//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a linear scan register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/Function.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CFG.h" #include "Support/Debug.h" #include "Support/DepthFirstIterator.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" using namespace llvm; namespace { Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled"); Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded"); Statistic<> numPeep ("ra-linearscan", "Number of identity moves eliminated"); class PhysRegTracker { private: const MRegisterInfo* mri_; std::vector reserved_; std::vector regUse_; public: PhysRegTracker(MachineFunction* mf) : mri_(mf ? mf->getTarget().getRegisterInfo() : NULL) { if (mri_) { reserved_.assign(mri_->getNumRegs(), false); regUse_.assign(mri_->getNumRegs(), 0); } } PhysRegTracker(const PhysRegTracker& rhs) : mri_(rhs.mri_), reserved_(rhs.reserved_), regUse_(rhs.regUse_) { } const PhysRegTracker& operator=(const PhysRegTracker& rhs) { mri_ = rhs.mri_; reserved_ = rhs.reserved_; regUse_ = rhs.regUse_; return *this; } void reservePhysReg(unsigned physReg) { reserved_[physReg] = true; } void addPhysRegUse(unsigned physReg) { ++regUse_[physReg]; for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { physReg = *as; ++regUse_[physReg]; } } void delPhysRegUse(unsigned physReg) { assert(regUse_[physReg] != 0); --regUse_[physReg]; for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { physReg = *as; assert(regUse_[physReg] != 0); --regUse_[physReg]; } } bool isPhysRegReserved(unsigned physReg) const { return reserved_[physReg]; } bool isPhysRegAvail(unsigned physReg) const { return regUse_[physReg] == 0 && !isPhysRegReserved(physReg); } bool isReservedPhysRegAvail(unsigned physReg) const { return regUse_[physReg] == 0 && isPhysRegReserved(physReg); } }; class RA : public MachineFunctionPass { private: MachineFunction* mf_; const TargetMachine* tm_; const MRegisterInfo* mri_; LiveIntervals* li_; MachineFunction::iterator currentMbb_; MachineBasicBlock::iterator currentInstr_; typedef std::vector IntervalPtrs; IntervalPtrs unhandled_, fixed_, active_, inactive_; PhysRegTracker prt_; typedef std::map Virt2PhysMap; Virt2PhysMap v2pMap_; typedef std::map Virt2StackSlotMap; Virt2StackSlotMap v2ssMap_; int instrAdded_; typedef std::vector SpillWeights; SpillWeights spillWeights_; public: RA() : prt_(NULL) { } virtual const char* getPassName() const { return "Linear Scan Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - register allocate the whole function bool runOnMachineFunction(MachineFunction&); void releaseMemory(); private: /// initIntervalSets - initializa the four interval sets: /// unhandled, fixed, active and inactive void initIntervalSets(const LiveIntervals::Intervals& li); /// processActiveIntervals - expire old intervals and move /// non-overlapping ones to the incative list void processActiveIntervals(IntervalPtrs::value_type cur); /// processInactiveIntervals - expire old intervals and move /// overlapping ones to the active list void processInactiveIntervals(IntervalPtrs::value_type cur); /// updateSpillWeights - updates the spill weights of the /// specifed physical register and its weight void updateSpillWeights(unsigned reg, SpillWeights::value_type weight); /// assignRegOrStackSlotAtInterval - assign a register if one /// is available, or spill. void assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur); /// /// register handling helpers /// /// getFreePhysReg - return a free physical register for this /// virtual register interval if we have one, otherwise return /// 0 unsigned getFreePhysReg(IntervalPtrs::value_type cur); /// getFreeTempPhysReg - return a free temprorary physical /// register for this virtual register if we have one (should /// never return 0) unsigned getFreeTempPhysReg(unsigned virtReg); /// assignVirt2PhysReg - assigns the free physical register to /// the virtual register passed as arguments Virt2PhysMap::iterator assignVirt2PhysReg(unsigned virtReg, unsigned physReg); /// clearVirtReg - free the physical register associated with this /// virtual register and disassociate virtual->physical and /// physical->virtual mappings void clearVirtReg(Virt2PhysMap::iterator it); /// assignVirt2StackSlot - assigns this virtual register to a /// stack slot void assignVirt2StackSlot(unsigned virtReg); /// getStackSlot - returns the offset of the specified /// register on the stack int getStackSlot(unsigned virtReg); /// spillVirtReg - spills the virtual register void spillVirtReg(Virt2PhysMap::iterator it); /// loadPhysReg - loads to the physical register the value of /// the virtual register specifed. Virtual register must have /// an assigned stack slot Virt2PhysMap::iterator loadVirt2PhysReg(unsigned virtReg, unsigned physReg); void printVirtRegAssignment() const { std::cerr << "register assignment:\n"; for (Virt2PhysMap::const_iterator i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) { assert(i->second != 0); std::cerr << '[' << i->first << ',' << mri_->getName(i->second) << "]\n"; } for (Virt2StackSlotMap::const_iterator i = v2ssMap_.begin(), e = v2ssMap_.end(); i != e; ++i) { std::cerr << '[' << i->first << ",ss#" << i->second << "]\n"; } std::cerr << '\n'; } void printIntervals(const char* const str, RA::IntervalPtrs::const_iterator i, RA::IntervalPtrs::const_iterator e) const { if (str) std::cerr << str << " intervals:\n"; for (; i != e; ++i) { std::cerr << "\t\t" << **i << " -> "; unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) { Virt2PhysMap::const_iterator it = v2pMap_.find(reg); reg = (it == v2pMap_.end() ? 0 : it->second); } std::cerr << mri_->getName(reg) << '\n'; } } // void printFreeRegs(const char* const str, // const TargetRegisterClass* rc) const { // if (str) std::cerr << str << ':'; // for (TargetRegisterClass::iterator i = // rc->allocation_order_begin(*mf_); // i != rc->allocation_order_end(*mf_); ++i) { // unsigned reg = *i; // if (!regUse_[reg]) { // std::cerr << ' ' << mri_->getName(reg); // if (reserved_[reg]) std::cerr << "*"; // } // } // std::cerr << '\n'; // } }; } void RA::releaseMemory() { v2pMap_.clear(); v2ssMap_.clear(); unhandled_.clear(); active_.clear(); inactive_.clear(); fixed_.clear(); } bool RA::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); li_ = &getAnalysis(); prt_ = PhysRegTracker(mf_); initIntervalSets(li_->getIntervals()); // FIXME: this will work only for the X86 backend. I need to // device an algorthm to select the minimal (considering register // aliasing) number of temp registers to reserve so that we have 2 // registers for each register class available. // reserve R8: CH, CL // R16: CX, DI, // R32: ECX, EDI, // RFP: FP5, FP6 prt_.reservePhysReg( 8); /* CH */ prt_.reservePhysReg( 9); /* CL */ prt_.reservePhysReg(10); /* CX */ prt_.reservePhysReg(12); /* DI */ prt_.reservePhysReg(18); /* ECX */ prt_.reservePhysReg(19); /* EDI */ prt_.reservePhysReg(28); /* FP5 */ prt_.reservePhysReg(29); /* FP6 */ // linear scan algorithm DEBUG(std::cerr << "Machine Function\n"); DEBUG(printIntervals("\tunhandled", unhandled_.begin(), unhandled_.end())); DEBUG(printIntervals("\tfixed", fixed_.begin(), fixed_.end())); DEBUG(printIntervals("\tactive", active_.begin(), active_.end())); DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); while (!unhandled_.empty() || !fixed_.empty()) { // pick the interval with the earliest start point IntervalPtrs::value_type cur; if (fixed_.empty()) { cur = unhandled_.front(); unhandled_.erase(unhandled_.begin()); } else if (unhandled_.empty()) { cur = fixed_.front(); fixed_.erase(fixed_.begin()); } else if (unhandled_.front()->start() < fixed_.front()->start()) { cur = unhandled_.front(); unhandled_.erase(unhandled_.begin()); } else { cur = fixed_.front(); fixed_.erase(fixed_.begin()); } DEBUG(std::cerr << *cur << '\n'); processActiveIntervals(cur); processInactiveIntervals(cur); // if this register is fixed we are done if (MRegisterInfo::isPhysicalRegister(cur->reg)) { prt_.addPhysRegUse(cur->reg); active_.push_back(cur); } // otherwise we are allocating a virtual register. try to find // a free physical register or spill an interval in order to // assign it one (we could spill the current though). else { assignRegOrStackSlotAtInterval(cur); } DEBUG(printIntervals("\tactive", active_.begin(), active_.end())); DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); } // expire any remaining active intervals for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { unsigned reg = (*i)->reg; DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (MRegisterInfo::isVirtualRegister(reg)) { reg = v2pMap_[reg]; } prt_.delPhysRegUse(reg); } typedef LiveIntervals::Reg2RegMap Reg2RegMap; const Reg2RegMap& r2rMap = li_->getJoinedRegMap(); DEBUG(printVirtRegAssignment()); DEBUG(std::cerr << "Performing coalescing on joined intervals\n"); // perform coalescing if we were passed joined intervals for(Reg2RegMap::const_iterator i = r2rMap.begin(), e = r2rMap.end(); i != e; ++i) { unsigned reg = i->first; unsigned rep = li_->rep(reg); assert((MRegisterInfo::isPhysicalRegister(rep) || v2pMap_.count(rep) || v2ssMap_.count(rep)) && "representative register is not allocated!"); assert(MRegisterInfo::isVirtualRegister(reg) && !v2pMap_.count(reg) && !v2ssMap_.count(reg) && "coalesced register is already allocated!"); if (MRegisterInfo::isPhysicalRegister(rep)) { v2pMap_.insert(std::make_pair(reg, rep)); } else { Virt2PhysMap::const_iterator pr = v2pMap_.find(rep); if (pr != v2pMap_.end()) { v2pMap_.insert(std::make_pair(reg, pr->second)); } else { Virt2StackSlotMap::const_iterator ss = v2ssMap_.find(rep); assert(ss != v2ssMap_.end()); v2ssMap_.insert(std::make_pair(reg, ss->second)); } } } DEBUG(printVirtRegAssignment()); DEBUG(std::cerr << "finished register allocation\n"); const TargetInstrInfo& tii = tm_->getInstrInfo(); DEBUG(std::cerr << "Rewrite machine code:\n"); for (currentMbb_ = mf_->begin(); currentMbb_ != mf_->end(); ++currentMbb_) { instrAdded_ = 0; for (currentInstr_ = currentMbb_->begin(); currentInstr_ != currentMbb_->end(); ) { DEBUG(std::cerr << "\tinstruction: "; currentInstr_->print(std::cerr, *tm_);); // use our current mapping and actually replace and // virtual register with its allocated physical registers DEBUG(std::cerr << "\t\treplacing virtual registers with mapped " "physical registers:\n"); for (unsigned i = 0, e = currentInstr_->getNumOperands(); i != e; ++i) { MachineOperand& op = currentInstr_->getOperand(i); if (op.isRegister() && MRegisterInfo::isVirtualRegister(op.getReg())) { unsigned virtReg = op.getReg(); Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg); if (it != v2pMap_.end()) { DEBUG(std::cerr << "\t\t\t%reg" << it->first << " -> " << mri_->getName(it->second) << '\n'); currentInstr_->SetMachineOperandReg(i, it->second); } } } unsigned srcReg, dstReg; if (tii.isMoveInstr(*currentInstr_, srcReg, dstReg) && ((MRegisterInfo::isPhysicalRegister(srcReg) && MRegisterInfo::isPhysicalRegister(dstReg) && srcReg == dstReg) || (MRegisterInfo::isVirtualRegister(srcReg) && MRegisterInfo::isVirtualRegister(dstReg) && v2ssMap_[srcReg] == v2ssMap_[dstReg]))) { currentInstr_ = currentMbb_->erase(currentInstr_); ++numPeep; DEBUG(std::cerr << "\t\tdeleting instruction\n"); continue; } typedef std::vector Regs; Regs toClear; Regs toSpill; const unsigned numOperands = currentInstr_->getNumOperands(); DEBUG(std::cerr << "\t\tloading temporarily used operands to " "registers:\n"); for (unsigned i = 0; i != numOperands; ++i) { MachineOperand& op = currentInstr_->getOperand(i); if (op.isRegister() && op.isUse() && MRegisterInfo::isVirtualRegister(op.getReg())) { unsigned virtReg = op.getReg(); unsigned physReg = 0; Virt2PhysMap::iterator it = v2pMap_.find(virtReg); if (it != v2pMap_.end()) { physReg = it->second; } else { physReg = getFreeTempPhysReg(virtReg); it = loadVirt2PhysReg(virtReg, physReg); // we will clear uses that are not also defs // before we allocate registers the defs if (op.isDef()) toSpill.push_back(it); else toClear.push_back(it); } currentInstr_->SetMachineOperandReg(i, physReg); } } DEBUG(std::cerr << "\t\tclearing temporarily used but not defined " "operands:\n"); std::for_each(toClear.begin(), toClear.end(), std::bind1st(std::mem_fun(&RA::clearVirtReg), this)); DEBUG(std::cerr << "\t\tassigning temporarily defined operands to " "registers:\n"); for (unsigned i = 0; i != numOperands; ++i) { MachineOperand& op = currentInstr_->getOperand(i); if (op.isRegister() && MRegisterInfo::isVirtualRegister(op.getReg())) { assert(!op.isUse() && "we should not have uses here!"); unsigned virtReg = op.getReg(); unsigned physReg = 0; Virt2PhysMap::iterator it = v2pMap_.find(virtReg); if (it != v2pMap_.end()) { physReg = it->second; } else { physReg = getFreeTempPhysReg(virtReg); it = assignVirt2PhysReg(virtReg, physReg); // need to spill this after we are done with // this instruction toSpill.push_back(it); } currentInstr_->SetMachineOperandReg(i, physReg); } } ++currentInstr_; // spills will go after this instruction DEBUG(std::cerr << "\t\tspilling temporarily defined operands:\n"); std::for_each(toSpill.begin(), toSpill.end(), std::bind1st(std::mem_fun(&RA::spillVirtReg), this)); } } return true; } void RA::initIntervalSets(const LiveIntervals::Intervals& li) { assert(unhandled_.empty() && fixed_.empty() && active_.empty() && inactive_.empty() && "interval sets should be empty on initialization"); for (LiveIntervals::Intervals::const_iterator i = li.begin(), e = li.end(); i != e; ++i) { if (MRegisterInfo::isPhysicalRegister(i->reg)) fixed_.push_back(&*i); else unhandled_.push_back(&*i); } } void RA::processActiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing active intervals:\n"); for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) { unsigned reg = (*i)->reg; // remove expired intervals if ((*i)->expiredAt(cur->start())) { DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (MRegisterInfo::isVirtualRegister(reg)) { reg = v2pMap_[reg]; } prt_.delPhysRegUse(reg); // remove from active i = active_.erase(i); } // move inactive intervals to inactive list else if (!(*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n"); if (MRegisterInfo::isVirtualRegister(reg)) { reg = v2pMap_[reg]; } prt_.delPhysRegUse(reg); // add to inactive inactive_.push_back(*i); // remove from active i = active_.erase(i); } else { ++i; } } } void RA::processInactiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing inactive intervals:\n"); for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) { unsigned reg = (*i)->reg; // remove expired intervals if ((*i)->expiredAt(cur->start())) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n"); // remove from inactive i = inactive_.erase(i); } // move re-activated intervals in active list else if ((*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n"); if (MRegisterInfo::isVirtualRegister(reg)) { reg = v2pMap_[reg]; } prt_.addPhysRegUse(reg); // add to active active_.push_back(*i); // remove from inactive i = inactive_.erase(i); } else { ++i; } } } void RA::updateSpillWeights(unsigned reg, SpillWeights::value_type weight) { spillWeights_[reg] += weight; for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) spillWeights_[*as] += weight; } void RA::assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tallocating current interval:\n"); PhysRegTracker backupPrt = prt_; spillWeights_.assign(mri_->getNumRegs(), 0.0); // for each interval in active update spill weights for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); i != e; ++i) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) reg = v2pMap_[reg]; updateSpillWeights(reg, (*i)->weight); } // for every interval in inactive we overlap with, mark the // register as not free and update spill weights for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { if (cur->overlaps(**i)) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg)) reg = v2pMap_[reg]; prt_.addPhysRegUse(reg); updateSpillWeights(reg, (*i)->weight); } } // for every interval in fixed we overlap with, // mark the register as not free and update spill weights for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end(); i != e; ++i) { if (cur->overlaps(**i)) { unsigned reg = (*i)->reg; prt_.addPhysRegUse(reg); updateSpillWeights(reg, (*i)->weight); } } unsigned physReg = getFreePhysReg(cur); // if we find a free register, we are done: restore original // register tracker, assign this virtual to the free physical // register and add this interval to the active list. if (physReg) { prt_ = backupPrt; assignVirt2PhysReg(cur->reg, physReg); active_.push_back(cur); return; } DEBUG(std::cerr << "\t\tassigning stack slot at interval "<< *cur << ":\n"); float minWeight = std::numeric_limits::infinity(); unsigned minReg = 0; const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (!prt_.isPhysRegReserved(reg) && minWeight > spillWeights_[reg]) { minWeight = spillWeights_[reg]; minReg = reg; } } DEBUG(std::cerr << "\t\t\tregister with min weight: " << mri_->getName(minReg) << " (" << minWeight << ")\n"); // if the current has the minimum weight, we are done: restore // original register tracker and assign a stack slot to this // virtual register if (cur->weight < minWeight) { prt_ = backupPrt; DEBUG(std::cerr << "\t\t\t\tspilling: " << *cur << '\n'); assignVirt2StackSlot(cur->reg); return; } std::vector toSpill(mri_->getNumRegs(), false); toSpill[minReg] = true; for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as) toSpill[*as] = true; std::vector spilled; for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg) && toSpill[v2pMap_[reg]] && cur->overlaps(**i)) { spilled.push_back(v2pMap_[reg]); DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n'); assignVirt2StackSlot(reg); i = active_.erase(i); } else { ++i; } } for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ) { unsigned reg = (*i)->reg; if (MRegisterInfo::isVirtualRegister(reg) && toSpill[v2pMap_[reg]] && cur->overlaps(**i)) { DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n'); assignVirt2StackSlot(reg); i = inactive_.erase(i); } else { ++i; } } physReg = getFreePhysReg(cur); assert(physReg && "no free physical register after spill?"); prt_ = backupPrt; for (unsigned i = 0; i < spilled.size(); ++i) prt_.delPhysRegUse(spilled[i]); assignVirt2PhysReg(cur->reg, physReg); active_.push_back(cur); } unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\t\tgetting free physical register: "); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (prt_.isPhysRegAvail(reg)) { DEBUG(std::cerr << mri_->getName(reg) << '\n'); return reg; } } DEBUG(std::cerr << "no free register\n"); return 0; } unsigned RA::getFreeTempPhysReg(unsigned virtReg) { DEBUG(std::cerr << "\t\tgetting free temporary physical register: "); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); // go in reverse allocation order for the temp registers typedef std::reverse_iterator TRCRevIter; for (TRCRevIter i(rc->allocation_order_end(*mf_)), e(rc->allocation_order_begin(*mf_)); i != e; ++i) { unsigned reg = *i; if (prt_.isReservedPhysRegAvail(reg)) { DEBUG(std::cerr << mri_->getName(reg) << '\n'); return reg; } } assert(0 && "no free temporary physical register?"); return 0; } RA::Virt2PhysMap::iterator RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg) { bool inserted; Virt2PhysMap::iterator it; tie(it, inserted) = v2pMap_.insert(std::make_pair(virtReg, physReg)); assert(inserted && "attempting to assign a virt->phys mapping to an " "already mapped register"); prt_.addPhysRegUse(physReg); return it; } void RA::clearVirtReg(Virt2PhysMap::iterator it) { assert(it != v2pMap_.end() && "attempting to clear a not allocated virtual register"); unsigned physReg = it->second; prt_.delPhysRegUse(physReg); v2pMap_.erase(it); DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg) << "\n"); } void RA::assignVirt2StackSlot(unsigned virtReg) { const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc); bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second; assert(inserted && "attempt to assign stack slot to already assigned register?"); // if the virtual register was previously assigned clear the mapping // and free the virtual register Virt2PhysMap::iterator it = v2pMap_.find(virtReg); if (it != v2pMap_.end()) { clearVirtReg(it); } } int RA::getStackSlot(unsigned virtReg) { Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg); assert(it != v2ssMap_.end() && "attempt to get stack slot on register that does not live on the stack"); return it->second; } void RA::spillVirtReg(Virt2PhysMap::iterator it) { assert(it != v2pMap_.end() && "attempt to spill a not allocated virtual register"); unsigned virtReg = it->first; DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n'); ++numSpilled; instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_, it->second, frameIndex, rc); clearVirtReg(it); } RA::Virt2PhysMap::iterator RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg) { DEBUG(std::cerr << "\t\t\tloading register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n'); ++numReloaded; instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_, physReg, frameIndex, rc); return assignVirt2PhysReg(virtReg, physReg); } FunctionPass* llvm::createLinearScanRegisterAllocator() { return new RA(); }