//===- Target/MRegisterInfo.h - Target Register Information -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes an abstract interface used to get information about a // target machines register file. This information is used for a variety of // purposed, especially register allocation. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_MREGISTERINFO_H #define LLVM_TARGET_MREGISTERINFO_H #include "llvm/CodeGen/MachineBasicBlock.h" #include #include namespace llvm { class Type; class MachineFunction; class MachineInstr; /// MRegisterDesc - This record contains all of the information known about a /// particular register. The AliasSet field (if not null) contains a pointer to /// a Zero terminated array of registers that this register aliases. This is /// needed for architectures like X86 which have AL alias AX alias EAX. /// Registers that this does not apply to simply should set this to null. /// struct MRegisterDesc { const char *Name; // Assembly language name for the register const unsigned *AliasSet; // Register Alias Set, described above unsigned Flags; // Flags identifying register properties (below) unsigned TSFlags; // Target Specific Flags }; class TargetRegisterClass { public: typedef const unsigned* iterator; typedef const unsigned* const_iterator; private: const unsigned RegSize, Alignment; // Size & Alignment of register in bytes const iterator RegsBegin, RegsEnd; public: TargetRegisterClass(unsigned RS, unsigned Al, iterator RB, iterator RE) : RegSize(RS), Alignment(Al), RegsBegin(RB), RegsEnd(RE) {} virtual ~TargetRegisterClass() {} // Allow subclasses // begin/end - Return all of the registers in this class. iterator begin() const { return RegsBegin; } iterator end() const { return RegsEnd; } // getNumRegs - Return the number of registers in this class unsigned getNumRegs() const { return RegsEnd-RegsBegin; } // getRegister - Return the specified register in the class unsigned getRegister(unsigned i) const { assert(i < getNumRegs() && "Register number out of range!"); return RegsBegin[i]; } /// allocation_order_begin/end - These methods define a range of registers /// which specify the registers in this class that are valid to register /// allocate, and the preferred order to allocate them in. For example, /// callee saved registers should be at the end of the list, because it is /// cheaper to allocate caller saved registers. /// /// These methods take a MachineFunction argument, which can be used to tune /// the allocatable registers based on the characteristics of the function. /// One simple example is that the frame pointer register can be used if /// frame-pointer-elimination is performed. /// /// By default, these methods return all registers in the class. /// virtual iterator allocation_order_begin(MachineFunction &MF) const { return begin(); } virtual iterator allocation_order_end(MachineFunction &MF) const { return end(); } /// getSize - Return the size of the register in bytes, which is also the size /// of a stack slot allocated to hold a spilled copy of this register. unsigned getSize() const { return RegSize; } /// getAlignment - Return the minimum required alignment for a register of /// this class. unsigned getAlignment() const { return Alignment; } }; /// MRegisterInfo base class - We assume that the target defines a static array /// of MRegisterDesc objects that represent all of the machine registers that /// the target has. As such, we simply have to track a pointer to this array so /// that we can turn register number into a register descriptor. /// class MRegisterInfo { public: typedef const TargetRegisterClass * const * regclass_iterator; private: const MRegisterDesc *Desc; // Pointer to the descriptor array unsigned NumRegs; // Number of entries in the array regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses const TargetRegisterClass **PhysRegClasses; // Reg class for each register int CallFrameSetupOpcode, CallFrameDestroyOpcode; protected: MRegisterInfo(const MRegisterDesc *D, unsigned NR, regclass_iterator RegClassBegin, regclass_iterator RegClassEnd, int CallFrameSetupOpcode = -1, int CallFrameDestroyOpcode = -1); virtual ~MRegisterInfo(); public: enum { // Define some target independent constants /// NoRegister - This 'hard' register is a 'noop' register for all backends. /// This is used as the destination register for instructions that do not /// produce a value. Some frontends may use this as an operand register to /// mean special things, for example, the Sparc backend uses R0 to mean %g0 /// which always PRODUCES the value 0. The X86 backend does not use this /// value as an operand register, except for memory references. /// NoRegister = 0, /// FirstVirtualRegister - This is the first register number that is /// considered to be a 'virtual' register, which is part of the SSA /// namespace. This must be the same for all targets, which means that each /// target is limited to 1024 registers. /// FirstVirtualRegister = 1024, }; /// isPhysicalRegister - Return true if the specified register number is in /// the physical register namespace. static bool isPhysicalRegister(unsigned Reg) { assert(Reg && "this is not a register!"); return Reg < FirstVirtualRegister; } /// isVirtualRegister - Return true if the specified register number is in /// the virtual register namespace. static bool isVirtualRegister(unsigned Reg) { assert(Reg && "this is not a register!"); return Reg >= FirstVirtualRegister; } const MRegisterDesc &operator[](unsigned RegNo) const { assert(RegNo < NumRegs && "Attempting to access record for invalid register number!"); return Desc[RegNo]; } /// Provide a get method, equivalent to [], but more useful if we have a /// pointer to this object. /// const MRegisterDesc &get(unsigned RegNo) const { return operator[](RegNo); } /// getRegClass - Return the register class for the specified physical /// register. /// const TargetRegisterClass *getRegClass(unsigned RegNo) const { assert(RegNo < NumRegs && "Register number out of range!"); assert(PhysRegClasses[RegNo] && "Register is not in a class!"); return PhysRegClasses[RegNo]; } /// getAliasSet - Return the set of registers aliased by the specified /// register, or a null list of there are none. The list returned is zero /// terminated. /// const unsigned *getAliasSet(unsigned RegNo) const { return get(RegNo).AliasSet; } /// getName - Return the symbolic target specific name for the specified /// physical register. const char *getName(unsigned RegNo) const { return get(RegNo).Name; } /// getNumRegs - Return the number of registers this target has /// (useful for sizing arrays holding per register information) unsigned getNumRegs() const { return NumRegs; } /// areAliases - Returns true if the two registers alias each other, /// false otherwise bool areAliases(unsigned regA, unsigned regB) const { for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias) if (*Alias == regA) return true; return false; } virtual const unsigned* getCalleeSaveRegs() const = 0; //===--------------------------------------------------------------------===// // Register Class Information // /// Register class iterators /// regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_iterator regclass_end() const { return RegClassEnd; } unsigned getNumRegClasses() const { return regclass_end()-regclass_begin(); } //===--------------------------------------------------------------------===// // All basic block modifier functions below return the number of // instructions added to (negative if removed from) the basic block // passed as their first argument. // // FIXME: This is only needed because we use a std::vector instead // of an ilist to keep MachineBasicBlock instructions. Inserting an // instruction to a MachineBasicBlock invalidates all iterators to // the basic block. The return value can be used to update an index // to the machine basic block instruction vector and circumvent the // iterator elimination problem but this is really not needed if we // move to a better representation. // //===--------------------------------------------------------------------===// // Interfaces used by the register allocator and stack frame // manipulation passes to move data around between registers, // immediates and memory. The return value is the number of // instructions added to (negative if removed from) the basic block. // virtual int storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, int FrameIndex, const TargetRegisterClass *RC) const = 0; virtual int loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const = 0; virtual int copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *RC) const = 0; /// foldMemoryOperand - Attempt to fold a load or store of the /// specified stack slot into the specified machine instruction for /// the specified operand. If this is possible, a new instruction /// is returned with the specified operand folded, otherwise NULL is /// returned. The client is responsible for removing the old /// instruction and adding the new one in the instruction stream virtual MachineInstr* foldMemoryOperand(MachineInstr* MI, unsigned OpNum, int FrameIndex) const { return NULL; } /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the /// frame setup/destroy instructions if they exist (-1 otherwise). Some /// targets use pseudo instructions in order to abstract away the difference /// between operating with a frame pointer and operating without, through the /// use of these two instructions. /// int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog /// code insertion to eliminate call frame setup and destroy pseudo /// instructions (but only if the Target is using them). It is responsible /// for eliminating these instructions, replacing them with concrete /// instructions. This method need only be implemented if using call frame /// setup/destroy pseudo instructions. The return value is the number of /// instructions added to (negative if removed from) the basic block. /// virtual void eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 && "eliminateCallFramePseudoInstr must be implemented if using" " call frame setup/destroy pseudo instructions!"); assert(0 && "Call Frame Pseudo Instructions do not exist on this target!"); } /// processFunctionBeforeFrameFinalized - This method is called immediately /// before the specified functions frame layout (MF.getFrameInfo()) is /// finalized. Once the frame is finalized, MO_FrameIndex operands are /// replaced with direct constants. This method is optional. The return value /// is the number of instructions added to (negative if removed from) the /// basic block /// virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const { } /// eliminateFrameIndex - This method must be overriden to eliminate abstract /// frame indices from instructions which may use them. The instruction /// referenced by the iterator contains an MO_FrameIndex operand which must be /// eliminated by this method. This method may modify or replace the /// specified instruction, as long as it keeps the iterator pointing the the /// finished product. The return value is the number of instructions /// added to (negative if removed from) the basic block. /// virtual void eliminateFrameIndex(MachineFunction &MF, MachineBasicBlock::iterator MI) const = 0; /// emitProlog/emitEpilog - These methods insert prolog and epilog code into /// the function. The return value is the number of instructions /// added to (negative if removed from) the basic block (entry for prologue). /// virtual void emitPrologue(MachineFunction &MF) const = 0; virtual void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const = 0; }; // This is useful when building DenseMap's keyed on virtual registers struct VirtReg2IndexFunctor : std::unary_function { unsigned operator()(unsigned Reg) const { return Reg - MRegisterInfo::FirstVirtualRegister; } }; } // End llvm namespace #endif