//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ScalarEvolution class is an LLVM pass which can be used to analyze and // catagorize scalar expressions in loops. It specializes in recognizing // general induction variables, representing them with the abstract and opaque // SCEV class. Given this analysis, trip counts of loops and other important // properties can be obtained. // // This analysis is primarily useful for induction variable substitution and // strength reduction. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H #define LLVM_ANALYSIS_SCALAREVOLUTION_H #include "llvm/Pass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/DataTypes.h" #include namespace llvm { class APInt; class ConstantInt; class Type; class SCEVHandle; class ScalarEvolution; class TargetData; /// SCEV - This class represent an analyzed expression in the program. These /// are reference counted opaque objects that the client is not allowed to /// do much with directly. /// class SCEV { const unsigned SCEVType; // The SCEV baseclass this node corresponds to mutable unsigned RefCount; friend class SCEVHandle; void addRef() const { ++RefCount; } void dropRef() const { if (--RefCount == 0) delete this; } SCEV(const SCEV &); // DO NOT IMPLEMENT void operator=(const SCEV &); // DO NOT IMPLEMENT protected: virtual ~SCEV(); public: explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {} unsigned getSCEVType() const { return SCEVType; } /// isLoopInvariant - Return true if the value of this SCEV is unchanging in /// the specified loop. virtual bool isLoopInvariant(const Loop *L) const = 0; /// hasComputableLoopEvolution - Return true if this SCEV changes value in a /// known way in the specified loop. This property being true implies that /// the value is variant in the loop AND that we can emit an expression to /// compute the value of the expression at any particular loop iteration. virtual bool hasComputableLoopEvolution(const Loop *L) const = 0; /// getType - Return the LLVM type of this SCEV expression. /// virtual const Type *getType() const = 0; /// isZero - Return true if the expression is a constant zero. /// bool isZero() const; /// replaceSymbolicValuesWithConcrete - If this SCEV internally references /// the symbolic value "Sym", construct and return a new SCEV that produces /// the same value, but which uses the concrete value Conc instead of the /// symbolic value. If this SCEV does not use the symbolic value, it /// returns itself. virtual SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const = 0; /// dominates - Return true if elements that makes up this SCEV dominates /// the specified basic block. virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0; /// print - Print out the internal representation of this scalar to the /// specified stream. This should really only be used for debugging /// purposes. virtual void print(raw_ostream &OS) const = 0; void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// dump - This method is used for debugging. /// void dump() const; }; inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { S.print(OS); return OS; } inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) { S.print(OS); return OS; } /// SCEVCouldNotCompute - An object of this class is returned by queries that /// could not be answered. For example, if you ask for the number of /// iterations of a linked-list traversal loop, you will get one of these. /// None of the standard SCEV operations are valid on this class, it is just a /// marker. struct SCEVCouldNotCompute : public SCEV { SCEVCouldNotCompute(); ~SCEVCouldNotCompute(); // None of these methods are valid for this object. virtual bool isLoopInvariant(const Loop *L) const; virtual const Type *getType() const; virtual bool hasComputableLoopEvolution(const Loop *L) const; virtual void print(raw_ostream &OS) const; virtual SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc, ScalarEvolution &SE) const; virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const { return true; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCouldNotCompute *S) { return true; } static bool classof(const SCEV *S); }; /// SCEVHandle - This class is used to maintain the SCEV object's refcounts, /// freeing the objects when the last reference is dropped. class SCEVHandle { SCEV *S; SCEVHandle(); // DO NOT IMPLEMENT public: SCEVHandle(const SCEV *s) : S(const_cast(s)) { assert(S && "Cannot create a handle to a null SCEV!"); S->addRef(); } SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) { S->addRef(); } ~SCEVHandle() { S->dropRef(); } operator SCEV*() const { return S; } SCEV &operator*() const { return *S; } SCEV *operator->() const { return S; } bool operator==(SCEV *RHS) const { return S == RHS; } bool operator!=(SCEV *RHS) const { return S != RHS; } const SCEVHandle &operator=(SCEV *RHS) { if (S != RHS) { S->dropRef(); S = RHS; S->addRef(); } return *this; } const SCEVHandle &operator=(const SCEVHandle &RHS) { if (S != RHS.S) { S->dropRef(); S = RHS.S; S->addRef(); } return *this; } }; template struct simplify_type; template<> struct simplify_type { typedef SCEV* SimpleType; static SimpleType getSimplifiedValue(const SCEVHandle &Node) { return Node; } }; template<> struct simplify_type : public simplify_type {}; /// ScalarEvolution - This class is the main scalar evolution driver. Because /// client code (intentionally) can't do much with the SCEV objects directly, /// they must ask this class for services. /// class ScalarEvolution : public FunctionPass { /// F - The function we are analyzing. /// Function *F; /// LI - The loop information for the function we are currently analyzing. /// LoopInfo *LI; /// TD - The target data information for the target we are targetting. /// TargetData *TD; /// UnknownValue - This SCEV is used to represent unknown trip counts and /// things. SCEVHandle UnknownValue; /// Scalars - This is a cache of the scalars we have analyzed so far. /// std::map Scalars; /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for /// this function as they are computed. std::map BackedgeTakenCounts; /// ConstantEvolutionLoopExitValue - This map contains entries for all of /// the PHI instructions that we attempt to compute constant evolutions for. /// This allows us to avoid potentially expensive recomputation of these /// properties. An instruction maps to null if we are unable to compute its /// exit value. std::map ConstantEvolutionLoopExitValue; /// createSCEV - We know that there is no SCEV for the specified value. /// Analyze the expression. SCEVHandle createSCEV(Value *V); /// createNodeForPHI - Provide the special handling we need to analyze PHI /// SCEVs. SCEVHandle createNodeForPHI(PHINode *PN); /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value /// for the specified instruction and replaces any references to the /// symbolic value SymName with the specified value. This is used during /// PHI resolution. void ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, const SCEVHandle &NewVal); /// ComputeBackedgeTakenCount - Compute the number of times the specified /// loop will iterate. SCEVHandle ComputeBackedgeTakenCount(const Loop *L); /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition /// of 'icmp op load X, cst', try to see if we can compute the trip count. SCEVHandle ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate p); /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute /// a constant number of times (the condition evolves only from constants), /// try to evaluate a few iterations of the loop until we get the exit /// condition gets a value of ExitWhen (true or false). If we cannot /// evaluate the trip count of the loop, return UnknownValue. SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen); /// HowFarToZero - Return the number of times a backedge comparing the /// specified value to zero will execute. If not computable, return /// UnknownValue. SCEVHandle HowFarToZero(SCEV *V, const Loop *L); /// HowFarToNonZero - Return the number of times a backedge checking the /// specified value for nonzero will execute. If not computable, return /// UnknownValue. SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); /// HowManyLessThans - Return the number of times a backedge containing the /// specified less-than comparison will execute. If not computable, return /// UnknownValue. isSigned specifies whether the less-than is signed. SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned); /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB /// (which may not be an immediate predecessor) which has exactly one /// successor from which BB is reachable, or null if no such block is /// found. BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is /// in the header of its containing loop, we know the loop executes a /// constant number of times, and the PHI node is just a recurrence /// involving constants, fold it. Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L); /// getSCEVAtScope - Compute the value of the specified expression within /// the indicated loop (which may be null to indicate in no loop). If the /// expression cannot be evaluated, return UnknownValue itself. SCEVHandle getSCEVAtScope(SCEV *S, const Loop *L); public: static char ID; // Pass identification, replacement for typeid ScalarEvolution(); /// isSCEVable - Test if values of the given type are analyzable within /// the SCEV framework. This primarily includes integer types, and it /// can optionally include pointer types if the ScalarEvolution class /// has access to target-specific information. bool isSCEVable(const Type *Ty) const; /// getTypeSizeInBits - Return the size in bits of the specified type, /// for which isSCEVable must return true. uint64_t getTypeSizeInBits(const Type *Ty) const; /// getEffectiveSCEVType - Return a type with the same bitwidth as /// the given type and which represents how SCEV will treat the given /// type, for which isSCEVable must return true. For pointer types, /// this is the pointer-sized integer type. const Type *getEffectiveSCEVType(const Type *Ty) const; /// getSCEV - Return a SCEV expression handle for the full generality of the /// specified expression. SCEVHandle getSCEV(Value *V); SCEVHandle getConstant(ConstantInt *V); SCEVHandle getConstant(const APInt& Val); SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty); SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty); SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty); SCEVHandle getAddExpr(std::vector &Ops); SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getAddExpr(Ops); } SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1, const SCEVHandle &Op2) { std::vector Ops; Ops.push_back(Op0); Ops.push_back(Op1); Ops.push_back(Op2); return getAddExpr(Ops); } SCEVHandle getMulExpr(std::vector &Ops); SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getMulExpr(Ops); } SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step, const Loop *L); SCEVHandle getAddRecExpr(std::vector &Operands, const Loop *L); SCEVHandle getAddRecExpr(const std::vector &Operands, const Loop *L) { std::vector NewOp(Operands); return getAddRecExpr(NewOp, L); } SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); SCEVHandle getSMaxExpr(std::vector Operands); SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); SCEVHandle getUMaxExpr(std::vector Operands); SCEVHandle getUnknown(Value *V); SCEVHandle getCouldNotCompute(); /// getNegativeSCEV - Return the SCEV object corresponding to -V. /// SCEVHandle getNegativeSCEV(const SCEVHandle &V); /// getNotSCEV - Return the SCEV object corresponding to ~V. /// SCEVHandle getNotSCEV(const SCEVHandle &V); /// getMinusSCEV - Return LHS-RHS. /// SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS); /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is zero extended. SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty); /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is sign extended. SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty); /// getIntegerSCEV - Given an integer or FP type, create a constant for the /// specified signed integer value and return a SCEV for the constant. SCEVHandle getIntegerSCEV(int Val, const Type *Ty); /// hasSCEV - Return true if the SCEV for this value has already been /// computed. bool hasSCEV(Value *V) const; /// setSCEV - Insert the specified SCEV into the map of current SCEVs for /// the specified value. void setSCEV(Value *V, const SCEVHandle &H); /// getSCEVAtScope - Return a SCEV expression handle for the specified value /// at the specified scope in the program. The L value specifies a loop /// nest to evaluate the expression at, where null is the top-level or a /// specified loop is immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// If this value is not computable at this scope, a SCEVCouldNotCompute /// object is returned. SCEVHandle getSCEVAtScope(Value *V, const Loop *L); /// isLoopGuardedByCond - Test whether entry to the loop is protected by /// a conditional between LHS and RHS. bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, SCEV *LHS, SCEV *RHS); /// getBackedgeTakenCount - If the specified loop has a predictable /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute /// object. The backedge-taken count is the number of times the loop header /// will be branched to from within the loop. This is one less than the /// trip count of the loop, since it doesn't count the first iteration, /// when the header is branched to from outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// SCEVHandle getBackedgeTakenCount(const Loop *L); /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop /// has an analyzable loop-invariant backedge-taken count. bool hasLoopInvariantBackedgeTakenCount(const Loop *L); /// forgetLoopBackedgeTakenCount - This method should be called by the /// client when it has changed a loop in a way that may effect /// ScalarEvolution's ability to compute a trip count, or if the loop /// is deleted. void forgetLoopBackedgeTakenCount(const Loop *L); /// deleteValueFromRecords - This method should be called by the /// client before it removes a Value from the program, to make sure /// that no dangling references are left around. void deleteValueFromRecords(Value *V); virtual bool runOnFunction(Function &F); virtual void releaseMemory(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; void print(raw_ostream &OS, const Module* = 0) const; virtual void print(std::ostream &OS, const Module* = 0) const; void print(std::ostream *OS, const Module* M = 0) const { if (OS) print(*OS, M); } }; } #endif