//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to AT&T format assembly // language. This printer is the output mechanism used by `llc'. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "X86ATTAsmPrinter.h" #include "X86.h" #include "X86COFF.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "X86TargetAsmInfo.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Support/Mangler.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); static std::string getPICLabelString(unsigned FnNum, const TargetAsmInfo *TAI, const X86Subtarget* Subtarget) { std::string label; if (Subtarget->isTargetDarwin()) label = "\"L" + utostr_32(FnNum) + "$pb\""; else if (Subtarget->isTargetELF()) label = ".Lllvm$" + utostr_32(FnNum) + "." "$piclabel"; else assert(0 && "Don't know how to print PIC label!\n"); return label; } static X86MachineFunctionInfo calculateFunctionInfo(const Function *F, const TargetData *TD) { X86MachineFunctionInfo Info; uint64_t Size = 0; switch (F->getCallingConv()) { case CallingConv::X86_StdCall: Info.setDecorationStyle(StdCall); break; case CallingConv::X86_FastCall: Info.setDecorationStyle(FastCall); break; default: return Info; } unsigned argNum = 1; for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI, ++argNum) { const Type* Ty = AI->getType(); // 'Dereference' type in case of byval parameter attribute if (F->paramHasAttr(argNum, ParamAttr::ByVal)) Ty = cast(Ty)->getElementType(); // Size should be aligned to DWORD boundary Size += ((TD->getABITypeSize(Ty) + 3)/4)*4; } // We're not supporting tooooo huge arguments :) Info.setBytesToPopOnReturn((unsigned int)Size); return Info; } /// PrintUnmangledNameSafely - Print out the printable characters in the name. /// Don't print things like \n or \0. static void PrintUnmangledNameSafely(const Value *V, std::ostream &OS) { for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen(); Name != E; ++Name) if (isprint(*Name)) OS << *Name; } /// decorateName - Query FunctionInfoMap and use this information for various /// name decoration. void X86ATTAsmPrinter::decorateName(std::string &Name, const GlobalValue *GV) { const Function *F = dyn_cast(GV); if (!F) return; // We don't want to decorate non-stdcall or non-fastcall functions right now unsigned CC = F->getCallingConv(); if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall) return; // Decorate names only when we're targeting Cygwin/Mingw32 targets if (!Subtarget->isTargetCygMing()) return; FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F); const X86MachineFunctionInfo *Info; if (info_item == FunctionInfoMap.end()) { // Calculate apropriate function info and populate map FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData()); Info = &FunctionInfoMap[F]; } else { Info = &info_item->second; } const FunctionType *FT = F->getFunctionType(); switch (Info->getDecorationStyle()) { case None: break; case StdCall: // "Pure" variadic functions do not receive @0 suffix. if (!FT->isVarArg() || (FT->getNumParams() == 0) || (FT->getNumParams() == 1 && F->hasStructRetAttr())) Name += '@' + utostr_32(Info->getBytesToPopOnReturn()); break; case FastCall: // "Pure" variadic functions do not receive @0 suffix. if (!FT->isVarArg() || (FT->getNumParams() == 0) || (FT->getNumParams() == 1 && F->hasStructRetAttr())) Name += '@' + utostr_32(Info->getBytesToPopOnReturn()); if (Name[0] == '_') { Name[0] = '@'; } else { Name = '@' + Name; } break; default: assert(0 && "Unsupported DecorationStyle"); } } // Substitute old hook with new one temporary std::string X86ATTAsmPrinter::getSectionForFunction(const Function &F) const { return TAI->SectionForGlobal(&F); } void X86ATTAsmPrinter::emitFunctionHeader(const MachineFunction &MF) { const Function *F = MF.getFunction(); std::string SectionName = TAI->SectionForGlobal(F); decorateName(CurrentFnName, F); SwitchToTextSection(SectionName.c_str()); unsigned FnAlign = OptimizeForSize ? 1 : 4; switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. EmitAlignment(FnAlign, F); break; case Function::DLLExportLinkage: case Function::ExternalLinkage: EmitAlignment(FnAlign, F); O << "\t.globl\t" << CurrentFnName << '\n'; break; case Function::LinkOnceLinkage: case Function::WeakLinkage: EmitAlignment(FnAlign, F); if (Subtarget->isTargetDarwin()) { O << "\t.globl\t" << CurrentFnName << '\n'; O << TAI->getWeakDefDirective() << CurrentFnName << '\n'; } else if (Subtarget->isTargetCygMing()) { O << "\t.globl\t" << CurrentFnName << "\n" "\t.linkonce discard\n"; } else { O << "\t.weak\t" << CurrentFnName << '\n'; } break; } if (F->hasHiddenVisibility()) { if (const char *Directive = TAI->getHiddenDirective()) O << Directive << CurrentFnName << '\n'; } else if (F->hasProtectedVisibility()) { if (const char *Directive = TAI->getProtectedDirective()) O << Directive << CurrentFnName << '\n'; } if (Subtarget->isTargetELF()) O << "\t.type\t" << CurrentFnName << ",@function\n"; else if (Subtarget->isTargetCygMing()) { O << "\t.def\t " << CurrentFnName << ";\t.scl\t" << (F->getLinkage() == Function::InternalLinkage ? COFF::C_STAT : COFF::C_EXT) << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT) << ";\t.endef\n"; } O << CurrentFnName << ":\n"; // Add some workaround for linkonce linkage on Cygwin\MinGW if (Subtarget->isTargetCygMing() && (F->getLinkage() == Function::LinkOnceLinkage || F->getLinkage() == Function::WeakLinkage)) O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n"; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) { const Function *F = MF.getFunction(); unsigned CC = F->getCallingConv(); SetupMachineFunction(MF); O << "\n\n"; // Populate function information map. Actually, We don't want to populate // non-stdcall or non-fastcall functions' information right now. if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall) FunctionInfoMap[F] = *MF.getInfo(); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); if (F->hasDLLExportLinkage()) DLLExportedFns.insert(Mang->makeNameProper(F->getName(), "")); // Print the 'header' of function emitFunctionHeader(MF); // Emit pre-function debug and/or EH information. if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) DW.BeginFunction(&MF); // Print out code for the function. bool hasAnyRealCode = false; for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (!I->pred_empty()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { // Print the assembly for the instruction. if (!II->isLabel()) hasAnyRealCode = true; printMachineInstruction(II); } } if (Subtarget->isTargetDarwin() && !hasAnyRealCode) { // If the function is empty, then we need to emit *something*. Otherwise, // the function's label might be associated with something that it wasn't // meant to be associated with. We emit a noop in this situation. // We are assuming inline asms are code. O << "\tnop\n"; } if (TAI->hasDotTypeDotSizeDirective()) O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n'; // Emit post-function debug information. if (TAI->doesSupportDebugInformation()) DW.EndFunction(); // Print out jump tables referenced by the function. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); // We didn't modify anything. return false; } static inline bool shouldPrintGOT(TargetMachine &TM, const X86Subtarget* ST) { return ST->isPICStyleGOT() && TM.getRelocationModel() == Reloc::PIC_; } static inline bool shouldPrintPLT(TargetMachine &TM, const X86Subtarget* ST) { return ST->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_ && (ST->isPICStyleRIPRel() || ST->isPICStyleGOT()); } static inline bool shouldPrintStub(TargetMachine &TM, const X86Subtarget* ST) { return ST->isPICStyleStub() && TM.getRelocationModel() != Reloc::Static; } void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, const char *Modifier, bool NotRIPRel) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { case MachineOperand::MO_Register: { assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && "Virtual registers should not make it this far!"); O << '%'; unsigned Reg = MO.getReg(); if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) { MVT VT = (strcmp(Modifier+6,"64") == 0) ? MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 : ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8)); Reg = getX86SubSuperRegister(Reg, VT); } O << TRI->getAsmName(Reg); return; } case MachineOperand::MO_Immediate: if (!Modifier || (strcmp(Modifier, "debug") && strcmp(Modifier, "mem"))) O << '$'; O << MO.getImm(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMBB()); return; case MachineOperand::MO_JumpTableIndex: { bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp) O << '$'; O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); if (TM.getRelocationModel() == Reloc::PIC_) { if (Subtarget->isPICStyleStub()) O << "-\"" << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << "$pb\""; else if (Subtarget->isPICStyleGOT()) O << "@GOTOFF"; } if (isMemOp && Subtarget->isPICStyleRIPRel() && !NotRIPRel) O << "(%rip)"; return; } case MachineOperand::MO_ConstantPoolIndex: { bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp) O << '$'; O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); if (TM.getRelocationModel() == Reloc::PIC_) { if (Subtarget->isPICStyleStub()) O << "-\"" << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << "$pb\""; else if (Subtarget->isPICStyleGOT()) O << "@GOTOFF"; } int Offset = MO.getOffset(); if (Offset > 0) O << '+' << Offset; else if (Offset < 0) O << Offset; if (isMemOp && Subtarget->isPICStyleRIPRel() && !NotRIPRel) O << "(%rip)"; return; } case MachineOperand::MO_GlobalAddress: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); bool isMemOp = Modifier && !strcmp(Modifier, "mem"); bool needCloseParen = false; const GlobalValue *GV = MO.getGlobal(); const GlobalVariable *GVar = dyn_cast(GV); if (!GVar) { // If GV is an alias then use the aliasee for determining // thread-localness. if (const GlobalAlias *GA = dyn_cast(GV)) GVar = dyn_cast_or_null(GA->resolveAliasedGlobal()); } bool isThreadLocal = GVar && GVar->isThreadLocal(); std::string Name = Mang->getValueName(GV); decorateName(Name, GV); if (!isMemOp && !isCallOp) O << '$'; else if (Name[0] == '$') { // The name begins with a dollar-sign. In order to avoid having it look // like an integer immediate to the assembler, enclose it in parens. O << '('; needCloseParen = true; } if (shouldPrintStub(TM, Subtarget)) { // Link-once, declaration, or Weakly-linked global variables need // non-lazily-resolved stubs if (GV->isDeclaration() || GV->isWeakForLinker()) { // Dynamically-resolved functions need a stub for the function. if (isCallOp && isa(GV)) { FnStubs.insert(Name); printSuffixedName(Name, "$stub"); } else { GVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); } } else { if (GV->hasDLLImportLinkage()) O << "__imp_"; O << Name; } if (!isCallOp && TM.getRelocationModel() == Reloc::PIC_) O << '-' << getPICLabelString(getFunctionNumber(), TAI, Subtarget); } else { if (GV->hasDLLImportLinkage()) { O << "__imp_"; } O << Name; if (isCallOp) { if (shouldPrintPLT(TM, Subtarget)) { // Assemble call via PLT for externally visible symbols if (!GV->hasHiddenVisibility() && !GV->hasProtectedVisibility() && !GV->hasInternalLinkage()) O << "@PLT"; } if (Subtarget->isTargetCygMing() && GV->isDeclaration()) // Save function name for later type emission FnStubs.insert(Name); } } if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); int Offset = MO.getOffset(); if (Offset > 0) O << '+' << Offset; else if (Offset < 0) O << Offset; if (isThreadLocal) { if (TM.getRelocationModel() == Reloc::PIC_ || Subtarget->is64Bit()) O << "@TLSGD"; // general dynamic TLS model else if (GV->isDeclaration()) O << "@INDNTPOFF"; // initial exec TLS model else O << "@NTPOFF"; // local exec TLS model } else if (isMemOp) { if (shouldPrintGOT(TM, Subtarget)) { if (Subtarget->GVRequiresExtraLoad(GV, TM, false)) O << "@GOT"; else O << "@GOTOFF"; } else if (Subtarget->isPICStyleRIPRel() && !NotRIPRel && TM.getRelocationModel() != Reloc::Static) { if (Subtarget->GVRequiresExtraLoad(GV, TM, false)) O << "@GOTPCREL"; if (needCloseParen) { needCloseParen = false; O << ')'; } // Use rip when possible to reduce code size, except when // index or base register are also part of the address. e.g. // foo(%rip)(%rcx,%rax,4) is not legal O << "(%rip)"; } } if (needCloseParen) O << ')'; return; } case MachineOperand::MO_ExternalSymbol: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); bool needCloseParen = false; std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); if (isCallOp && shouldPrintStub(TM, Subtarget)) { FnStubs.insert(Name); printSuffixedName(Name, "$stub"); return; } if (!isCallOp) O << '$'; else if (Name[0] == '$') { // The name begins with a dollar-sign. In order to avoid having it look // like an integer immediate to the assembler, enclose it in parens. O << '('; needCloseParen = true; } O << Name; if (shouldPrintPLT(TM, Subtarget)) { std::string GOTName(TAI->getGlobalPrefix()); GOTName+="_GLOBAL_OFFSET_TABLE_"; if (Name == GOTName) // HACK! Emit extra offset to PC during printing GOT offset to // compensate for the size of popl instruction. The resulting code // should look like: // call .piclabel // piclabel: // popl %some_register // addl $_GLOBAL_ADDRESS_TABLE_ + [.-piclabel], %some_register O << " + [.-" << getPICLabelString(getFunctionNumber(), TAI, Subtarget) << ']'; if (isCallOp) O << "@PLT"; } if (needCloseParen) O << ')'; if (!isCallOp && Subtarget->isPICStyleRIPRel()) O << "(%rip)"; return; } default: O << ""; return; } } void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) { unsigned char value = MI->getOperand(Op).getImm(); assert(value <= 7 && "Invalid ssecc argument!"); switch (value) { case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; } } void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op, const char *Modifier){ assert(isMem(MI, Op) && "Invalid memory reference!"); MachineOperand BaseReg = MI->getOperand(Op); MachineOperand IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); bool NotRIPRel = IndexReg.getReg() || BaseReg.getReg(); if (DispSpec.isGlobalAddress() || DispSpec.isConstantPoolIndex() || DispSpec.isJumpTableIndex()) { printOperand(MI, Op+3, "mem", NotRIPRel); } else { int DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) O << DispVal; } if (IndexReg.getReg() || BaseReg.getReg()) { unsigned ScaleVal = MI->getOperand(Op+1).getImm(); unsigned BaseRegOperand = 0, IndexRegOperand = 2; // There are cases where we can end up with ESP/RSP in the indexreg slot. // If this happens, swap the base/index register to support assemblers that // don't work when the index is *SP. if (IndexReg.getReg() == X86::ESP || IndexReg.getReg() == X86::RSP) { assert(ScaleVal == 1 && "Scale not supported for stack pointer!"); std::swap(BaseReg, IndexReg); std::swap(BaseRegOperand, IndexRegOperand); } O << '('; if (BaseReg.getReg()) printOperand(MI, Op+BaseRegOperand, Modifier); if (IndexReg.getReg()) { O << ','; printOperand(MI, Op+IndexRegOperand, Modifier); if (ScaleVal != 1) O << ',' << ScaleVal; } O << ')'; } } void X86ATTAsmPrinter::printPICJumpTableSetLabel(unsigned uid, const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; // We don't need .set machinery if we have GOT-style relocations if (Subtarget->isPICStyleGOT()) return; O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; printBasicBlockLabel(MBB, false, false, false); if (Subtarget->isPICStyleRIPRel()) O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '\n'; else O << '-' << getPICLabelString(getFunctionNumber(), TAI, Subtarget) << '\n'; } void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) { std::string label = getPICLabelString(getFunctionNumber(), TAI, Subtarget); O << label << '\n' << label << ':'; } void X86ATTAsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid) const { const char *JTEntryDirective = MJTI->getEntrySize() == 4 ? TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); O << JTEntryDirective << ' '; if (TM.getRelocationModel() == Reloc::PIC_) { if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStub()) { O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber(); } else if (Subtarget->isPICStyleGOT()) { printBasicBlockLabel(MBB, false, false, false); O << "@GOTOFF"; } else assert(0 && "Don't know how to print MBB label for this PIC mode"); } else printBasicBlockLabel(MBB, false, false, false); } bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO, const char Mode) { unsigned Reg = MO.getReg(); switch (Mode) { default: return true; // Unknown mode. case 'b': // Print QImode register Reg = getX86SubSuperRegister(Reg, MVT::i8); break; case 'h': // Print QImode high register Reg = getX86SubSuperRegister(Reg, MVT::i8, true); break; case 'w': // Print HImode register Reg = getX86SubSuperRegister(Reg, MVT::i16); break; case 'k': // Print SImode register Reg = getX86SubSuperRegister(Reg, MVT::i32); break; case 'q': // Print DImode register Reg = getX86SubSuperRegister(Reg, MVT::i64); break; } O << '%'<< TRI->getAsmName(Reg); return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'c': // Don't print "$" before a global var name or constant. printOperand(MI, OpNo, "mem"); return false; case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print DImode register if (MI->getOperand(OpNo).isRegister()) return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]); printOperand(MI, OpNo); return false; case 'P': // Don't print @PLT, but do print as memory. printOperand(MI, OpNo, "mem"); return false; } } printOperand(MI, OpNo); return false; } bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print SImode register // These only apply to registers, ignore on mem. break; } } printMemReference(MI, OpNo); return false; } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in AT&T syntax to the current output stream. /// void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. printInstruction(MI); } /// doInitialization bool X86ATTAsmPrinter::doInitialization(Module &M) { if (TAI->doesSupportDebugInformation()) { // Emit initial debug information. DW.BeginModule(&M); } bool Result = AsmPrinter::doInitialization(M); if (TAI->doesSupportDebugInformation()) { // Let PassManager know we need debug information and relay // the MachineModuleInfo address on to DwarfWriter. // AsmPrinter::doInitialization did this analysis. MMI = getAnalysisToUpdate(); DW.SetModuleInfo(MMI); } // Darwin wants symbols to be quoted if they have complex names. if (Subtarget->isTargetDarwin()) Mang->setUseQuotes(true); return Result; } void X86ATTAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) return; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) { if (Subtarget->isTargetDarwin() && TM.getRelocationModel() == Reloc::Static) { if (GVar->getName() == "llvm.global_ctors") O << ".reference .constructors_used\n"; else if (GVar->getName() == "llvm.global_dtors") O << ".reference .destructors_used\n"; } return; } std::string SectionName = TAI->SectionForGlobal(GVar); std::string name = Mang->getValueName(GVar); Constant *C = GVar->getInitializer(); const Type *Type = C->getType(); unsigned Size = TD->getABITypeSize(Type); unsigned Align = TD->getPreferredAlignmentLog(GVar); if (GVar->hasHiddenVisibility()) { if (const char *Directive = TAI->getHiddenDirective()) O << Directive << name << '\n'; } else if (GVar->hasProtectedVisibility()) { if (const char *Directive = TAI->getProtectedDirective()) O << Directive << name << '\n'; } if (Subtarget->isTargetELF()) O << "\t.type\t" << name << ",@object\n"; SwitchToDataSection(SectionName.c_str()); if (C->isNullValue() && !GVar->hasSection()) { // FIXME: This seems to be pretty darwin-specific if (GVar->hasExternalLinkage()) { if (const char *Directive = TAI->getZeroFillDirective()) { O << "\t.globl " << name << '\n'; O << Directive << "__DATA, __common, " << name << ", " << Size << ", " << Align << '\n'; return; } } if (!GVar->isThreadLocal() && (GVar->hasInternalLinkage() || GVar->isWeakForLinker())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (TAI->getLCOMMDirective() != NULL) { if (GVar->hasInternalLinkage()) { O << TAI->getLCOMMDirective() << name << ',' << Size; if (Subtarget->isTargetDarwin()) O << ',' << Align; } else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) { O << "\t.globl " << name << '\n' << TAI->getWeakDefDirective() << name << '\n'; EmitAlignment(Align, GVar); O << name << ":\t\t\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); O << '\n'; EmitGlobalConstant(C); return; } else { O << TAI->getCOMMDirective() << name << ',' << Size; // Leopard and above support aligned common symbols. if (Subtarget->getDarwinVers() >= 9) O << ',' << Align; } } else { if (!Subtarget->isTargetCygMing()) { if (GVar->hasInternalLinkage()) O << "\t.local\t" << name << '\n'; } O << TAI->getCOMMDirective() << name << ',' << Size; if (TAI->getCOMMDirectiveTakesAlignment()) O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align); } O << "\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); O << '\n'; return; } } switch (GVar->getLinkage()) { case GlobalValue::CommonLinkage: case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: if (Subtarget->isTargetDarwin()) { O << "\t.globl " << name << '\n' << TAI->getWeakDefDirective() << name << '\n'; } else if (Subtarget->isTargetCygMing()) { O << "\t.globl\t" << name << "\n" "\t.linkonce same_size\n"; } else { O << "\t.weak\t" << name << '\n'; } break; case GlobalValue::DLLExportLinkage: case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << '\n'; // FALL THROUGH case GlobalValue::InternalLinkage: break; default: assert(0 && "Unknown linkage type!"); } EmitAlignment(Align, GVar); O << name << ":\t\t\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); O << '\n'; if (TAI->hasDotTypeDotSizeDirective()) O << "\t.size\t" << name << ", " << Size << '\n'; // If the initializer is a extern weak symbol, remember to emit the weak // reference! if (const GlobalValue *GV = dyn_cast(C)) if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); EmitGlobalConstant(C); } /// printGVStub - Print stub for a global value. /// void X86ATTAsmPrinter::printGVStub(const char *GV, const char *Prefix) { printSuffixedName(GV, "$non_lazy_ptr", Prefix); O << ":\n\t.indirect_symbol "; if (Prefix) O << Prefix; O << GV << "\n\t.long\t0\n"; } bool X86ATTAsmPrinter::doFinalization(Module &M) { // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { printModuleLevelGV(I); if (I->hasDLLExportLinkage()) DLLExportedGVs.insert(Mang->makeNameProper(I->getName(),"")); } // Output linker support code for dllexported globals if (!DLLExportedGVs.empty()) SwitchToDataSection(".section .drectve"); for (StringSet<>::iterator i = DLLExportedGVs.begin(), e = DLLExportedGVs.end(); i != e; ++i) O << "\t.ascii \" -export:" << i->getKeyData() << ",data\"\n"; if (!DLLExportedFns.empty()) { SwitchToDataSection(".section .drectve"); } for (StringSet<>::iterator i = DLLExportedFns.begin(), e = DLLExportedFns.end(); i != e; ++i) O << "\t.ascii \" -export:" << i->getKeyData() << "\"\n"; if (Subtarget->isTargetDarwin()) { SwitchToDataSection(""); // Output stubs for dynamically-linked functions unsigned j = 1; for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i, ++j) { SwitchToDataSection("\t.section __IMPORT,__jump_table,symbol_stubs," "self_modifying_code+pure_instructions,5", 0); const char *p = i->getKeyData(); printSuffixedName(p, "$stub"); O << ":\n" "\t.indirect_symbol " << p << "\n" "\thlt ; hlt ; hlt ; hlt ; hlt\n"; } O << '\n'; // Print global value stubs. bool InStubSection = false; if (TAI->doesSupportExceptionHandling() && MMI && !Subtarget->is64Bit()) { // Add the (possibly multiple) personalities to the set of global values. // Only referenced functions get into the Personalities list. const std::vector& Personalities = MMI->getPersonalities(); for (std::vector::const_iterator I = Personalities.begin(), E = Personalities.end(); I != E; ++I) { if (!*I) continue; if (!InStubSection) { SwitchToDataSection( "\t.section __IMPORT,__pointers,non_lazy_symbol_pointers"); InStubSection = true; } printGVStub((*I)->getNameStart(), "_"); } } // Output stubs for external and common global variables. if (!InStubSection && !GVStubs.empty()) SwitchToDataSection( "\t.section __IMPORT,__pointers,non_lazy_symbol_pointers"); for (StringSet<>::iterator i = GVStubs.begin(), e = GVStubs.end(); i != e; ++i) printGVStub(i->getKeyData()); // Emit final debug information. DW.EndModule(); // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. O << "\t.subsections_via_symbols\n"; } else if (Subtarget->isTargetCygMing()) { // Emit type information for external functions for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { O << "\t.def\t " << i->getKeyData() << ";\t.scl\t" << COFF::C_EXT << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT) << ";\t.endef\n"; } // Emit final debug information. DW.EndModule(); } else if (Subtarget->isTargetELF()) { // Emit final debug information. DW.EndModule(); } return AsmPrinter::doFinalization(M); } // Include the auto-generated portion of the assembly writer. #include "X86GenAsmWriter.inc"