMPLEMENT_BINARY_OPERATOR(&, UShort); IMPLEMENT_BINARY_OPERATOR(&, Short); IMPLEMENT_BINARY_OPERATOR(&, UInt); IMPLEMENT_BINARY_OPERATOR(&, Int); IMPLEMENT_BINARY_OPERATOR(&, ULong); IMPLEMENT_BINARY_OPERATOR(&, Long); default: std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(|, Bool); IMPLEMENT_BINARY_OPERATOR(|, UByte); IMPLEMENT_BINARY_OPERATOR(|, SByte); IMPLEMENT_BINARY_OPERATOR(|, UShort); IMPLEMENT_BINARY_OPERATOR(|, Short); IMPLEMENT_BINARY_OPERATOR(|, UInt); IMPLEMENT_BINARY_OPERATOR(|, Int); IMPLEMENT_BINARY_OPERATOR(|, ULong); IMPLEMENT_BINARY_OPERATOR(|, Long); default: std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(^, Bool); IMPLEMENT_BINARY_OPERATOR(^, UByte); IMPLEMENT_BINARY_OPERATOR(^, SByte); IMPLEMENT_BINARY_OPERATOR(^, UShort); IMPLEMENT_BINARY_OPERATOR(^, Short); IMPLEMENT_BINARY_OPERATOR(^, UInt); IMPLEMENT_BINARY_OPERATOR(^, Int); IMPLEMENT_BINARY_OPERATOR(^, ULong); IMPLEMENT_BINARY_OPERATOR(^, Long); default: std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; abort(); } return Dest; } #define IMPLEMENT_SETCC(OP, TY) \ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up // comparisons if they contain garbage. #define IMPLEMENT_POINTERSETCC(OP) \ case Type::PointerTyID: \ Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ (void*)(intptr_t)Src2.PointerVal; break static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(==, UByte); IMPLEMENT_SETCC(==, SByte); IMPLEMENT_SETCC(==, UShort); IMPLEMENT_SETCC(==, Short); IMPLEMENT_SETCC(==, UInt); IMPLEMENT_SETCC(==, Int); IMPLEMENT_SETCC(==, ULong); IMPLEMENT_SETCC(==, Long); IMPLEMENT_SETCC(==, Float); IMPLEMENT_SETCC(==, Double); IMPLEMENT_POINTERSETCC(==); default: std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(!=, UByte); IMPLEMENT_SETCC(!=, SByte); IMPLEMENT_SETCC(!=, UShort); IMPLEMENT_SETCC(!=, Short); IMPLEMENT_SETCC(!=, UInt); IMPLEMENT_SETCC(!=, Int); IMPLEMENT_SETCC(!=, ULong); IMPLEMENT_SETCC(!=, Long); IMPLEMENT_SETCC(!=, Float); IMPLEMENT_SETCC(!=, Double); IMPLEMENT_POINTERSETCC(!=); default: std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<=, UByte); IMPLEMENT_SETCC(<=, SByte); IMPLEMENT_SETCC(<=, UShort); IMPLEMENT_SETCC(<=, Short); IMPLEMENT_SETCC(<=, UInt); IMPLEMENT_SETCC(<=, Int); IMPLEMENT_SETCC(<=, ULong); IMPLEMENT_SETCC(<=, Long); IMPLEMENT_SETCC(<=, Float); IMPLEMENT_SETCC(<=, Double); IMPLEMENT_POINTERSETCC(<=); default: std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>=, UByte); IMPLEMENT_SETCC(>=, SByte); IMPLEMENT_SETCC(>=, UShort); IMPLEMENT_SETCC(>=, Short); IMPLEMENT_SETCC(>=, UInt); IMPLEMENT_SETCC(>=, Int); IMPLEMENT_SETCC(>=, ULong); IMPLEMENT_SETCC(>=, Long); IMPLEMENT_SETCC(>=, Float); IMPLEMENT_SETCC(>=, Double); IMPLEMENT_POINTERSETCC(>=); default: std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<, UByte); IMPLEMENT_SETCC(<, SByte); IMPLEMENT_SETCC(<, UShort); IMPLEMENT_SETCC(<, Short); IMPLEMENT_SETCC(<, UInt); IMPLEMENT_SETCC(<, Int); IMPLEMENT_SETCC(<, ULong); IMPLEMENT_SETCC(<, Long); IMPLEMENT_SETCC(<, Float); IMPLEMENT_SETCC(<, Double); IMPLEMENT_POINTERSETCC(<); default: std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>, UByte); IMPLEMENT_SETCC(>, SByte); IMPLEMENT_SETCC(>, UShort); IMPLEMENT_SETCC(>, Short); IMPLEMENT_SETCC(>, UInt); IMPLEMENT_SETCC(>, Int); IMPLEMENT_SETCC(>, ULong); IMPLEMENT_SETCC(>, Long); IMPLEMENT_SETCC(>, Float); IMPLEMENT_SETCC(>, Double); IMPLEMENT_POINTERSETCC(>); default: std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; abort(); } return Dest; } void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getOpcode()) { case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; default: std::cout << "Don't know how to handle this binary operator!\n-->" << I; abort(); } SetValue(&I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// // PerformExitStuff - Print out counters and profiling information if // applicable... void Interpreter::PerformExitStuff() { #ifdef PROFILE_STRUCTURE_FIELDS // Print out structure field accounting information... if (!FieldAccessCounts.empty()) { CW << "Profile Field Access Counts:\n"; std::map >::iterator I = FieldAccessCounts.begin(), E = FieldAccessCounts.end(); for (; I != E; ++I) { std::vector &OfC = I->second; CW << " '" << (Value*)I->first << "'\t- Sum="; unsigned Sum = 0; for (unsigned i = 0; i < OfC.size(); ++i) Sum += OfC[i]; CW << Sum << " - "; for (unsigned i = 0; i < OfC.size(); ++i) { if (i) CW << ", "; CW << OfC[i]; } CW << "\n"; } CW << "\n"; CW << "Profile Field Access Percentages:\n"; std::cout.precision(3); for (I = FieldAccessCounts.begin(); I != E; ++I) { std::vector &OfC = I->second; unsigned Sum = 0; for (unsigned i = 0; i < OfC.size(); ++i) Sum += OfC[i]; CW << " '" << (Value*)I->first << "'\t- "; for (unsigned i = 0; i < OfC.size(); ++i) { if (i) CW << ", "; CW << double(OfC[i])/Sum; } CW << "\n"; } CW << "\n"; FieldAccessCounts.clear(); } #endif } void Interpreter::exitCalled(GenericValue GV) { if (!QuietMode) { std::cout << "Program returned "; print(Type::IntTy, GV); std::cout << " via 'void exit(int)'\n"; } ExitCode = GV.SByteVal; ECStack.clear(); } void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); const Type *RetTy = 0; GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I.getNumOperands()) { RetTy = I.getReturnValue()->getType(); Result = getOperandValue(I.getReturnValue(), SF); } // Save previously executing meth const Function *M = ECStack.back().CurFunction; // Pop the current stack frame... this invalidates SF ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy) { // Nonvoid return type? if (!QuietMode) { CW << "Function " << M->getType() << " \"" << M->getName() << "\" returned "; print(RetTy, Result); std::cout << "\n"; } if (RetTy->isIntegral()) ExitCode = Result.IntVal; // Capture the exit code of the program } else { ExitCode = 0; } return; } // If we have a previous stack frame, and we have a previous call, fill in // the return value... // ExecutionContext &NewSF = ECStack.back(); if (NewSF.Caller) { if (NewSF.Caller->getType() != Type::VoidTy) // Save result... SetValue(NewSF.Caller, Result, NewSF); NewSF.Caller = 0; // We returned from the call... } else if (!QuietMode) { // This must be a function that is executing because of a user 'call' // instruction. CW << "Function " << M->getType() << " \"" << M->getName() << "\" returned "; print(RetTy, Result); std::cout << "\n"; } } void Interpreter::visitBranchInst(BranchInst &I) { ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); } void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue CondVal = getOperandValue(I.getOperand(0), SF); const Type *ElTy = I.getOperand(0)->getType(); // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) if (executeSetEQInst(CondVal, getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { Dest = cast(I.getOperand(i+1)); break; } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. // // This method does this because all of the PHI nodes must be executed // atomically, reading their inputs before any of the results are updated. Not // doing this can cause problems if the PHI nodes depend on other PHI nodes for // their inputs. If the input PHI node is updated before it is read, incorrect // results can happen. Thus we use a two phase approach. // void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... if (!isa(SF.CurInst)) return; // Nothing fancy to do // Loop over all of the PHI nodes in the current block, reading their inputs. std::vector ResultValues; for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { if (Trace) CW << "Run:" << PN; // Search for the value corresponding to this previous bb... int i = PN->getBasicBlockIndex(PrevBB); assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); Value *IncomingValue = PN->getIncomingValue(i); // Save the incoming value for this PHI node... ResultValues.push_back(getOperandValue(IncomingValue, SF)); } // Now loop over all of the PHI nodes setting their values... SF.CurInst = SF.CurBB->begin(); for (unsigned i = 0; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst, ++i) SetValue(PN, ResultValues[i], SF); } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitAllocationInst(AllocationInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; // Allocate enough memory to hold the type... // FIXME: Don't use CALLOC, use a tainted malloc. void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) ECStack.back().Allocas.add(Memory); } void Interpreter::visitFreeInst(FreeInst &I) { ExecutionContext &SF = ECStack.back(); assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); GenericValue Value = getOperandValue(I.getOperand(0), SF); // TODO: Check to make sure memory is allocated free(GVTOP(Value)); // Free memory } // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, User::op_iterator E, ExecutionContext &SF) { assert(isa(Ptr->getType()) && "Cannot getElementOffset of a nonpointer type!"); PointerTy Total = 0; const Type *Ty = Ptr->getType(); for (; I != E; ++I) { if (const StructType *STy = dyn_cast(Ty)) { const StructLayout *SLO = TD.getStructLayout(STy); // Indicies must be ubyte constants... const ConstantUInt *CPU = cast(*I); assert(CPU->getType() == Type::UByteTy); unsigned Index = CPU->getValue(); #ifdef PROFILE_STRUCTURE_FIELDS if (ProfileStructureFields) { // Do accounting for this field... std::vector &OfC = FieldAccessCounts[STy]; if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size()); OfC[Index]++; } #endif Total += SLO->MemberOffsets[Index]; Ty = STy->getElementTypes()[Index]; } else if (const SequentialType *ST = cast(Ty)) { // Get the index number for the array... which must be long type... assert((*I)->getType() == Type::LongTy); unsigned Idx = getOperandValue(*I, SF).LongVal; if (const ArrayType *AT = dyn_cast(ST)) if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { std::cerr << "Out of range memory access to element #" << Idx << " of a " << AT->getNumElements() << " element array." << " Subscript #" << *I << "\n"; // Get outta here!!! siglongjmp(SignalRecoverBuffer, SIGTRAP); } Ty = ST->getElementType(); unsigned Size = TD.getTypeSize(Ty); Total += Size*Idx; } } GenericValue Result; Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), I.idx_begin(), I.idx_end(), SF), SF); } void Interpreter::visitLoadInst(LoadInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); SetValue(&I, Result, SF); } void Interpreter::visitStoreInst(StoreInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Val = getOperandValue(I.getOperand(0), SF); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitCallInst(CallInst &I) { ExecutionContext &SF = ECStack.back(); SF.Caller = &I; std::vector ArgVals; ArgVals.reserve(I.getNumOperands()-1); for (unsigned i = 1; i < I.getNumOperands(); ++i) { ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); // Promote all integral types whose size is < sizeof(int) into ints. We do // this by zero or sign extending the value as appropriate according to the // source type. if (I.getOperand(i)->getType()->isIntegral() && I.getOperand(i)->getType()->getPrimitiveSize() < 4) { const Type *Ty = I.getOperand(i)->getType(); if (Ty == Type::ShortTy) ArgVals.back().IntVal = ArgVals.back().ShortVal; else if (Ty == Type::UShortTy) ArgVals.back().UIntVal = ArgVals.back().UShortVal; else if (Ty == Type::SByteTy) ArgVals.back().IntVal = ArgVals.back().SByteVal; else if (Ty == Type::UByteTy) ArgVals.back().UIntVal = ArgVals.back().UByteVal; else if (Ty == Type::BoolTy) ArgVals.back().UIntVal = ArgVals.back().BoolVal; else assert(0 && "Unknown type!"); } } // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. GenericValue SRC = getOperandValue(I.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } #define IMPLEMENT_SHIFT(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break void Interpreter::visitShl(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(<<, UByte); IMPLEMENT_SHIFT(<<, SByte); IMPLEMENT_SHIFT(<<, UShort); IMPLEMENT_SHIFT(<<, Short); IMPLEMENT_SHIFT(<<, UInt); IMPLEMENT_SHIFT(<<, Int); IMPLEMENT_SHIFT(<<, ULong); IMPLEMENT_SHIFT(<<, Long); default: std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; } SetValue(&I, Dest, SF); } void Interpreter::visitShr(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(>>, UByte); IMPLEMENT_SHIFT(>>, SByte); IMPLEMENT_SHIFT(>>, UShort); IMPLEMENT_SHIFT(>>, Short); IMPLEMENT_SHIFT(>>, UInt); IMPLEMENT_SHIFT(>>, Int); IMPLEMENT_SHIFT(>>, ULong); IMPLEMENT_SHIFT(>>, Long); default: std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; abort(); } SetValue(&I, Dest, SF); } #define IMPLEMENT_CAST(DTY, DCTY, STY) \ case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ case Type::DESTTY##TyID: \ switch (SrcTy->getPrimitiveID()) { \ IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Double) #define IMPLEMENT_CAST_CASE_END() \ default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ abort(); \ } \ break #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); switch (Ty->getPrimitiveID()) { IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , ( signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , ( signed short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )); IMPLEMENT_CAST_CASE(Int , ( signed int )); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , ( int64_t)); IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); IMPLEMENT_CAST_CASE(Float , (float)); IMPLEMENT_CAST_CASE(Double , (double)); IMPLEMENT_CAST_CASE(Bool , (bool)); default: std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; abort(); } return Dest; } void Interpreter::visitCastInst(CastInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitVarArgInst(VarArgInst &I) { ExecutionContext &SF = ECStack.back(); // Get the pointer to the valist element. LLI treats the valist in memory as // an integer. GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF); // Load the pointer GenericValue VAList = TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy); unsigned Argument = VAList.IntVal++; // Update the valist to point to the next argument... TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr), Type::UIntTy); // Set the value... assert(Argument < SF.VarArgs.size() && "Accessing past the last vararg argument!"); SetValue(&I, SF.VarArgs[Argument], SF); } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// FunctionInfo::FunctionInfo(Function *F) : Annotation(FunctionInfoAID) { // Assign slot numbers to the function arguments... for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) AI->addAnnotation(new SlotNumber(getValueSlot(AI))); // Iterate over all of the instructions... unsigned InstNum = 0; for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) // For each instruction... Add Annote II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); } unsigned FunctionInfo::getValueSlot(const Value *V) { unsigned Plane = V->getType()->getUniqueID(); if (Plane >= NumPlaneElements.size()) NumPlaneElements.resize(Plane+1, 0); return NumPlaneElements[Plane]++; } //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, const std::vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller == 0 || ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); if (F->isExternal()) { GenericValue Result = callExternalFunction(F, ArgVals); const Type *RetTy = F->getReturnType(); // Copy the result back into the result variable if we are not returning // void. if (RetTy != Type::VoidTy) { if (!ECStack.empty() && ECStack.back().Caller) { ExecutionContext &SF = ECStack.back(); SetValue(SF.Caller, Result, SF); SF.Caller = 0; // We returned from the call... } else if (!QuietMode) { // print it. CW << "Function " << F->getType() << " \"" << F->getName() << "\" returned "; print(RetTy, Result); std::cout << "\n"; if (RetTy->isIntegral()) ExitCode = Result.IntVal; // Capture the exit code of the program } } return; } // Process the function, assigning instruction numbers to the instructions in // the function. Also calculate the number of values for each type slot // active. // FunctionInfo *FuncInfo = (FunctionInfo*)F->getOrCreateAnnotation(FunctionInfoAID); ECStack.push_back(ExecutionContext()); // Make a new stack frame... ExecutionContext &StackFrame = ECStack.back(); // Fill it in... StackFrame.CurFunction = F; StackFrame.CurBB = F->begin(); StackFrame.CurInst = StackFrame.CurBB->begin(); StackFrame.FuncInfo = FuncInfo; // Initialize the values to nothing... StackFrame.Values.resize(FuncInfo->NumPlaneElements.size()); for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) { StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]); // Taint the initial values of stuff memset(&StackFrame.Values[i][0], 42, FuncInfo->NumPlaneElements[i]*sizeof(GenericValue)); } // Run through the function arguments and initialize their values... assert((ArgVals.size() == F->asize() || (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) && "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } // executeInstruction - Interpret a single instruction, increment the "PC", and // return true if the next instruction is a breakpoint... // bool Interpreter::executeInstruction() { assert(!ECStack.empty() && "No program running, cannot execute inst!"); ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction &I = *SF.CurInst++; // Increment before execute if (Trace) CW << "Run:" << I; // Track the number of dynamic instructions executed. ++NumDynamicInsts; // Set a sigsetjmp buffer so that we can recover if an error happens during // instruction execution... // if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) { --SF.CurInst; // Back up to erroring instruction if (SigNo != SIGINT) { std::cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n"; printStackTrace(); // If -abort-on-exception was specified, terminate LLI instead of trying // to debug it. // if (AbortOnExceptions) exit(1); } else if (SigNo == SIGINT) { std::cout << "CTRL-C Detected, execution halted.\n"; } InInstruction = false; return true; } InInstruction = true; visit(I); // Dispatch to one of the visit* methods... InInstruction = false; // Reset the current frame location to the top of stack CurFrame = ECStack.size()-1; if (CurFrame == -1) return false; // No breakpoint if no code // Return true if there is a breakpoint annotation on the instruction... return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0; } void Interpreter::stepInstruction() { // Do the 'step' command if (ECStack.empty()) { std::cout << "Error: no program running, cannot step!\n"; return; } // Run an instruction... executeInstruction(); // Print the next instruction to execute... printCurrentInstruction(); } // --- UI Stuff... void Interpreter::nextInstruction() { // Do the 'next' command if (ECStack.empty()) { std::cout << "Error: no program running, cannot 'next'!\n"; return; } // If this is a call instruction, step over the call instruction... // TODO: ICALL, CALL WITH, ... if (ECStack.back().CurInst->getOpcode() == Instruction::Call) { unsigned StackSize = ECStack.size(); // Step into the function... if (executeInstruction()) { // Hit a breakpoint, print current instruction, then return to user... std::cout << "Breakpoint hit!\n"; printCurrentInstruction(); return; } // If we we able to step into the function, finish it now. We might not be // able the step into a function, if it's external for example. if (ECStack.size() != StackSize) finish(); // Finish executing the function... else printCurrentInstruction(); } else { // Normal instruction, just step... stepInstruction(); } } void Interpreter::run() { if (ECStack.empty()) { std::cout << "Error: no program running, cannot run!\n"; return; } bool HitBreakpoint = false; while (!ECStack.empty() && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) std::cout << "Breakpoint hit!\n"; // Print the next instruction to execute... printCurrentInstruction(); } void Interpreter::finish() { if (ECStack.empty()) { std::cout << "Error: no program running, cannot run!\n"; return; } unsigned StackSize = ECStack.size(); bool HitBreakpoint = false; while (ECStack.size() >= StackSize && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) std::cout << "Breakpoint hit!\n"; // Print the next instruction to execute... printCurrentInstruction(); } // printCurrentInstruction - Print out the instruction that the virtual PC is // at, or fail silently if no program is running. // void Interpreter::printCurrentInstruction() { if (!ECStack.empty()) { if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label WriteAsOperand(std::cout, ECStack.back().CurBB) << ":\n"; Instruction &I = *ECStack.back().CurInst; InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID); assert(IN && "Instruction has no numbering annotation!"); std::cout << "#" << IN->InstNum << I; } } void Interpreter::printValue(const Type *Ty, GenericValue V) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break; case Type::SByteTyID: std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; case Type::UByteTyID: std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; case Type::ShortTyID: std::cout << V.ShortVal; break; case Type::UShortTyID: std::cout << V.UShortVal; break; case Type::IntTyID: std::cout << V.IntVal; break; case Type::UIntTyID: std::cout << V.UIntVal; break; case Type::LongTyID: std::cout << (long)V.LongVal; break; case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break; case Type::FloatTyID: std::cout << V.FloatVal; break; case Type::DoubleTyID: std::cout << V.DoubleVal; break; case Type::PointerTyID:std::cout << (void*)GVTOP(V); break; default: std::cout << "- Don't know how to print value of this type!"; break; } } void Interpreter::print(const Type *Ty, GenericValue V) { CW << Ty << " "; printValue(Ty, V); } void Interpreter::print(const std::string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; if (const Function *F = dyn_cast(PickedVal)) { CW << F; // Print the function } else if (const Type *Ty = dyn_cast(PickedVal)) { CW << "type %" << Name << " = " << Ty->getDescription() << "\n"; } else if (const BasicBlock *BB = dyn_cast(PickedVal)) { CW << BB; // Print the basic block } else { // Otherwise there should be an annotation for the slot# print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); std::cout << "\n"; } } void Interpreter::infoValue(const std::string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; std::cout << "Value: "; print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); std::cout << "\n"; printOperandInfo(PickedVal, ECStack[CurFrame]); } // printStackFrame - Print information about the specified stack frame, or -1 // for the default one. // void Interpreter::printStackFrame(int FrameNo) { if (FrameNo == -1) FrameNo = CurFrame; Function *F = ECStack[FrameNo].CurFunction; const Type *RetTy = F->getReturnType(); CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". " << (Value*)RetTy << " \"" << F->getName() << "\"("; unsigned i = 0; for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) { if (i != 0) std::cout << ", "; CW << *I << "="; printValue(I->getType(), getOperandValue(I, ECStack[FrameNo])); } std::cout << ")\n"; if (FrameNo != int(ECStack.size()-1)) { BasicBlock::iterator I = ECStack[FrameNo].CurInst; CW << --I; } else { CW << *ECStack[FrameNo].CurInst; } }