//===- LowerAllocations.cpp - Reduce malloc & free insts to calls ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LowerAllocations transformation is a target-dependent tranformation // because it depends on the size of data types and alignment constraints. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Target/TargetData.h" using namespace llvm; namespace { Statistic<> NumLowered("lowerallocs", "Number of allocations lowered"); /// LowerAllocations - Turn malloc and free instructions into %malloc and /// %free calls. /// class LowerAllocations : public BasicBlockPass { Function *MallocFunc; // Functions in the module we are processing Function *FreeFunc; // Initialized by doInitialization public: LowerAllocations() : MallocFunc(0), FreeFunc(0) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); } /// doPassInitialization - For the lower allocations pass, this ensures that /// a module contains a declaration for a malloc and a free function. /// bool doInitialization(Module &M); virtual bool doInitialization(Function &F) { return BasicBlockPass::doInitialization(F); } /// runOnBasicBlock - This method does the actual work of converting /// instructions over, assuming that the pass has already been initialized. /// bool runOnBasicBlock(BasicBlock &BB); }; RegisterOpt X("lowerallocs", "Lower allocations from instructions to calls"); } // createLowerAllocationsPass - Interface to this file... FunctionPass *llvm::createLowerAllocationsPass() { return new LowerAllocations(); } // doInitialization - For the lower allocations pass, this ensures that a // module contains a declaration for a malloc and a free function. // // This function is always successful. // bool LowerAllocations::doInitialization(Module &M) { const Type *SBPTy = PointerType::get(Type::SByteTy); MallocFunc = M.getNamedFunction("malloc"); FreeFunc = M.getNamedFunction("free"); if (MallocFunc == 0) { // Prototype malloc as "void* malloc(...)", because we don't know in // doInitialization whether size_t is int or long. FunctionType *FT = FunctionType::get(SBPTy,std::vector(),true); MallocFunc = M.getOrInsertFunction("malloc", FT); } if (FreeFunc == 0) FreeFunc = M.getOrInsertFunction("free" , Type::VoidTy, SBPTy, 0); return true; } // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; assert(MallocFunc && FreeFunc && "Pass not initialized!"); BasicBlock::InstListType &BBIL = BB.getInstList(); const Type *IntPtrTy = getAnalysis().getIntPtrType(); // Loop over all of the instructions, looking for malloc or free instructions for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) { if (MallocInst *MI = dyn_cast(I)) { const Type *AllocTy = MI->getType()->getElementType(); // malloc(type) becomes sbyte *malloc(size) Value *MallocArg = ConstantExpr::getCast(ConstantExpr::getSizeOf(AllocTy), IntPtrTy); if (MI->isArrayAllocation()) { if (isa(MallocArg) && cast(MallocArg)->getRawValue() == 1) { MallocArg = MI->getOperand(0); // Operand * 1 = Operand } else if (Constant *CO = dyn_cast(MI->getOperand(0))) { CO = ConstantExpr::getCast(CO, IntPtrTy); MallocArg = ConstantExpr::getMul(CO, cast(MallocArg)); } else { Value *Scale = MI->getOperand(0); if (Scale->getType() != IntPtrTy) Scale = new CastInst(Scale, IntPtrTy, "", I); // Multiply it by the array size if necessary... MallocArg = BinaryOperator::create(Instruction::Mul, Scale, MallocArg, "", I); } } const FunctionType *MallocFTy = MallocFunc->getFunctionType(); std::vector MallocArgs; if (MallocFTy->getNumParams() > 0 || MallocFTy->isVarArg()) { if (MallocFTy->isVarArg()) { if (MallocArg->getType() != IntPtrTy) MallocArg = new CastInst(MallocArg, IntPtrTy, "", I); } else if (MallocFTy->getNumParams() > 0 && MallocFTy->getParamType(0) != Type::UIntTy) MallocArg = new CastInst(MallocArg, MallocFTy->getParamType(0), "",I); MallocArgs.push_back(MallocArg); } // If malloc is prototyped to take extra arguments, pass nulls. for (unsigned i = 1; i < MallocFTy->getNumParams(); ++i) MallocArgs.push_back(Constant::getNullValue(MallocFTy->getParamType(i))); // Create the call to Malloc... CallInst *MCall = new CallInst(MallocFunc, MallocArgs, "", I); // Create a cast instruction to convert to the right type... Value *MCast; if (MCall->getType() != Type::VoidTy) MCast = new CastInst(MCall, MI->getType(), "", I); else MCast = Constant::getNullValue(MI->getType()); // Replace all uses of the old malloc inst with the cast inst MI->replaceAllUsesWith(MCast); I = --BBIL.erase(I); // remove and delete the malloc instr... Changed = true; ++NumLowered; } else if (FreeInst *FI = dyn_cast(I)) { const FunctionType *FreeFTy = FreeFunc->getFunctionType(); std::vector FreeArgs; if (FreeFTy->getNumParams() > 0 || FreeFTy->isVarArg()) { Value *MCast = FI->getOperand(0); if (FreeFTy->getNumParams() > 0 && FreeFTy->getParamType(0) != MCast->getType()) MCast = new CastInst(MCast, FreeFTy->getParamType(0), "", I); FreeArgs.push_back(MCast); } // If malloc is prototyped to take extra arguments, pass nulls. for (unsigned i = 1; i < FreeFTy->getNumParams(); ++i) FreeArgs.push_back(Constant::getNullValue(FreeFTy->getParamType(i))); // Insert a call to the free function... new CallInst(FreeFunc, FreeArgs, "", I); // Delete the old free instruction I = --BBIL.erase(I); Changed = true; ++NumLowered; } } return Changed; }