//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // InductionVariableSimplify - Transform induction variables in a program // to all use a single cannonical induction variable per loop. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/Support/CFG.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" namespace { Statistic<> NumRemoved ("indvars", "Number of aux indvars removed"); Statistic<> NumInserted("indvars", "Number of cannonical indvars added"); } // InsertCast - Cast Val to Ty, setting a useful name on the cast if Val has a // name... // static Instruction *InsertCast(Value *Val, const Type *Ty, Instruction *InsertBefore) { return new CastInst(Val, Ty, Val->getName()+"-casted", InsertBefore); } static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { // Transform all subloops before this loop... bool Changed = reduce_apply_bool(Loop->getSubLoops().begin(), Loop->getSubLoops().end(), std::bind1st(std::ptr_fun(TransformLoop), Loops)); // Get the header node for this loop. All of the phi nodes that could be // induction variables must live in this basic block. // BasicBlock *Header = Loop->getBlocks().front(); // Loop over all of the PHI nodes in the basic block, calculating the // induction variables that they represent... stuffing the induction variable // info into a vector... // std::vector IndVars; // Induction variables for block BasicBlock::iterator AfterPHIIt = Header->begin(); for (; PHINode *PN = dyn_cast(AfterPHIIt); ++AfterPHIIt) IndVars.push_back(InductionVariable(PN, Loops)); // AfterPHIIt now points to first nonphi instruction... // If there are no phi nodes in this basic block, there can't be indvars... if (IndVars.empty()) return Changed; // Loop over the induction variables, looking for a cannonical induction // variable, and checking to make sure they are not all unknown induction // variables. // bool FoundIndVars = false; InductionVariable *Cannonical = 0; for (unsigned i = 0; i < IndVars.size(); ++i) { if (IndVars[i].InductionType == InductionVariable::Cannonical && !isa(IndVars[i].Phi->getType())) Cannonical = &IndVars[i]; if (IndVars[i].InductionType != InductionVariable::Unknown) FoundIndVars = true; } // No induction variables, bail early... don't add a cannonnical indvar if (!FoundIndVars) return Changed; // Okay, we want to convert other induction variables to use a cannonical // indvar. If we don't have one, add one now... if (!Cannonical) { // Create the PHI node for the new induction variable, and insert the phi // node at the end of the other phi nodes... PHINode *PN = new PHINode(Type::UIntTy, "cann-indvar", AfterPHIIt); // Create the increment instruction to add one to the counter... Instruction *Add = BinaryOperator::create(Instruction::Add, PN, ConstantUInt::get(Type::UIntTy,1), "add1-indvar", AfterPHIIt); // Figure out which block is incoming and which is the backedge for the loop BasicBlock *Incoming, *BackEdgeBlock; pred_iterator PI = pred_begin(Header); assert(PI != pred_end(Header) && "Loop headers should have 2 preds!"); if (Loop->contains(*PI)) { // First pred is back edge... BackEdgeBlock = *PI++; Incoming = *PI++; } else { Incoming = *PI++; BackEdgeBlock = *PI++; } assert(PI == pred_end(Header) && "Loop headers should have 2 preds!"); // Add incoming values for the PHI node... PN->addIncoming(Constant::getNullValue(Type::UIntTy), Incoming); PN->addIncoming(Add, BackEdgeBlock); // Analyze the new induction variable... IndVars.push_back(InductionVariable(PN, Loops)); assert(IndVars.back().InductionType == InductionVariable::Cannonical && "Just inserted cannonical indvar that is not cannonical!"); Cannonical = &IndVars.back(); ++NumInserted; Changed = true; } DEBUG(std::cerr << "Induction variables:\n"); // Get the current loop iteration count, which is always the value of the // cannonical phi node... // PHINode *IterCount = Cannonical->Phi; // Loop through and replace all of the auxillary induction variables with // references to the primary induction variable... // for (unsigned i = 0; i < IndVars.size(); ++i) { InductionVariable *IV = &IndVars[i]; DEBUG(IV->print(std::cerr)); // Don't do math with pointers... const Type *IVTy = IV->Phi->getType(); if (isa(IVTy)) IVTy = Type::ULongTy; // Don't modify the cannonical indvar or unrecognized indvars... if (IV != Cannonical && IV->InductionType != InductionVariable::Unknown) { Instruction *Val = IterCount; if (!isa(IV->Step) || // If the step != 1 !cast(IV->Step)->equalsInt(1)) { // If the types are not compatible, insert a cast now... if (Val->getType() != IVTy) Val = InsertCast(Val, IVTy, AfterPHIIt); if (IV->Step->getType() != IVTy) IV->Step = InsertCast(IV->Step, IVTy, AfterPHIIt); Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step, IV->Phi->getName()+"-scale", AfterPHIIt); } // If the start != 0 if (IV->Start != Constant::getNullValue(IV->Start->getType())) { // If the types are not compatible, insert a cast now... if (Val->getType() != IVTy) Val = InsertCast(Val, IVTy, AfterPHIIt); if (IV->Start->getType() != IVTy) IV->Start = InsertCast(IV->Start, IVTy, AfterPHIIt); // Insert the instruction after the phi nodes... Val = BinaryOperator::create(Instruction::Add, Val, IV->Start, IV->Phi->getName()+"-offset", AfterPHIIt); } // If the PHI node has a different type than val is, insert a cast now... if (Val->getType() != IV->Phi->getType()) Val = InsertCast(Val, IV->Phi->getType(), AfterPHIIt); // Replace all uses of the old PHI node with the new computed value... IV->Phi->replaceAllUsesWith(Val); // Move the PHI name to it's new equivalent value... std::string OldName = IV->Phi->getName(); IV->Phi->setName(""); Val->setName(OldName); // Delete the old, now unused, phi node... Header->getInstList().erase(IV->Phi); Changed = true; ++NumRemoved; } } return Changed; } namespace { struct InductionVariableSimplify : public FunctionPass { virtual bool runOnFunction(Function &) { LoopInfo &LI = getAnalysis(); // Induction Variables live in the header nodes of loops return reduce_apply_bool(LI.getTopLevelLoops().begin(), LI.getTopLevelLoops().end(), std::bind1st(std::ptr_fun(TransformLoop), &LI)); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); } }; RegisterOpt X("indvars", "Cannonicalize Induction Variables"); } Pass *createIndVarSimplifyPass() { return new InductionVariableSimplify(); }