//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // CodeEmitterGen uses the descriptions of instructions and their fields to // construct an automated code emitter: a function that, given a MachineInstr, // returns the (currently, 32-bit unsigned) value of the instruction. // //===----------------------------------------------------------------------===// #include "CodeEmitterGen.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" using namespace llvm; void CodeEmitterGen::reverseBits(std::vector &Insts) { for (std::vector::iterator I = Insts.begin(), E = Insts.end(); I != E; ++I) { Record *R = *I; if (R->getName() == "PHI" || R->getName() == "INLINEASM" || R->getName() == "LABEL" || R->getName() == "EXTRACT_SUBREG" || R->getName() == "INSERT_SUBREG") continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); unsigned numBits = BI->getNumBits(); BitsInit *NewBI = new BitsInit(numBits); for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { unsigned bitSwapIdx = numBits - bit - 1; Init *OrigBit = BI->getBit(bit); Init *BitSwap = BI->getBit(bitSwapIdx); NewBI->setBit(bit, BitSwap); NewBI->setBit(bitSwapIdx, OrigBit); } if (numBits % 2) { unsigned middle = (numBits + 1) / 2; NewBI->setBit(middle, BI->getBit(middle)); } // Update the bits in reversed order so that emitInstrOpBits will get the // correct endianness. R->getValue("Inst")->setValue(NewBI); } } // If the VarBitInit at position 'bit' matches the specified variable then // return the variable bit position. Otherwise return -1. int CodeEmitterGen::getVariableBit(const std::string &VarName, BitsInit *BI, int bit) { if (VarBitInit *VBI = dynamic_cast(BI->getBit(bit))) { TypedInit *TI = VBI->getVariable(); if (VarInit *VI = dynamic_cast(TI)) { if (VI->getName() == VarName) return VBI->getBitNum(); } } return -1; } void CodeEmitterGen::run(std::ostream &o) { CodeGenTarget Target; std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); // For little-endian instruction bit encodings, reverse the bit order if (Target.isLittleEndianEncoding()) reverseBits(Insts); EmitSourceFileHeader("Machine Code Emitter", o); std::string Namespace = Insts[0]->getValueAsString("Namespace") + "::"; std::vector NumberedInstructions; Target.getInstructionsByEnumValue(NumberedInstructions); // Emit function declaration o << "unsigned " << Target.getName() << "CodeEmitter::" << "getBinaryCodeForInstr(MachineInstr &MI) {\n"; // Emit instruction base values o << " static const unsigned InstBits[] = {\n"; for (std::vector::iterator IN = NumberedInstructions.begin(), EN = NumberedInstructions.end(); IN != EN; ++IN) { const CodeGenInstruction *CGI = *IN; Record *R = CGI->TheDef; if (IN != NumberedInstructions.begin()) o << ",\n"; if (R->getName() == "PHI" || R->getName() == "INLINEASM" || R->getName() == "LABEL" || R->getName() == "EXTRACT_SUBREG" || R->getName() == "INSERT_SUBREG") { o << " 0U"; continue; } BitsInit *BI = R->getValueAsBitsInit("Inst"); // Start by filling in fixed values... unsigned Value = 0; for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { if (BitInit *B = dynamic_cast(BI->getBit(e-i-1))) { Value |= B->getValue() << (e-i-1); } } o << " " << Value << "U"; } o << "\n };\n"; // Map to accumulate all the cases. std::map > CaseMap; // Construct all cases statement for each opcode for (std::vector::iterator IC = Insts.begin(), EC = Insts.end(); IC != EC; ++IC) { Record *R = *IC; const std::string &InstName = R->getName(); std::string Case(""); if (InstName == "PHI" || InstName == "INLINEASM" || InstName == "LABEL"|| InstName == "EXTRACT_SUBREG" || InstName == "INSERT_SUBREG") continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); const std::vector &Vals = R->getValues(); CodeGenInstruction &CGI = Target.getInstruction(InstName); // Loop over all of the fields in the instruction, determining which are the // operands to the instruction. unsigned op = 0; for (unsigned i = 0, e = Vals.size(); i != e; ++i) { if (!Vals[i].getPrefix() && !Vals[i].getValue()->isComplete()) { // Is the operand continuous? If so, we can just mask and OR it in // instead of doing it bit-by-bit, saving a lot in runtime cost. const std::string &VarName = Vals[i].getName(); bool gotOp = false; for (int bit = BI->getNumBits()-1; bit >= 0; ) { int varBit = getVariableBit(VarName, BI, bit); if (varBit == -1) { --bit; } else { int beginInstBit = bit; int beginVarBit = varBit; int N = 1; for (--bit; bit >= 0;) { varBit = getVariableBit(VarName, BI, bit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --bit; } if (!gotOp) { /// If this operand is not supposed to be emitted by the generated /// emitter, skip it. while (CGI.isFlatOperandNotEmitted(op)) ++op; Case += " // op: " + VarName + "\n" + " op = getMachineOpValue(MI, MI.getOperand(" + utostr(op++) + "));\n"; gotOp = true; } unsigned opMask = (1 << N) - 1; int opShift = beginVarBit - N + 1; opMask <<= opShift; opShift = beginInstBit - beginVarBit; if (opShift > 0) { Case += " Value |= (op & " + utostr(opMask) + "U) << " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " Value |= (op & " + utostr(opMask) + "U) >> " + itostr(-opShift) + ";\n"; } else { Case += " Value |= op & " + utostr(opMask) + "U;\n"; } } } } } std::vector &InstList = CaseMap[Case]; InstList.push_back(InstName); } // Emit initial function code o << " const unsigned opcode = MI.getOpcode();\n" << " unsigned Value = InstBits[opcode];\n" << " unsigned op;\n" << " switch (opcode) {\n"; // Emit each case statement std::map >::iterator IE, EE; for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { const std::string &Case = IE->first; std::vector &InstList = IE->second; for (int i = 0, N = InstList.size(); i < N; i++) { if (i) o << "\n"; o << " case " << Namespace << InstList[i] << ":"; } o << " {\n"; o << Case; o << " break;\n" << " }\n"; } // Default case: unhandled opcode o << " default:\n" << " cerr << \"Not supported instr: \" << MI << \"\\n\";\n" << " abort();\n" << " }\n" << " return Value;\n" << "}\n\n"; }