//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines various stuff that is used by the bytecode reader. // //===----------------------------------------------------------------------===// #ifndef READER_INTERNALS_H #define READER_INTERNALS_H #include "ReaderPrimitives.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/ModuleProvider.h" #include #include namespace llvm { // Enable to trace to figure out what the heck is going on when parsing fails //#define TRACE_LEVEL 10 //#define DEBUG_OUTPUT #if TRACE_LEVEL // ByteCodeReading_TRACEr #define BCR_TRACE(n, X) \ if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X #else #define BCR_TRACE(n, X) #endif struct LazyFunctionInfo { const unsigned char *Buf, *EndBuf; LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0) : Buf(B), EndBuf(EB) {} }; class BytecodeParser : public ModuleProvider { BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT void operator=(const BytecodeParser &); // DO NOT IMPLEMENT public: BytecodeParser() {} ~BytecodeParser() { freeState(); } void freeState() { freeTable(Values); freeTable(ModuleValues); } Module* materializeModule() { while (! LazyFunctionLoadMap.empty()) { std::map::iterator i = LazyFunctionLoadMap.begin(); materializeFunction((*i).first); } return TheModule; } Module* releaseModule() { // Since we're losing control of this Module, we must hand it back complete Module *M = ModuleProvider::releaseModule(); freeState(); return M; } void ParseBytecode(const unsigned char *Buf, unsigned Length, const std::string &ModuleID); void dump() const { std::cerr << "BytecodeParser instance!\n"; } private: struct ValueList : public User { ValueList() : User(Type::TypeTy, Value::TypeVal) {} // vector compatibility methods unsigned size() const { return getNumOperands(); } void push_back(Value *V) { Operands.push_back(Use(V, this)); } Value *back() const { return Operands.back(); } void pop_back() { Operands.pop_back(); } bool empty() const { return Operands.empty(); } virtual void print(std::ostream& OS) const { OS << "Bytecode Reader UseHandle!"; } }; // Information about the module, extracted from the bytecode revision number. unsigned char RevisionNum; // The rev # itself bool hasExtendedLinkageSpecs; // Supports more than 4 linkage types bool hasOldStyleVarargs; // Has old version of varargs intrinsics? bool hasVarArgCallPadding; // Bytecode has extra padding in vararg call bool usesOldStyleVarargs; // Does this module USE old style varargs? // Flags to distinguish LLVM 1.0 & 1.1 bytecode formats (revision #0) // Revision #0 had an explicit alignment of data only for the ModuleGlobalInfo // block. This was fixed to be like all other blocks in 1.2 bool hasInconsistentModuleGlobalInfo; // Revision #0 also explicitly encoded zero values for primitive types like // int/sbyte/etc. bool hasExplicitPrimitiveZeros; typedef std::vector ValueTable; ValueTable Values; ValueTable ModuleValues; std::map, Value*> ForwardReferences; /// CompactionTable - If a compaction table is active in the current function, /// this is the mapping that it contains. std::vector > CompactionTable; std::vector ParsedBasicBlocks; // ConstantFwdRefs - This maintains a mapping between 's and // forward references to constants. Such values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. // typedef std::map, Constant*> ConstantRefsType; ConstantRefsType ConstantFwdRefs; // TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used // to deal with forward references to types. // typedef std::vector TypeValuesListTy; TypeValuesListTy ModuleTypeValues; TypeValuesListTy FunctionTypeValues; // When the ModuleGlobalInfo section is read, we create a function object for // each function in the module. When the function is loaded, this function is // filled in. // std::vector FunctionSignatureList; // Constant values are read in after global variables. Because of this, we // must defer setting the initializers on global variables until after module // level constants have been read. In the mean time, this list keeps track of // what we must do. // std::vector > GlobalInits; // For lazy reading-in of functions, we need to save away several pieces of // information about each function: its begin and end pointer in the buffer // and its FunctionSlot. // std::map LazyFunctionLoadMap; private: void freeTable(ValueTable &Tab) { while (!Tab.empty()) { delete Tab.back(); Tab.pop_back(); } } /// getGlobalTableType - This is just like getType, but when a compaction /// table is in use, it is ignored. Also, no forward references or other /// fancy features are supported. const Type *getGlobalTableType(unsigned Slot) { if (Slot < Type::FirstDerivedTyID) { const Type *Ty = Type::getPrimitiveType((Type::PrimitiveID)Slot); assert(Ty && "Not a primitive type ID?"); return Ty; } Slot -= Type::FirstDerivedTyID; if (Slot >= ModuleTypeValues.size()) throw std::string("Illegal compaction table type reference!"); return ModuleTypeValues[Slot]; } unsigned getGlobalTableTypeSlot(const Type *Ty) { if (Ty->isPrimitiveType()) return Ty->getPrimitiveID(); TypeValuesListTy::iterator I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty); if (I == ModuleTypeValues.end()) throw std::string("Didn't find type in ModuleTypeValues."); return Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]); } /// getGlobalTableValue - This is just like getValue, but when a compaction /// table is in use, it is ignored. Also, no forward references or other /// fancy features are supported. Value *getGlobalTableValue(const Type *Ty, unsigned SlotNo) { // FIXME: getTypeSlot is inefficient! unsigned TyID = getGlobalTableTypeSlot(Ty); if (TyID != Type::LabelTyID) { if (SlotNo == 0) return Constant::getNullValue(Ty); --SlotNo; } if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 || SlotNo >= ModuleValues[TyID]->getNumOperands()) { std::cerr << TyID << ", " << SlotNo << ": " << ModuleValues.size() << ", " << (void*)ModuleValues[TyID] << ", " << ModuleValues[TyID]->getNumOperands() << "\n"; throw std::string("Corrupt compaction table entry!"); } return ModuleValues[TyID]->getOperand(SlotNo); } public: void ParseModule(const unsigned char * Buf, const unsigned char *End); void materializeFunction(Function *F); private: void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End); void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E); void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End, SymbolTable *, Function *CurrentFunction); void ParseFunction(const unsigned char *&Buf, const unsigned char *End); void ParseCompactionTable(const unsigned char *&Buf,const unsigned char *End); void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf); BasicBlock *ParseBasicBlock(const unsigned char *&Buf, const unsigned char *End, unsigned BlockNo); unsigned ParseInstructionList(Function *F, const unsigned char *&Buf, const unsigned char *EndBuf); void ParseInstruction(const unsigned char *&Buf, const unsigned char *End, std::vector &Args, BasicBlock *BB); void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab); Constant *parseConstantValue(const unsigned char *&Buf, const unsigned char *End, unsigned TypeID); void parseTypeConstants(const unsigned char *&Buf, const unsigned char *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries); const Type *parseTypeConstant(const unsigned char *&Buf, const unsigned char *EndBuf); void parseStringConstants(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned NumEntries, ValueTable &Tab); Value *getValue(unsigned TypeID, unsigned num, bool Create = true); const Type *getType(unsigned ID); BasicBlock *getBasicBlock(unsigned ID); Constant *getConstantValue(unsigned TypeID, unsigned num); Constant *getConstantValue(const Type *Ty, unsigned num) { return getConstantValue(getTypeSlot(Ty), num); } unsigned insertValue(Value *V, unsigned Type, ValueTable &Table); unsigned getTypeSlot(const Type *Ty); // resolve all references to the placeholder (if any) for the given constant void ResolveReferencesToConstant(Constant *C, unsigned Slot); }; template class PlaceholderDef : public SuperType { unsigned ID; PlaceholderDef(); // DO NOT IMPLEMENT void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT public: PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {} unsigned getID() { return ID; } }; struct ConstantPlaceHolderHelper : public ConstantExpr { ConstantPlaceHolderHelper(const Type *Ty) : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {} }; typedef PlaceholderDef ConstPHolder; static inline void readBlock(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned &Type, unsigned &Size) { Type = read(Buf, EndBuf); Size = read(Buf, EndBuf); } } // End llvm namespace #endif