//===-- ExternalFunctions.cpp - Implement External Functions --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains both code to deal with invoking "external" functions, but // also contains code that implements "exported" external functions. // // External functions in the interpreter are implemented by // using the system's dynamic loader to look up the address of the function // we want to invoke. If a function is found, then one of the // many lle_* wrapper functions in this file will translate its arguments from // GenericValues to the types the function is actually expecting, before the // function is called. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/Target/TargetData.h" #include "Support/DynamicLinker.h" #include "Config/dlfcn.h" #include "Config/link.h" #include #include #include using std::vector; namespace llvm { typedef GenericValue (*ExFunc)(FunctionType *, const vector &); static std::map Functions; static std::map FuncNames; static Interpreter *TheInterpreter; static char getTypeID(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::VoidTyID: return 'V'; case Type::BoolTyID: return 'o'; case Type::UByteTyID: return 'B'; case Type::SByteTyID: return 'b'; case Type::UShortTyID: return 'S'; case Type::ShortTyID: return 's'; case Type::UIntTyID: return 'I'; case Type::IntTyID: return 'i'; case Type::ULongTyID: return 'L'; case Type::LongTyID: return 'l'; case Type::FloatTyID: return 'F'; case Type::DoubleTyID: return 'D'; case Type::PointerTyID: return 'P'; case Type::FunctionTyID: return 'M'; case Type::StructTyID: return 'T'; case Type::ArrayTyID: return 'A'; case Type::OpaqueTyID: return 'O'; default: return 'U'; } } static ExFunc lookupFunction(const Function *F) { // Function not found, look it up... start by figuring out what the // composite function name should be. std::string ExtName = "lle_"; const FunctionType *FT = F->getFunctionType(); for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) ExtName += getTypeID(FT->getContainedType(i)); ExtName += "_" + F->getName(); ExFunc FnPtr = FuncNames[ExtName]; if (FnPtr == 0) FnPtr = (ExFunc)GetAddressOfSymbol(ExtName); if (FnPtr == 0) FnPtr = FuncNames["lle_X_"+F->getName()]; if (FnPtr == 0) // Try calling a generic function... if it exists... FnPtr = (ExFunc)GetAddressOfSymbol(("lle_X_"+F->getName()).c_str()); if (FnPtr != 0) Functions.insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } GenericValue Interpreter::callExternalFunction(Function *M, const std::vector &ArgVals) { TheInterpreter = this; // Do a lookup to see if the function is in our cache... this should just be a // deferred annotation! std::map::iterator FI = Functions.find(M); ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second; if (Fn == 0) { std::cout << "Tried to execute an unknown external function: " << M->getType()->getDescription() << " " << M->getName() << "\n"; return GenericValue(); } // TODO: FIXME when types are not const! GenericValue Result = Fn(const_cast(M->getFunctionType()), ArgVals); return Result; } //===----------------------------------------------------------------------===// // Functions "exported" to the running application... // extern "C" { // Don't add C++ manglings to llvm mangling :) // void putchar(sbyte) GenericValue lle_Vb_putchar(FunctionType *M, const vector &Args) { std::cout << Args[0].SByteVal; return GenericValue(); } // int putchar(int) GenericValue lle_ii_putchar(FunctionType *M, const vector &Args) { std::cout << ((char)Args[0].IntVal) << std::flush; return Args[0]; } // void putchar(ubyte) GenericValue lle_VB_putchar(FunctionType *M, const vector &Args) { std::cout << Args[0].SByteVal << std::flush; return Args[0]; } // void atexit(Function*) GenericValue lle_X_atexit(FunctionType *M, const vector &Args) { assert(Args.size() == 1); TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); GenericValue GV; GV.IntVal = 0; return GV; } // void exit(int) GenericValue lle_X_exit(FunctionType *M, const vector &Args) { TheInterpreter->exitCalled(Args[0]); return GenericValue(); } // void abort(void) GenericValue lle_X_abort(FunctionType *M, const vector &Args) { raise (SIGABRT); return GenericValue(); } // void *malloc(uint) GenericValue lle_X_malloc(FunctionType *M, const vector &Args) { assert(Args.size() == 1 && "Malloc expects one argument!"); return PTOGV(malloc(Args[0].UIntVal)); } // void *calloc(uint, uint) GenericValue lle_X_calloc(FunctionType *M, const vector &Args) { assert(Args.size() == 2 && "calloc expects two arguments!"); return PTOGV(calloc(Args[0].UIntVal, Args[1].UIntVal)); } // void free(void *) GenericValue lle_X_free(FunctionType *M, const vector &Args) { assert(Args.size() == 1); free(GVTOP(Args[0])); return GenericValue(); } // int atoi(char *) GenericValue lle_X_atoi(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = atoi((char*)GVTOP(Args[0])); return GV; } // double pow(double, double) GenericValue lle_X_pow(FunctionType *M, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); return GV; } // double exp(double) GenericValue lle_X_exp(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = exp(Args[0].DoubleVal); return GV; } // double sqrt(double) GenericValue lle_X_sqrt(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = sqrt(Args[0].DoubleVal); return GV; } // double log(double) GenericValue lle_X_log(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = log(Args[0].DoubleVal); return GV; } // double floor(double) GenericValue lle_X_floor(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = floor(Args[0].DoubleVal); return GV; } // double drand48() GenericValue lle_X_drand48(FunctionType *M, const vector &Args) { assert(Args.size() == 0); GenericValue GV; GV.DoubleVal = drand48(); return GV; } // long lrand48() GenericValue lle_X_lrand48(FunctionType *M, const vector &Args) { assert(Args.size() == 0); GenericValue GV; GV.IntVal = lrand48(); return GV; } // void srand48(long) GenericValue lle_X_srand48(FunctionType *M, const vector &Args) { assert(Args.size() == 1); srand48(Args[0].IntVal); return GenericValue(); } // void srand(uint) GenericValue lle_X_srand(FunctionType *M, const vector &Args) { assert(Args.size() == 1); srand(Args[0].UIntVal); return GenericValue(); } // int puts(const char*) GenericValue lle_X_puts(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = puts((char*)GVTOP(Args[0])); return GV; } // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make // output useful. GenericValue lle_X_sprintf(FunctionType *M, const vector &Args) { char *OutputBuffer = (char *)GVTOP(Args[0]); const char *FmtStr = (const char *)GVTOP(Args[1]); unsigned ArgNo = 2; // printf should return # chars printed. This is completely incorrect, but // close enough for now. GenericValue GV; GV.IntVal = strlen(FmtStr); while (1) { switch (*FmtStr) { case 0: return GV; // Null terminator... default: // Normal nonspecial character sprintf(OutputBuffer++, "%c", *FmtStr++); break; case '\\': { // Handle escape codes sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); FmtStr += 2; OutputBuffer += 2; break; } case '%': { // Handle format specifiers char FmtBuf[100] = "", Buffer[1000] = ""; char *FB = FmtBuf; *FB++ = *FmtStr++; char Last = *FB++ = *FmtStr++; unsigned HowLong = 0; while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && Last != 'p' && Last != 's' && Last != '%') { if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's Last = *FB++ = *FmtStr++; } *FB = 0; switch (Last) { case '%': sprintf(Buffer, FmtBuf); break; case 'c': sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break; case 'd': case 'i': case 'u': case 'o': case 'x': case 'X': if (HowLong >= 1) { if (HowLong == 1 && TheInterpreter->getModule().getPointerSize()==Module::Pointer64 && sizeof(long) < sizeof(long long)) { // Make sure we use %lld with a 64 bit argument because we might be // compiling LLI on a 32 bit compiler. unsigned Size = strlen(FmtBuf); FmtBuf[Size] = FmtBuf[Size-1]; FmtBuf[Size+1] = 0; FmtBuf[Size-1] = 'l'; } sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal); } else sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break; case 'e': case 'E': case 'g': case 'G': case 'f': sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; case 'p': sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; case 's': sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; default: std::cout << ""; ArgNo++; break; } strcpy(OutputBuffer, Buffer); OutputBuffer += strlen(Buffer); } break; } } } // int printf(sbyte *, ...) - a very rough implementation to make output useful. GenericValue lle_X_printf(FunctionType *M, const vector &Args) { char Buffer[10000]; vector NewArgs; NewArgs.push_back(PTOGV(Buffer)); NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); GenericValue GV = lle_X_sprintf(M, NewArgs); std::cout << Buffer; return GV; } static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, void *Arg2, void *Arg3, void *Arg4, void *Arg5, void *Arg6, void *Arg7, void *Arg8) { void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; // Loop over the format string, munging read values as appropriate (performs // byteswaps as necessary). unsigned ArgNo = 0; while (*Fmt) { if (*Fmt++ == '%') { // Read any flag characters that may be present... bool Suppress = false; bool Half = false; bool Long = false; bool LongLong = false; // long long or long double while (1) { switch (*Fmt++) { case '*': Suppress = true; break; case 'a': /*Allocate = true;*/ break; // We don't need to track this case 'h': Half = true; break; case 'l': Long = true; break; case 'q': case 'L': LongLong = true; break; default: if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs goto Out; } } Out: // Read the conversion character if (!Suppress && Fmt[-1] != '%') { // Nothing to do? unsigned Size = 0; const Type *Ty = 0; switch (Fmt[-1]) { case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': case 'd': if (Long || LongLong) { Size = 8; Ty = Type::ULongTy; } else if (Half) { Size = 4; Ty = Type::UShortTy; } else { Size = 4; Ty = Type::UIntTy; } break; case 'e': case 'g': case 'E': case 'f': if (Long || LongLong) { Size = 8; Ty = Type::DoubleTy; } else { Size = 4; Ty = Type::FloatTy; } break; case 's': case 'c': case '[': // No byteswap needed Size = 1; Ty = Type::SByteTy; break; default: break; } if (Size) { GenericValue GV; void *Arg = Args[ArgNo++]; memcpy(&GV, Arg, Size); TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); } } } } } // int sscanf(const char *format, ...); GenericValue lle_X_sscanf(FunctionType *M, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9]); ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9], 0); return GV; } // int scanf(const char *format, ...); GenericValue lle_X_scanf(FunctionType *M, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = scanf(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9]); ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9]); return GV; } // int clock(void) - Profiling implementation GenericValue lle_i_clock(FunctionType *M, const vector &Args) { extern int clock(void); GenericValue GV; GV.IntVal = clock(); return GV; } //===----------------------------------------------------------------------===// // String Functions... //===----------------------------------------------------------------------===// // int strcmp(const char *S1, const char *S2); GenericValue lle_X_strcmp(FunctionType *M, const vector &Args) { assert(Args.size() == 2); GenericValue Ret; Ret.IntVal = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])); return Ret; } // char *strcat(char *Dest, const char *src); GenericValue lle_X_strcat(FunctionType *M, const vector &Args) { assert(Args.size() == 2); return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); } // char *strcpy(char *Dest, const char *src); GenericValue lle_X_strcpy(FunctionType *M, const vector &Args) { assert(Args.size() == 2); return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); } // long strlen(const char *src); GenericValue lle_X_strlen(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue Ret; Ret.LongVal = strlen((char*)GVTOP(Args[0])); return Ret; } // char *strdup(const char *src); GenericValue lle_X_strdup(FunctionType *M, const vector &Args) { assert(Args.size() == 1); return PTOGV(strdup((char*)GVTOP(Args[0]))); } // char *__strdup(const char *src); GenericValue lle_X___strdup(FunctionType *M, const vector &Args) { assert(Args.size() == 1); return PTOGV(strdup((char*)GVTOP(Args[0]))); } // void *memset(void *S, int C, size_t N) GenericValue lle_X_memset(FunctionType *M, const vector &Args) { assert(Args.size() == 3); return PTOGV(memset(GVTOP(Args[0]), Args[1].IntVal, Args[2].UIntVal)); } // void *memcpy(void *Dest, void *src, size_t Size); GenericValue lle_X_memcpy(FunctionType *M, const vector &Args) { assert(Args.size() == 3); return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), Args[2].UIntVal)); } //===----------------------------------------------------------------------===// // IO Functions... //===----------------------------------------------------------------------===// // getFILE - Turn a pointer in the host address space into a legit pointer in // the interpreter address space. For the most part, this is an identity // transformation, but if the program refers to stdio, stderr, stdin then they // have pointers that are relative to the __iob array. If this is the case, // change the FILE into the REAL stdio stream. // static FILE *getFILE(void *Ptr) { static Module *LastMod = 0; static PointerTy IOBBase = 0; static unsigned FILESize; if (LastMod != &TheInterpreter->getModule()) { // Module change or initialize? Module *M = LastMod = &TheInterpreter->getModule(); // Check to see if the currently loaded module contains an __iob symbol... GlobalVariable *IOB = 0; SymbolTable &ST = M->getSymbolTable(); for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) { SymbolTable::VarMap &M = I->second; for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end(); J != E; ++J) if (J->first == "__iob") if ((IOB = dyn_cast(J->second))) break; if (IOB) break; } #if 0 /// FIXME! __iob support for LLI // If we found an __iob symbol now, find out what the actual address it's // held in is... if (IOB) { // Get the address the array lives in... GlobalAddress *Address = (GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID); IOBBase = (PointerTy)(GenericValue*)Address->Ptr; // Figure out how big each element of the array is... const ArrayType *AT = dyn_cast(IOB->getType()->getElementType()); if (AT) FILESize = TD.getTypeSize(AT->getElementType()); else FILESize = 16*8; // Default size } #endif } // Check to see if this is a reference to __iob... if (IOBBase) { unsigned FDNum = ((unsigned long)Ptr-IOBBase)/FILESize; if (FDNum == 0) return stdin; else if (FDNum == 1) return stdout; else if (FDNum == 2) return stderr; } return (FILE*)Ptr; } // FILE *fopen(const char *filename, const char *mode); GenericValue lle_X_fopen(FunctionType *M, const vector &Args) { assert(Args.size() == 2); return PTOGV(fopen((const char *)GVTOP(Args[0]), (const char *)GVTOP(Args[1]))); } // int fclose(FILE *F); GenericValue lle_X_fclose(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = fclose(getFILE(GVTOP(Args[0]))); return GV; } // int feof(FILE *stream); GenericValue lle_X_feof(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = feof(getFILE(GVTOP(Args[0]))); return GV; } // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); GenericValue lle_X_fread(FunctionType *M, const vector &Args) { assert(Args.size() == 4); GenericValue GV; GV.UIntVal = fread((void*)GVTOP(Args[0]), Args[1].UIntVal, Args[2].UIntVal, getFILE(GVTOP(Args[3]))); return GV; } // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); GenericValue lle_X_fwrite(FunctionType *M, const vector &Args) { assert(Args.size() == 4); GenericValue GV; GV.UIntVal = fwrite((void*)GVTOP(Args[0]), Args[1].UIntVal, Args[2].UIntVal, getFILE(GVTOP(Args[3]))); return GV; } // char *fgets(char *s, int n, FILE *stream); GenericValue lle_X_fgets(FunctionType *M, const vector &Args) { assert(Args.size() == 3); return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal, getFILE(GVTOP(Args[2])))); } // FILE *freopen(const char *path, const char *mode, FILE *stream); GenericValue lle_X_freopen(FunctionType *M, const vector &Args) { assert(Args.size() == 3); return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), getFILE(GVTOP(Args[2])))); } // int fflush(FILE *stream); GenericValue lle_X_fflush(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = fflush(getFILE(GVTOP(Args[0]))); return GV; } // int getc(FILE *stream); GenericValue lle_X_getc(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = getc(getFILE(GVTOP(Args[0]))); return GV; } // int _IO_getc(FILE *stream); GenericValue lle_X__IO_getc(FunctionType *F, const vector &Args) { return lle_X_getc(F, Args); } // int fputc(int C, FILE *stream); GenericValue lle_X_fputc(FunctionType *M, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1]))); return GV; } // int ungetc(int C, FILE *stream); GenericValue lle_X_ungetc(FunctionType *M, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1]))); return GV; } // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output // useful. GenericValue lle_X_fprintf(FunctionType *M, const vector &Args) { assert(Args.size() >= 2); char Buffer[10000]; vector NewArgs; NewArgs.push_back(PTOGV(Buffer)); NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); GenericValue GV = lle_X_sprintf(M, NewArgs); fputs(Buffer, getFILE(GVTOP(Args[0]))); return GV; } //===----------------------------------------------------------------------===// // LLVM Intrinsic Functions... //===----------------------------------------------------------------------===// // llvm.va_start() - Implement the va_start operation... GenericValue llvm_va_start(FunctionType *F, const vector &Args) { assert(Args.size() == 0); GenericValue Val; Val.UIntVal = 0; // Start at the first '...' argument... return Val; } // void llvm.va_end( *) - Implement the va_end operation... GenericValue llvm_va_end(FunctionType *F, const vector &Args) { assert(Args.size() == 1); return GenericValue(); // Noop! } // llvm.va_copy() - Implement the va_copy operation... GenericValue llvm_va_copy(FunctionType *F, const vector &Args) { assert(Args.size() == 1); return Args[0]; } } // End extern "C" void Interpreter::initializeExternalFunctions() { FuncNames["lle_Vb_putchar"] = lle_Vb_putchar; FuncNames["lle_ii_putchar"] = lle_ii_putchar; FuncNames["lle_VB_putchar"] = lle_VB_putchar; FuncNames["lle_X_exit"] = lle_X_exit; FuncNames["lle_X_abort"] = lle_X_abort; FuncNames["lle_X_malloc"] = lle_X_malloc; FuncNames["lle_X_calloc"] = lle_X_calloc; FuncNames["lle_X_free"] = lle_X_free; FuncNames["lle_X_atoi"] = lle_X_atoi; FuncNames["lle_X_pow"] = lle_X_pow; FuncNames["lle_X_exp"] = lle_X_exp; FuncNames["lle_X_log"] = lle_X_log; FuncNames["lle_X_floor"] = lle_X_floor; FuncNames["lle_X_srand"] = lle_X_srand; FuncNames["lle_X_drand48"] = lle_X_drand48; FuncNames["lle_X_srand48"] = lle_X_srand48; FuncNames["lle_X_lrand48"] = lle_X_lrand48; FuncNames["lle_X_sqrt"] = lle_X_sqrt; FuncNames["lle_X_puts"] = lle_X_puts; FuncNames["lle_X_printf"] = lle_X_printf; FuncNames["lle_X_sprintf"] = lle_X_sprintf; FuncNames["lle_X_sscanf"] = lle_X_sscanf; FuncNames["lle_X_scanf"] = lle_X_scanf; FuncNames["lle_i_clock"] = lle_i_clock; FuncNames["lle_X_strcmp"] = lle_X_strcmp; FuncNames["lle_X_strcat"] = lle_X_strcat; FuncNames["lle_X_strcpy"] = lle_X_strcpy; FuncNames["lle_X_strlen"] = lle_X_strlen; FuncNames["lle_X___strdup"] = lle_X___strdup; FuncNames["lle_X_memset"] = lle_X_memset; FuncNames["lle_X_memcpy"] = lle_X_memcpy; FuncNames["lle_X_fopen"] = lle_X_fopen; FuncNames["lle_X_fclose"] = lle_X_fclose; FuncNames["lle_X_feof"] = lle_X_feof; FuncNames["lle_X_fread"] = lle_X_fread; FuncNames["lle_X_fwrite"] = lle_X_fwrite; FuncNames["lle_X_fgets"] = lle_X_fgets; FuncNames["lle_X_fflush"] = lle_X_fflush; FuncNames["lle_X_fgetc"] = lle_X_getc; FuncNames["lle_X_getc"] = lle_X_getc; FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; FuncNames["lle_X_fputc"] = lle_X_fputc; FuncNames["lle_X_ungetc"] = lle_X_ungetc; FuncNames["lle_X_fprintf"] = lle_X_fprintf; FuncNames["lle_X_freopen"] = lle_X_freopen; FuncNames["lle_X_llvm.va_start"]= llvm_va_start; FuncNames["lle_X_llvm.va_end"] = llvm_va_end; FuncNames["lle_X_llvm.va_copy"] = llvm_va_copy; } } // End llvm namespace