//===- BottomUpClosure.cpp - Compute the bottom up interprocedure closure -===// // // This file implements the BUDataStructures class, which represents the // Bottom-Up Interprocedural closure of the data structure graph over the // program. This is useful for applications like pool allocation, but **not** // applications like pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "Support/StatisticReporter.h" using std::map; AnalysisID BUDataStructures::ID(AnalysisID::create()); // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void BUDataStructures::releaseMemory() { for (map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) delete I->second; // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); } // run - Calculate the bottom up data structure graphs for each function in the // program. // bool BUDataStructures::run(Module &M) { // Simply calculate the graphs for each function... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) calculateGraph(*I); return false; } // ResolveArguments - Resolve the formal and actual arguments for a function // call. // static void ResolveArguments(std::vector &Call, Function &F, map &ValueMap) { // Resolve all of the function arguments... Function::aiterator AI = F.abegin(); for (unsigned i = 2, e = Call.size(); i != e; ++i) { // Advance the argument iterator to the first pointer argument... while (!isa(AI->getType())) ++AI; // Add the link from the argument scalar to the provided value DSNode *NN = ValueMap[AI]; NN->addEdgeTo(Call[i]); ++AI; } } // MergeGlobalNodes - Merge global value nodes in the inlined graph with the // global value nodes in the current graph if there are duplicates. // static void MergeGlobalNodes(map &ValMap, map &OldValMap) { // Loop over all of the nodes inlined, if any of them are global variable // nodes, we must make sure they get properly added or merged with the ValMap. // for (map::iterator I = OldValMap.begin(), E = OldValMap.end(); I != E; ++I) if (isa(I->first)) { DSNodeHandle &NH = ValMap[I->first]; // Look up global in ValMap. if (NH == 0) { // No entry for the global yet? NH = I->second; // Add the one just inlined... } else { NH->mergeWith(I->second); // Merge the two globals together. } } } DSGraph &BUDataStructures::calculateGraph(Function &F) { // Make sure this graph has not already been calculated, or that we don't get // into an infinite loop with mutually recursive functions. // DSGraph *&Graph = DSInfo[&F]; if (Graph) return *Graph; // Copy the local version into DSInfo... Graph = new DSGraph(getAnalysis().getDSGraph(F)); // Start resolving calls... std::vector > &FCs = Graph->getFunctionCalls(); DEBUG(cerr << "Inlining: " << F.getName() << "\n"); bool Inlined; do { Inlined = false; for (unsigned i = 0; i != FCs.size(); ++i) { // Copy the call, because inlining graphs may invalidate the FCs vector. std::vector Call = FCs[i]; // If the function list is not incomplete... if ((Call[1]->NodeType & DSNode::Incomplete) == 0) { // Start inlining all of the functions we can... some may not be // inlinable if they are external... // std::vector Globals(Call[1]->getGlobals()); // Loop over the functions, inlining whatever we can... for (unsigned g = 0; g != Globals.size(); ++g) { // Must be a function type, so this cast MUST succeed. Function &FI = cast(*Globals[g]); if (&FI == &F) { // Self recursion... simply link up the formal arguments with the // actual arguments... DEBUG(cerr << "Self Inlining: " << F.getName() << "\n"); if (Call[0]) // Handle the return value if present... Graph->RetNode->mergeWith(Call[0]); // Resolve the arguments in the call to the actual values... ResolveArguments(Call, F, Graph->getValueMap()); // Erase the entry in the globals vector Globals.erase(Globals.begin()+g--); } else if (!FI.isExternal()) { DEBUG(std::cerr << "In " << F.getName() << " inlining: " << FI.getName() << "\n"); // Get the data structure graph for the called function, closing it // if possible (which is only impossible in the case of mutual // recursion... // DSGraph &GI = calculateGraph(FI); // Graph to inline DEBUG(cerr << "Got graph for " << FI.getName() << " in: " << F.getName() << "\n"); // Clone the called function's graph into the current graph, keeping // track of where scalars in the old graph _used_ to point... map OldValMap; // The clone call may invalidate any of the vectors in the data // structure graph. DSNode *RetVal = Graph->cloneInto(GI, OldValMap); ResolveArguments(Call, FI, OldValMap); if (Call[0]) // Handle the return value if present RetVal->mergeWith(Call[0]); // Merge global value nodes in the inlined graph with the global // value nodes in the current graph if there are duplicates. // MergeGlobalNodes(Graph->getValueMap(), OldValMap); // Erase the entry in the globals vector Globals.erase(Globals.begin()+g--); } } if (Globals.empty()) { // Inlined all of the function calls? // Erase the call if it is resolvable... FCs.erase(FCs.begin()+i--); // Don't skip a the next call... Inlined = true; } else if (Globals.size() != Call[1]->getGlobals().size()) { // Was able to inline SOME, but not all of the functions. Construct a // new global node here. // assert(0 && "Unimpl!"); Inlined = true; } } } // Recompute the Incomplete markers. If there are any function calls left // now that are complete, we must loop! if (Inlined) { Graph->maskIncompleteMarkers(); Graph->markIncompleteNodes(); Graph->removeDeadNodes(); } } while (Inlined && !FCs.empty()); return *Graph; }