//===-- PTXISelLowering.cpp - PTX DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PTXTargetLowering class. // //===----------------------------------------------------------------------===// #include "PTX.h" #include "PTXISelLowering.h" #include "PTXMachineFunctionInfo.h" #include "PTXRegisterInfo.h" #include "PTXSubtarget.h" #include "llvm/Function.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// PTXTargetLowering::PTXTargetLowering(TargetMachine &TM) : TargetLowering(TM, new TargetLoweringObjectFileELF()) { // Set up the register classes. addRegisterClass(MVT::i1, PTX::RegPredRegisterClass); addRegisterClass(MVT::i16, PTX::RegI16RegisterClass); addRegisterClass(MVT::i32, PTX::RegI32RegisterClass); addRegisterClass(MVT::i64, PTX::RegI64RegisterClass); addRegisterClass(MVT::f32, PTX::RegF32RegisterClass); addRegisterClass(MVT::f64, PTX::RegF64RegisterClass); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? setMinFunctionAlignment(2); // Let LLVM use loads/stores for all mem* operations maxStoresPerMemcpy = 4096; maxStoresPerMemmove = 4096; maxStoresPerMemset = 4096; //////////////////////////////////// /////////// Expansion ////////////// //////////////////////////////////// // (any/zero/sign) extload => load + (any/zero/sign) extend setLoadExtAction(ISD::EXTLOAD, MVT::i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand); // f32 extload => load + fextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // f64 truncstore => trunc + store setTruncStoreAction(MVT::f64, MVT::f32, Expand); // sign_extend_inreg => sign_extend setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // br_cc => brcond setOperationAction(ISD::BR_CC, MVT::Other, Expand); // select_cc => setcc setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); //////////////////////////////////// //////////// Legal ///////////////// //////////////////////////////////// setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); //////////////////////////////////// //////////// Custom //////////////// //////////////////////////////////// // customise setcc to use bitwise logic if possible setOperationAction(ISD::SETCC, MVT::i1, Custom); // customize translation of memory addresses setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); // Compute derived properties from the register classes computeRegisterProperties(); } EVT PTXTargetLowering::getSetCCResultType(EVT VT) const { return MVT::i1; } SDValue PTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Unimplemented operand"); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); } } const char *PTXTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: llvm_unreachable("Unknown opcode"); case PTXISD::COPY_ADDRESS: return "PTXISD::COPY_ADDRESS"; case PTXISD::LOAD_PARAM: return "PTXISD::LOAD_PARAM"; case PTXISD::STORE_PARAM: return "PTXISD::STORE_PARAM"; case PTXISD::READ_PARAM: return "PTXISD::READ_PARAM"; case PTXISD::WRITE_PARAM: return "PTXISD::WRITE_PARAM"; case PTXISD::EXIT: return "PTXISD::EXIT"; case PTXISD::RET: return "PTXISD::RET"; case PTXISD::CALL: return "PTXISD::CALL"; } } //===----------------------------------------------------------------------===// // Custom Lower Operation //===----------------------------------------------------------------------===// SDValue PTXTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i1 && "SetCC type must be 1-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); ISD::CondCode CC = cast(Op.getOperand(2))->get(); // Look for X == 0, X == 1, X != 0, or X != 1 // We can simplify these to bitwise logic if (Op1.getOpcode() == ISD::Constant && (cast(Op1)->getZExtValue() == 1 || cast(Op1)->isNullValue()) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { return DAG.getNode(ISD::AND, dl, MVT::i1, Op0, Op1); } return DAG.getNode(ISD::SETCC, dl, MVT::i1, Op0, Op1, Op2); } SDValue PTXTargetLowering:: LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); DebugLoc dl = Op.getDebugLoc(); const GlobalValue *GV = cast(Op)->getGlobal(); assert(PtrVT.isSimple() && "Pointer must be to primitive type."); SDValue targetGlobal = DAG.getTargetGlobalAddress(GV, dl, PtrVT); SDValue movInstr = DAG.getNode(PTXISD::COPY_ADDRESS, dl, PtrVT.getSimpleVT(), targetGlobal); return movInstr; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// SDValue PTXTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (isVarArg) llvm_unreachable("PTX does not support varargs"); MachineFunction &MF = DAG.getMachineFunction(); const PTXSubtarget& ST = getTargetMachine().getSubtarget(); PTXMachineFunctionInfo *MFI = MF.getInfo(); PTXParamManager &PM = MFI->getParamManager(); switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); break; case CallingConv::PTX_Kernel: MFI->setKernel(true); break; case CallingConv::PTX_Device: MFI->setKernel(false); break; } // We do one of two things here: // IsKernel || SM >= 2.0 -> Use param space for arguments // SM < 2.0 -> Use registers for arguments if (MFI->isKernel() || ST.useParamSpaceForDeviceArgs()) { // We just need to emit the proper LOAD_PARAM ISDs for (unsigned i = 0, e = Ins.size(); i != e; ++i) { assert((!MFI->isKernel() || Ins[i].VT != MVT::i1) && "Kernels cannot take pred operands"); unsigned ParamSize = Ins[i].VT.getStoreSizeInBits(); unsigned Param = PM.addArgumentParam(ParamSize); const std::string &ParamName = PM.getParamName(Param); SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(), MVT::Other); SDValue ArgValue = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain, ParamValue); InVals.push_back(ArgValue); } } else { for (unsigned i = 0, e = Ins.size(); i != e; ++i) { EVT RegVT = Ins[i].VT; TargetRegisterClass* TRC = getRegClassFor(RegVT); unsigned RegType; // Determine which register class we need if (RegVT == MVT::i1) { RegType = PTXRegisterType::Pred; } else if (RegVT == MVT::i16) { RegType = PTXRegisterType::B16; } else if (RegVT == MVT::i32) { RegType = PTXRegisterType::B32; } else if (RegVT == MVT::i64) { RegType = PTXRegisterType::B64; } else if (RegVT == MVT::f32) { RegType = PTXRegisterType::F32; } else if (RegVT == MVT::f64) { RegType = PTXRegisterType::F64; } else { llvm_unreachable("Unknown parameter type"); } // Use a unique index in the instruction to prevent instruction folding. // Yes, this is a hack. SDValue Index = DAG.getTargetConstant(i, MVT::i32); unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC); SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, RegVT, Chain, Index); InVals.push_back(ArgValue); MFI->addRegister(Reg, RegType, PTXRegisterSpace::Argument); } } return Chain; } SDValue PTXTargetLowering:: LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const { if (isVarArg) llvm_unreachable("PTX does not support varargs"); switch (CallConv) { default: llvm_unreachable("Unsupported calling convention."); case CallingConv::PTX_Kernel: assert(Outs.size() == 0 && "Kernel must return void."); return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain); case CallingConv::PTX_Device: assert(Outs.size() <= 1 && "Can at most return one value."); break; } MachineFunction& MF = DAG.getMachineFunction(); PTXMachineFunctionInfo *MFI = MF.getInfo(); PTXParamManager &PM = MFI->getParamManager(); SDValue Flag; const PTXSubtarget& ST = getTargetMachine().getSubtarget(); if (ST.useParamSpaceForDeviceArgs()) { assert(Outs.size() < 2 && "Device functions can return at most one value"); if (Outs.size() == 1) { unsigned ParamSize = OutVals[0].getValueType().getSizeInBits(); unsigned Param = PM.addReturnParam(ParamSize); const std::string &ParamName = PM.getParamName(Param); SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(), MVT::Other); Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain, ParamValue, OutVals[0]); } } else { for (unsigned i = 0, e = Outs.size(); i != e; ++i) { EVT RegVT = Outs[i].VT; TargetRegisterClass* TRC = 0; unsigned RegType; // Determine which register class we need if (RegVT == MVT::i1) { TRC = PTX::RegPredRegisterClass; RegType = PTXRegisterType::Pred; } else if (RegVT == MVT::i16) { TRC = PTX::RegI16RegisterClass; RegType = PTXRegisterType::B16; } else if (RegVT == MVT::i32) { TRC = PTX::RegI32RegisterClass; RegType = PTXRegisterType::B32; } else if (RegVT == MVT::i64) { TRC = PTX::RegI64RegisterClass; RegType = PTXRegisterType::B64; } else if (RegVT == MVT::f32) { TRC = PTX::RegF32RegisterClass; RegType = PTXRegisterType::F32; } else if (RegVT == MVT::f64) { TRC = PTX::RegF64RegisterClass; RegType = PTXRegisterType::F64; } else { llvm_unreachable("Unknown parameter type"); } unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC); SDValue Copy = DAG.getCopyToReg(Chain, dl, Reg, OutVals[i]/*, Flag*/); SDValue OutReg = DAG.getRegister(Reg, RegVT); Chain = DAG.getNode(PTXISD::WRITE_PARAM, dl, MVT::Other, Copy, OutReg); MFI->addRegister(Reg, RegType, PTXRegisterSpace::Return); } } if (Flag.getNode() == 0) { return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain); } else { return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag); } } SDValue PTXTargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction& MF = DAG.getMachineFunction(); PTXMachineFunctionInfo *PTXMFI = MF.getInfo(); PTXParamManager &PM = PTXMFI->getParamManager(); MachineFrameInfo *MFI = MF.getFrameInfo(); assert(getTargetMachine().getSubtarget().callsAreHandled() && "Calls are not handled for the target device"); // Identify the callee function const GlobalValue *GV = cast(Callee)->getGlobal(); const Function *function = cast(GV); // allow non-device calls only for printf bool isPrintf = function->getName() == "printf" || function->getName() == "puts"; assert((isPrintf || function->getCallingConv() == CallingConv::PTX_Device) && "PTX function calls must be to PTX device functions"); unsigned outSize = isPrintf ? 2 : Outs.size(); std::vector Ops; // The layout of the ops will be [Chain, #Ins, Ins, Callee, #Outs, Outs] Ops.resize(outSize + Ins.size() + 4); Ops[0] = Chain; // Identify the callee function Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); Ops[Ins.size()+2] = Callee; // #Outs Ops[Ins.size()+3] = DAG.getTargetConstant(outSize, MVT::i32); if (isPrintf) { // first argument is the address of the global string variable in memory unsigned Param0 = PM.addLocalParam(getPointerTy().getSizeInBits()); SDValue ParamValue0 = DAG.getTargetExternalSymbol(PM.getParamName(Param0).c_str(), MVT::Other); Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain, ParamValue0, OutVals[0]); Ops[Ins.size()+4] = ParamValue0; // alignment is the maximum size of all the arguments unsigned alignment = 0; for (unsigned i = 1; i < OutVals.size(); ++i) { alignment = std::max(alignment, OutVals[i].getValueType().getSizeInBits()); } // size is the alignment multiplied by the number of arguments unsigned size = alignment * (OutVals.size() - 1); // second argument is the address of the stack object (unless no arguments) unsigned Param1 = PM.addLocalParam(getPointerTy().getSizeInBits()); SDValue ParamValue1 = DAG.getTargetExternalSymbol(PM.getParamName(Param1).c_str(), MVT::Other); Ops[Ins.size()+5] = ParamValue1; if (size > 0) { // create a local stack object to store the arguments unsigned StackObject = MFI->CreateStackObject(size / 8, alignment / 8, false); SDValue FrameIndex = DAG.getFrameIndex(StackObject, getPointerTy()); // store each of the arguments to the stack in turn for (unsigned int i = 1; i != OutVals.size(); i++) { SDValue FrameAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FrameIndex, DAG.getTargetConstant((i - 1) * 8, getPointerTy())); Chain = DAG.getStore(Chain, dl, OutVals[i], FrameAddr, MachinePointerInfo(), false, false, 0); } // copy the address of the local frame index to get the address in non-local space SDValue genericAddr = DAG.getNode(PTXISD::COPY_ADDRESS, dl, getPointerTy(), FrameIndex); // store this address in the second argument Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain, ParamValue1, genericAddr); } } else { // Generate STORE_PARAM nodes for each function argument. In PTX, function // arguments are explicitly stored into .param variables and passed as // arguments. There is no register/stack-based calling convention in PTX. for (unsigned i = 0; i != OutVals.size(); ++i) { unsigned Size = OutVals[i].getValueType().getSizeInBits(); unsigned Param = PM.addLocalParam(Size); const std::string &ParamName = PM.getParamName(Param); SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(), MVT::Other); Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain, ParamValue, OutVals[i]); Ops[i+Ins.size()+4] = ParamValue; } } std::vector InParams; // Generate list of .param variables to hold the return value(s). Ops[1] = DAG.getTargetConstant(Ins.size(), MVT::i32); for (unsigned i = 0; i < Ins.size(); ++i) { unsigned Size = Ins[i].VT.getStoreSizeInBits(); unsigned Param = PM.addLocalParam(Size); const std::string &ParamName = PM.getParamName(Param); SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(), MVT::Other); Ops[i+2] = ParamValue; InParams.push_back(ParamValue); } Ops[0] = Chain; // Create the CALL node. Chain = DAG.getNode(PTXISD::CALL, dl, MVT::Other, &Ops[0], Ops.size()); // Create the LOAD_PARAM nodes that retrieve the function return value(s). for (unsigned i = 0; i < Ins.size(); ++i) { SDValue Load = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain, InParams[i]); InVals.push_back(Load); } return Chain; } unsigned PTXTargetLowering::getNumRegisters(LLVMContext &Context, EVT VT) { // All arguments consist of one "register," regardless of the type. return 1; }