//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // /// The pass tries to use the 32-bit encoding for instructions when possible. //===----------------------------------------------------------------------===// // #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "si-shrink-instructions" STATISTIC(NumInstructionsShrunk, "Number of 64-bit instruction reduced to 32-bit."); STATISTIC(NumLiteralConstantsFolded, "Number of literal constants folded into 32-bit instructions."); namespace llvm { void initializeSIShrinkInstructionsPass(PassRegistry&); } using namespace llvm; namespace { class SIShrinkInstructions : public MachineFunctionPass { public: static char ID; public: SIShrinkInstructions() : MachineFunctionPass(ID) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI Shrink Instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE, "SI Lower il Copies", false, false) INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE, "SI Lower il Copies", false, false) char SIShrinkInstructions::ID = 0; FunctionPass *llvm::createSIShrinkInstructionsPass() { return new SIShrinkInstructions(); } static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { if (!MO->isReg()) return false; if (TargetRegisterInfo::isVirtualRegister(MO->getReg())) return TRI.hasVGPRs(MRI.getRegClass(MO->getReg())); return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg())); } static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII, const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); // Can't shrink instruction with three operands. if (Src2) return false; const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); const MachineOperand *Src1Mod = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0))) return false; // We don't need to check src0, all input types are legal, so just make // sure src0 isn't using any modifiers. const MachineOperand *Src0Mod = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); if (Src0Mod && Src0Mod->getImm() != 0) return false; // Check output modifiers const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod); if (Omod && Omod->getImm() != 0) return false; const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp); return !Clamp || Clamp->getImm() == 0; } /// \brief This function checks \p MI for operands defined by a move immediate /// instruction and then folds the literal constant into the instruction if it /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction /// and will only fold literal constants if we are still in SSA. static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII, MachineRegisterInfo &MRI, bool TryToCommute = true) { if (!MRI.isSSA()) return; assert(TII->isVOP1(MI.getOpcode()) || TII->isVOP2(MI.getOpcode()) || TII->isVOPC(MI.getOpcode())); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); // Only one literal constant is allowed per instruction, so if src0 is a // literal constant then we can't do any folding. if (Src0->isImm() && TII->isLiteralConstant(*Src0)) return; // Literal constants and SGPRs can only be used in Src0, so if Src0 is an // SGPR, we cannot commute the instruction, so we can't fold any literal // constants. if (Src0->isReg() && !isVGPR(Src0, TRI, MRI)) return; // Try to fold Src0 if (Src0->isReg()) { unsigned Reg = Src0->getReg(); MachineInstr *Def = MRI.getUniqueVRegDef(Reg); if (Def && Def->isMoveImmediate()) { MachineOperand &MovSrc = Def->getOperand(1); bool ConstantFolded = false; if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) { Src0->ChangeToImmediate(MovSrc.getImm()); ConstantFolded = true; } else if (MovSrc.isFPImm()) { const APFloat &APF = MovSrc.getFPImm()->getValueAPF(); if (&APF.getSemantics() == &APFloat::IEEEsingle) { MRI.removeRegOperandFromUseList(Src0); Src0->ChangeToImmediate(APF.bitcastToAPInt().getZExtValue()); ConstantFolded = true; } } if (ConstantFolded) { if (MRI.use_empty(Reg)) Def->eraseFromParent(); ++NumLiteralConstantsFolded; return; } } } // We have failed to fold src0, so commute the instruction and try again. if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(&MI)) foldImmediates(MI, TII, MRI, false); } bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { MachineRegisterInfo &MRI = MF.getRegInfo(); const SIInstrInfo *TII = static_cast(MF.getSubtarget().getInstrInfo()); const SIRegisterInfo &TRI = TII->getRegisterInfo(); std::vector I1Defs; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; if (!TII->hasVALU32BitEncoding(MI.getOpcode())) continue; if (!canShrink(MI, TII, TRI, MRI)) { // Try commuting the instruction and see if that enables us to shrink // it. if (!MI.isCommutable() || !TII->commuteInstruction(&MI) || !canShrink(MI, TII, TRI, MRI)) continue; } int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); // Op32 could be -1 here if we started with an instruction that had a // a 32-bit encoding and then commuted it to an instruction that did not. if (Op32 == -1) continue; if (TII->isVOPC(Op32)) { unsigned DstReg = MI.getOperand(0).getReg(); if (TargetRegisterInfo::isVirtualRegister(DstReg)) { // VOPC instructions can only write to the VCC register. We can't // force them to use VCC here, because the register allocator has // trouble with sequences like this, which cause the allocator to run // out of registers if vreg0 and vreg1 belong to the VCCReg register // class: // vreg0 = VOPC; // vreg1 = VOPC; // S_AND_B64 vreg0, vreg1 // // So, instead of forcing the instruction to write to VCC, we provide // a hint to the register allocator to use VCC and then we we will run // this pass again after RA and shrink it if it outputs to VCC. MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC); continue; } if (DstReg != AMDGPU::VCC) continue; } // We can shrink this instruction DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << '\n';); MachineInstrBuilder Inst32 = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32)); // dst Inst32.addOperand(MI.getOperand(0)); Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0)); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src1) Inst32.addOperand(*Src1); ++NumInstructionsShrunk; MI.eraseFromParent(); foldImmediates(*Inst32, TII, MRI); DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); } } return false; }