//===- ProfileInfoLoaderPass.cpp - LLVM Pass to load profile info ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a concrete implementation of profiling information that // loads the information from a profile dump file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "profile-loader" #include "llvm/BasicBlock.h" #include "llvm/InstrTypes.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Analysis/ProfileInfoLoader.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Format.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallSet.h" #include using namespace llvm; STATISTIC(NumEdgesRead, "The # of edges read."); static cl::opt ProfileInfoFilename("profile-info-file", cl::init("llvmprof.out"), cl::value_desc("filename"), cl::desc("Profile file loaded by -profile-loader")); namespace { class LoaderPass : public ModulePass, public ProfileInfo { std::string Filename; std::set SpanningTree; std::set BBisUnvisited; unsigned ReadCount; public: static char ID; // Class identification, replacement for typeinfo explicit LoaderPass(const std::string &filename = "") : ModulePass(&ID), Filename(filename) { if (filename.empty()) Filename = ProfileInfoFilename; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } virtual const char *getPassName() const { return "Profiling information loader"; } // recurseBasicBlock() - Calculates the edge weights for as much basic // blocks as possbile. virtual void recurseBasicBlock(const BasicBlock *BB); virtual void readEdgeOrRemember(Edge, Edge&, unsigned &, double &); virtual void readEdge(ProfileInfo::Edge, std::vector&); /// run - Load the profile information from the specified file. virtual bool runOnModule(Module &M); }; } // End of anonymous namespace char LoaderPass::ID = 0; static RegisterPass X("profile-loader", "Load profile information from llvmprof.out", false, true); static RegisterAnalysisGroup Y(X); const PassInfo *llvm::ProfileLoaderPassID = &X; ModulePass *llvm::createProfileLoaderPass() { return new LoaderPass(); } /// createProfileLoaderPass - This function returns a Pass that loads the /// profiling information for the module from the specified filename, making it /// available to the optimizers. Pass *llvm::createProfileLoaderPass(const std::string &Filename) { return new LoaderPass(Filename); } void LoaderPass::readEdgeOrRemember(Edge edge, Edge &tocalc, unsigned &uncalc, double &count) { double w; if ((w = getEdgeWeight(edge)) == MissingValue) { tocalc = edge; uncalc++; } else { count+=w; } } // recurseBasicBlock - Visits all neighbours of a block and then tries to // calculate the missing edge values. void LoaderPass::recurseBasicBlock(const BasicBlock *BB) { // break recursion if already visited if (BBisUnvisited.find(BB) == BBisUnvisited.end()) return; BBisUnvisited.erase(BB); if (!BB) return; for (succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB); bbi != bbe; ++bbi) { recurseBasicBlock(*bbi); } for (pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB); bbi != bbe; ++bbi) { recurseBasicBlock(*bbi); } Edge tocalc; if (CalculateMissingEdge(BB, tocalc)) { SpanningTree.erase(tocalc); } } void LoaderPass::readEdge(ProfileInfo::Edge e, std::vector &ECs) { if (ReadCount < ECs.size()) { double weight = ECs[ReadCount++]; if (weight != ProfileInfoLoader::Uncounted) { // Here the data realm changes from the unsigned of the file to the // double of the ProfileInfo. This conversion is save because we know // that everything thats representable in unsinged is also representable // in double. EdgeInformation[getFunction(e)][e] += (double)weight; DEBUG(errs() << "--Read Edge Counter for " << e << " (# "<< (ReadCount-1) << "): " << (unsigned)getEdgeWeight(e) << "\n"); } else { // This happens only if reading optimal profiling information, not when // reading regular profiling information. SpanningTree.insert(e); } } } bool LoaderPass::runOnModule(Module &M) { ProfileInfoLoader PIL("profile-loader", Filename, M); EdgeInformation.clear(); std::vector Counters = PIL.getRawEdgeCounts(); if (Counters.size() > 0) { ReadCount = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; DEBUG(errs()<<"Working on "<getNameStr()<<"\n"); readEdge(getEdge(0,&F->getEntryBlock()), Counters); for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) { readEdge(getEdge(BB,TI->getSuccessor(s)), Counters); } } } if (ReadCount != Counters.size()) { errs() << "WARNING: profile information is inconsistent with " << "the current program!\n"; } NumEdgesRead = ReadCount; } Counters = PIL.getRawOptimalEdgeCounts(); if (Counters.size() > 0) { ReadCount = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; DEBUG(errs()<<"Working on "<getNameStr()<<"\n"); readEdge(getEdge(0,&F->getEntryBlock()), Counters); for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); if (TI->getNumSuccessors() == 0) { readEdge(getEdge(BB,0), Counters); } for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) { readEdge(getEdge(BB,TI->getSuccessor(s)), Counters); } } while (SpanningTree.size() > 0) { unsigned size = SpanningTree.size(); BBisUnvisited.clear(); for (std::set::iterator ei = SpanningTree.begin(), ee = SpanningTree.end(); ei != ee; ++ei) { BBisUnvisited.insert(ei->first); BBisUnvisited.insert(ei->second); } while (BBisUnvisited.size() > 0) { recurseBasicBlock(*BBisUnvisited.begin()); } if (SpanningTree.size() == size) { DEBUG(errs()<<"{"); for (std::set::iterator ei = SpanningTree.begin(), ee = SpanningTree.end(); ei != ee; ++ei) { DEBUG(errs()<< *ei <<","); } assert(0 && "No edge calculated!"); } } } if (ReadCount != Counters.size()) { errs() << "WARNING: profile information is inconsistent with " << "the current program!\n"; } NumEdgesRead = ReadCount; } BlockInformation.clear(); Counters = PIL.getRawBlockCounts(); if (Counters.size() > 0) { ReadCount = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReadCount < Counters.size()) // Here the data realm changes from the unsigned of the file to the // double of the ProfileInfo. This conversion is save because we know // that everything thats representable in unsinged is also // representable in double. BlockInformation[F][BB] = (double)Counters[ReadCount++]; } if (ReadCount != Counters.size()) { errs() << "WARNING: profile information is inconsistent with " << "the current program!\n"; } } FunctionInformation.clear(); Counters = PIL.getRawFunctionCounts(); if (Counters.size() > 0) { ReadCount = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; if (ReadCount < Counters.size()) // Here the data realm changes from the unsigned of the file to the // double of the ProfileInfo. This conversion is save because we know // that everything thats representable in unsinged is also // representable in double. FunctionInformation[F] = (double)Counters[ReadCount++]; } if (ReadCount != Counters.size()) { errs() << "WARNING: profile information is inconsistent with " << "the current program!\n"; } } return false; }