//===-- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*--=// // // This file contains the declarations for the Module class that is used to // maintain all the information related to a VM module. // // A module also maintains a GlobalValRefMap object that is used to hold all // constant references to global variables in the module. When a global // variable is destroyed, it should have no entries in the GlobalValueRefMap. // //===----------------------------------------------------------------------===// #ifndef LLVM_MODULE_H #define LLVM_MODULE_H #include "llvm/Function.h" #include "llvm/GlobalVariable.h" class GlobalVariable; class GlobalValueRefMap; // Used by ConstantVals.cpp class ConstantPointerRef; class FunctionType; class SymbolTable; template<> struct ilist_traits : public SymbolTableListTraits { // createNode is used to create a node that marks the end of the list... static Function *createNode(); static iplist &getList(Module *M); }; template<> struct ilist_traits : public SymbolTableListTraits { // createNode is used to create a node that marks the end of the list... static GlobalVariable *createNode(); static iplist &getList(Module *M); }; class Module : public Annotable { public: typedef iplist GlobalListType; typedef iplist FunctionListType; // Global Variable iterators... typedef GlobalListType::iterator giterator; typedef GlobalListType::const_iterator const_giterator; typedef std::reverse_iterator reverse_giterator; typedef std::reverse_iterator const_reverse_giterator; // Function iterators... typedef FunctionListType::iterator iterator; typedef FunctionListType::const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; private: GlobalListType GlobalList; // The Global Variables FunctionListType FunctionList; // The Functions GlobalValueRefMap *GVRefMap; SymbolTable *SymTab; // Accessor for the underlying GlobalValRefMap... only through the // ConstantPointerRef class... friend class ConstantPointerRef; void mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV); ConstantPointerRef *getConstantPointerRef(GlobalValue *GV); public: Module(); ~Module(); // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. Function *getOrInsertFunction(const std::string &Name, const FunctionType *T); // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *getFunction(const std::string &Name, const FunctionType *Ty); // addTypeName - Insert an entry in the symbol table mapping Str to Type. If // there is already an entry for this name, true is returned and the symbol // table is not modified. // bool addTypeName(const std::string &Name, const Type *Ty); // getTypeName - If there is at least one entry in the symbol table for the // specified type, return it. // std::string getTypeName(const Type *Ty); // Get the underlying elements of the Module... inline const GlobalListType &getGlobalList() const { return GlobalList; } inline GlobalListType &getGlobalList() { return GlobalList; } inline const FunctionListType &getFunctionList() const { return FunctionList;} inline FunctionListType &getFunctionList() { return FunctionList;} //===--------------------------------------------------------------------===// // Symbol table support functions... // hasSymbolTable() - Returns true if there is a symbol table allocated to // this object AND if there is at least one name in it! // bool hasSymbolTable() const; // CAUTION: The current symbol table may be null if there are no names (ie, // the symbol table is empty) // inline SymbolTable *getSymbolTable() { return SymTab; } inline const SymbolTable *getSymbolTable() const { return SymTab; } // getSymbolTableSure is guaranteed to not return a null pointer, because if // the method does not already have a symtab, one is created. Use this if // you intend to put something into the symbol table for the method. // SymbolTable *getSymbolTableSure(); //===--------------------------------------------------------------------===// // Module iterator forwarding functions // inline giterator gbegin() { return GlobalList.begin(); } inline const_giterator gbegin() const { return GlobalList.begin(); } inline giterator gend () { return GlobalList.end(); } inline const_giterator gend () const { return GlobalList.end(); } inline reverse_giterator grbegin() { return GlobalList.rbegin(); } inline const_reverse_giterator grbegin() const { return GlobalList.rbegin(); } inline reverse_giterator grend () { return GlobalList.rend(); } inline const_reverse_giterator grend () const { return GlobalList.rend(); } inline unsigned gsize() const { return GlobalList.size(); } inline bool gempty() const { return GlobalList.empty(); } inline const GlobalVariable &gfront() const { return GlobalList.front(); } inline GlobalVariable &gfront() { return GlobalList.front(); } inline const GlobalVariable &gback() const { return GlobalList.back(); } inline GlobalVariable &gback() { return GlobalList.back(); } inline iterator begin() { return FunctionList.begin(); } inline const_iterator begin() const { return FunctionList.begin(); } inline iterator end () { return FunctionList.end(); } inline const_iterator end () const { return FunctionList.end(); } inline reverse_iterator rbegin() { return FunctionList.rbegin(); } inline const_reverse_iterator rbegin() const { return FunctionList.rbegin(); } inline reverse_iterator rend () { return FunctionList.rend(); } inline const_reverse_iterator rend () const { return FunctionList.rend(); } inline unsigned size() const { return FunctionList.size(); } inline bool empty() const { return FunctionList.empty(); } inline const Function &front() const { return FunctionList.front(); } inline Function &front() { return FunctionList.front(); } inline const Function &back() const { return FunctionList.back(); } inline Function &back() { return FunctionList.back(); } void print(std::ostream &OS) const; // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is delete'd for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void dropAllReferences(); }; inline std::ostream &operator<<(std::ostream &O, const Module *M) { M->print(O); return O; } inline std::ostream &operator<<(std::ostream &O, const Module &M) { M.print(O); return O; } #endif