//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The implementation for the loop memory dependence that was originally // developed for the loop vectorizer. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/VectorUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-vectorize" void VectorizationReport::emitAnalysis(VectorizationReport &Message, const Function *TheFunction, const Loop *TheLoop) { DebugLoc DL = TheLoop->getStartLoc(); if (Instruction *I = Message.getInstr()) DL = I->getDebugLoc(); emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, *TheFunction, DL, Message.str()); } Value *llvm::stripIntegerCast(Value *V) { if (CastInst *CI = dyn_cast(V)) if (CI->getOperand(0)->getType()->isIntegerTy()) return CI->getOperand(0); return V; } const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, ValueToValueMap &PtrToStride, Value *Ptr, Value *OrigPtr) { const SCEV *OrigSCEV = SE->getSCEV(Ptr); // If there is an entry in the map return the SCEV of the pointer with the // symbolic stride replaced by one. ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); if (SI != PtrToStride.end()) { Value *StrideVal = SI->second; // Strip casts. StrideVal = stripIntegerCast(StrideVal); // Replace symbolic stride by one. Value *One = ConstantInt::get(StrideVal->getType(), 1); ValueToValueMap RewriteMap; RewriteMap[StrideVal] = One; const SCEV *ByOne = SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne << "\n"); return ByOne; } // Otherwise, just return the SCEV of the original pointer. return SE->getSCEV(Ptr); } void LoopAccessInfo::RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides) { // Get the stride replaced scev. const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); const SCEVAddRecExpr *AR = dyn_cast(Sc); assert(AR && "Invalid addrec expression"); const SCEV *Ex = SE->getBackedgeTakenCount(Lp); const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); Pointers.push_back(Ptr); Starts.push_back(AR->getStart()); Ends.push_back(ScEnd); IsWritePtr.push_back(WritePtr); DependencySetId.push_back(DepSetId); AliasSetId.push_back(ASId); } bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I, unsigned J) const { // No need to check if two readonly pointers intersect. if (!IsWritePtr[I] && !IsWritePtr[J]) return false; // Only need to check pointers between two different dependency sets. if (DependencySetId[I] == DependencySetId[J]) return false; // Only need to check pointers in the same alias set. if (AliasSetId[I] != AliasSetId[J]) return false; return true; } namespace { /// \brief Analyses memory accesses in a loop. /// /// Checks whether run time pointer checks are needed and builds sets for data /// dependence checking. class AccessAnalysis { public: /// \brief Read or write access location. typedef PointerIntPair MemAccessInfo; typedef SmallPtrSet MemAccessInfoSet; /// \brief Set of potential dependent memory accesses. typedef EquivalenceClasses DepCandidates; AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} /// \brief Register a load and whether it is only read from. void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { Value *Ptr = const_cast(Loc.Ptr); AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); Accesses.insert(MemAccessInfo(Ptr, false)); if (IsReadOnly) ReadOnlyPtr.insert(Ptr); } /// \brief Register a store. void addStore(AliasAnalysis::Location &Loc) { Value *Ptr = const_cast(Loc.Ptr); AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); Accesses.insert(MemAccessInfo(Ptr, true)); } /// \brief Check whether we can check the pointers at runtime for /// non-intersection. bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, ValueToValueMap &Strides, bool ShouldCheckStride = false); /// \brief Goes over all memory accesses, checks whether a RT check is needed /// and builds sets of dependent accesses. void buildDependenceSets() { processMemAccesses(); } bool isRTCheckNeeded() { return IsRTCheckNeeded; } bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } void resetDepChecks() { CheckDeps.clear(); } MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } private: typedef SetVector PtrAccessSet; /// \brief Go over all memory access and check whether runtime pointer checks /// are needed /// and build sets of dependency check candidates. void processMemAccesses(); /// Set of all accesses. PtrAccessSet Accesses; /// Set of accesses that need a further dependence check. MemAccessInfoSet CheckDeps; /// Set of pointers that are read only. SmallPtrSet ReadOnlyPtr; const DataLayout *DL; /// An alias set tracker to partition the access set by underlying object and //intrinsic property (such as TBAA metadata). AliasSetTracker AST; /// Sets of potentially dependent accesses - members of one set share an /// underlying pointer. The set "CheckDeps" identfies which sets really need a /// dependence check. DepCandidates &DepCands; bool IsRTCheckNeeded; }; } // end anonymous namespace /// \brief Check whether a pointer can participate in a runtime bounds check. static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, Value *Ptr) { const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); const SCEVAddRecExpr *AR = dyn_cast(PtrScev); if (!AR) return false; return AR->isAffine(); } /// \brief Check the stride of the pointer and ensure that it does not wrap in /// the address space. static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, const Loop *Lp, ValueToValueMap &StridesMap); bool AccessAnalysis::canCheckPtrAtRT( LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, ValueToValueMap &StridesMap, bool ShouldCheckStride) { // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. bool CanDoRT = true; bool IsDepCheckNeeded = isDependencyCheckNeeded(); NumComparisons = 0; // We assign a consecutive id to access from different alias sets. // Accesses between different groups doesn't need to be checked. unsigned ASId = 1; for (auto &AS : AST) { unsigned NumReadPtrChecks = 0; unsigned NumWritePtrChecks = 0; // We assign consecutive id to access from different dependence sets. // Accesses within the same set don't need a runtime check. unsigned RunningDepId = 1; DenseMap DepSetId; for (auto A : AS) { Value *Ptr = A.getValue(); bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); MemAccessInfo Access(Ptr, IsWrite); if (IsWrite) ++NumWritePtrChecks; else ++NumReadPtrChecks; if (hasComputableBounds(SE, StridesMap, Ptr) && // When we run after a failing dependency check we have to make sure we // don't have wrapping pointers. (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { // The id of the dependence set. unsigned DepId; if (IsDepCheckNeeded) { Value *Leader = DepCands.getLeaderValue(Access).getPointer(); unsigned &LeaderId = DepSetId[Leader]; if (!LeaderId) LeaderId = RunningDepId++; DepId = LeaderId; } else // Each access has its own dependence set. DepId = RunningDepId++; RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); } else { CanDoRT = false; } } if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) NumComparisons += 0; // Only one dependence set. else { NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + NumWritePtrChecks - 1)); } ++ASId; } // If the pointers that we would use for the bounds comparison have different // address spaces, assume the values aren't directly comparable, so we can't // use them for the runtime check. We also have to assume they could // overlap. In the future there should be metadata for whether address spaces // are disjoint. unsigned NumPointers = RtCheck.Pointers.size(); for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i + 1; j < NumPointers; ++j) { // Only need to check pointers between two different dependency sets. if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) continue; // Only need to check pointers in the same alias set. if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) continue; Value *PtrI = RtCheck.Pointers[i]; Value *PtrJ = RtCheck.Pointers[j]; unsigned ASi = PtrI->getType()->getPointerAddressSpace(); unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); if (ASi != ASj) { DEBUG(dbgs() << "LV: Runtime check would require comparison between" " different address spaces\n"); return false; } } } return CanDoRT; } void AccessAnalysis::processMemAccesses() { // We process the set twice: first we process read-write pointers, last we // process read-only pointers. This allows us to skip dependence tests for // read-only pointers. DEBUG(dbgs() << "LV: Processing memory accesses...\n"); DEBUG(dbgs() << " AST: "; AST.dump()); DEBUG(dbgs() << "LV: Accesses:\n"); DEBUG({ for (auto A : Accesses) dbgs() << "\t" << *A.getPointer() << " (" << (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" : "read")) << ")\n"; }); // The AliasSetTracker has nicely partitioned our pointers by metadata // compatibility and potential for underlying-object overlap. As a result, we // only need to check for potential pointer dependencies within each alias // set. for (auto &AS : AST) { // Note that both the alias-set tracker and the alias sets themselves used // linked lists internally and so the iteration order here is deterministic // (matching the original instruction order within each set). bool SetHasWrite = false; // Map of pointers to last access encountered. typedef DenseMap UnderlyingObjToAccessMap; UnderlyingObjToAccessMap ObjToLastAccess; // Set of access to check after all writes have been processed. PtrAccessSet DeferredAccesses; // Iterate over each alias set twice, once to process read/write pointers, // and then to process read-only pointers. for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { bool UseDeferred = SetIteration > 0; PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; for (auto AV : AS) { Value *Ptr = AV.getValue(); // For a single memory access in AliasSetTracker, Accesses may contain // both read and write, and they both need to be handled for CheckDeps. for (auto AC : S) { if (AC.getPointer() != Ptr) continue; bool IsWrite = AC.getInt(); // If we're using the deferred access set, then it contains only // reads. bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; if (UseDeferred && !IsReadOnlyPtr) continue; // Otherwise, the pointer must be in the PtrAccessSet, either as a // read or a write. assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && "Alias-set pointer not in the access set?"); MemAccessInfo Access(Ptr, IsWrite); DepCands.insert(Access); // Memorize read-only pointers for later processing and skip them in // the first round (they need to be checked after we have seen all // write pointers). Note: we also mark pointer that are not // consecutive as "read-only" pointers (so that we check // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". if (!UseDeferred && IsReadOnlyPtr) { DeferredAccesses.insert(Access); continue; } // If this is a write - check other reads and writes for conflicts. If // this is a read only check other writes for conflicts (but only if // there is no other write to the ptr - this is an optimization to // catch "a[i] = a[i] + " without having to do a dependence check). if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { CheckDeps.insert(Access); IsRTCheckNeeded = true; } if (IsWrite) SetHasWrite = true; // Create sets of pointers connected by a shared alias set and // underlying object. typedef SmallVector ValueVector; ValueVector TempObjects; GetUnderlyingObjects(Ptr, TempObjects, DL); for (Value *UnderlyingObj : TempObjects) { UnderlyingObjToAccessMap::iterator Prev = ObjToLastAccess.find(UnderlyingObj); if (Prev != ObjToLastAccess.end()) DepCands.unionSets(Access, Prev->second); ObjToLastAccess[UnderlyingObj] = Access; } } } } } } namespace { /// \brief Checks memory dependences among accesses to the same underlying /// object to determine whether there vectorization is legal or not (and at /// which vectorization factor). /// /// This class works under the assumption that we already checked that memory /// locations with different underlying pointers are "must-not alias". /// We use the ScalarEvolution framework to symbolically evalutate access /// functions pairs. Since we currently don't restructure the loop we can rely /// on the program order of memory accesses to determine their safety. /// At the moment we will only deem accesses as safe for: /// * A negative constant distance assuming program order. /// /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; /// a[i] = tmp; y = a[i]; /// /// The latter case is safe because later checks guarantuee that there can't /// be a cycle through a phi node (that is, we check that "x" and "y" is not /// the same variable: a header phi can only be an induction or a reduction, a /// reduction can't have a memory sink, an induction can't have a memory /// source). This is important and must not be violated (or we have to /// resort to checking for cycles through memory). /// /// * A positive constant distance assuming program order that is bigger /// than the biggest memory access. /// /// tmp = a[i] OR b[i] = x /// a[i+2] = tmp y = b[i+2]; /// /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. /// /// * Zero distances and all accesses have the same size. /// class MemoryDepChecker { public: typedef PointerIntPair MemAccessInfo; typedef SmallPtrSet MemAccessInfoSet; MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L, const LoopAccessInfo::VectorizerParams &VectParams) : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {} /// \brief Register the location (instructions are given increasing numbers) /// of a write access. void addAccess(StoreInst *SI) { Value *Ptr = SI->getPointerOperand(); Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); InstMap.push_back(SI); ++AccessIdx; } /// \brief Register the location (instructions are given increasing numbers) /// of a write access. void addAccess(LoadInst *LI) { Value *Ptr = LI->getPointerOperand(); Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); InstMap.push_back(LI); ++AccessIdx; } /// \brief Check whether the dependencies between the accesses are safe. /// /// Only checks sets with elements in \p CheckDeps. bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); /// \brief The maximum number of bytes of a vector register we can vectorize /// the accesses safely with. unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } /// \brief In same cases when the dependency check fails we can still /// vectorize the loop with a dynamic array access check. bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } private: ScalarEvolution *SE; const DataLayout *DL; const Loop *InnermostLoop; /// \brief Maps access locations (ptr, read/write) to program order. DenseMap > Accesses; /// \brief Memory access instructions in program order. SmallVector InstMap; /// \brief The program order index to be used for the next instruction. unsigned AccessIdx; // We can access this many bytes in parallel safely. unsigned MaxSafeDepDistBytes; /// \brief If we see a non-constant dependence distance we can still try to /// vectorize this loop with runtime checks. bool ShouldRetryWithRuntimeCheck; /// \brief Vectorizer parameters used by the analysis. LoopAccessInfo::VectorizerParams VectParams; /// \brief Check whether there is a plausible dependence between the two /// accesses. /// /// Access \p A must happen before \p B in program order. The two indices /// identify the index into the program order map. /// /// This function checks whether there is a plausible dependence (or the /// absence of such can't be proved) between the two accesses. If there is a /// plausible dependence but the dependence distance is bigger than one /// element access it records this distance in \p MaxSafeDepDistBytes (if this /// distance is smaller than any other distance encountered so far). /// Otherwise, this function returns true signaling a possible dependence. bool isDependent(const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, unsigned BIdx, ValueToValueMap &Strides); /// \brief Check whether the data dependence could prevent store-load /// forwarding. bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); }; } // end anonymous namespace static bool isInBoundsGep(Value *Ptr) { if (GetElementPtrInst *GEP = dyn_cast(Ptr)) return GEP->isInBounds(); return false; } /// \brief Check whether the access through \p Ptr has a constant stride. static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, const Loop *Lp, ValueToValueMap &StridesMap) { const Type *Ty = Ptr->getType(); assert(Ty->isPointerTy() && "Unexpected non-ptr"); // Make sure that the pointer does not point to aggregate types. const PointerType *PtrTy = cast(Ty); if (PtrTy->getElementType()->isAggregateType()) { DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << "\n"); return 0; } const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); const SCEVAddRecExpr *AR = dyn_cast(PtrScev); if (!AR) { DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " << *Ptr << " SCEV: " << *PtrScev << "\n"); return 0; } // The accesss function must stride over the innermost loop. if (Lp != AR->getLoop()) { DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << *Ptr << " SCEV: " << *PtrScev << "\n"); } // The address calculation must not wrap. Otherwise, a dependence could be // inverted. // An inbounds getelementptr that is a AddRec with a unit stride // cannot wrap per definition. The unit stride requirement is checked later. // An getelementptr without an inbounds attribute and unit stride would have // to access the pointer value "0" which is undefined behavior in address // space 0, therefore we can also vectorize this case. bool IsInBoundsGEP = isInBoundsGep(Ptr); bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " << *Ptr << " SCEV: " << *PtrScev << "\n"); return 0; } // Check the step is constant. const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) { DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << " SCEV: " << *PtrScev << "\n"); return 0; } int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); const APInt &APStepVal = C->getValue()->getValue(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return 0; int64_t StepVal = APStepVal.getSExtValue(); // Strided access. int64_t Stride = StepVal / Size; int64_t Rem = StepVal % Size; if (Rem) return 0; // If the SCEV could wrap but we have an inbounds gep with a unit stride we // know we can't "wrap around the address space". In case of address space // zero we know that this won't happen without triggering undefined behavior. if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && Stride != 1 && Stride != -1) return 0; return Stride; } bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize) { // If loads occur at a distance that is not a multiple of a feasible vector // factor store-load forwarding does not take place. // Positive dependences might cause troubles because vectorizing them might // prevent store-load forwarding making vectorized code run a lot slower. // a[i] = a[i-3] ^ a[i-8]; // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and // hence on your typical architecture store-load forwarding does not take // place. Vectorizing in such cases does not make sense. // Store-load forwarding distance. const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; // Maximum vector factor. unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth * TypeByteSize; if (MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; vf *= 2) { if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { MaxVFWithoutSLForwardIssues = (vf >>=1); break; } } if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { DEBUG(dbgs() << "LV: Distance " << Distance << " that could cause a store-load forwarding conflict\n"); return true; } if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth * TypeByteSize) MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; return false; } bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, unsigned BIdx, ValueToValueMap &Strides) { assert (AIdx < BIdx && "Must pass arguments in program order"); Value *APtr = A.getPointer(); Value *BPtr = B.getPointer(); bool AIsWrite = A.getInt(); bool BIsWrite = B.getInt(); // Two reads are independent. if (!AIsWrite && !BIsWrite) return false; // We cannot check pointers in different address spaces. if (APtr->getType()->getPointerAddressSpace() != BPtr->getType()->getPointerAddressSpace()) return true; const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); const SCEV *Src = AScev; const SCEV *Sink = BScev; // If the induction step is negative we have to invert source and sink of the // dependence. if (StrideAPtr < 0) { //Src = BScev; //Sink = AScev; std::swap(APtr, BPtr); std::swap(Src, Sink); std::swap(AIsWrite, BIsWrite); std::swap(AIdx, BIdx); std::swap(StrideAPtr, StrideBPtr); } const SCEV *Dist = SE->getMinusSCEV(Sink, Src); DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink << "(Induction step: " << StrideAPtr << ")\n"); DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " << *InstMap[BIdx] << ": " << *Dist << "\n"); // Need consecutive accesses. We don't want to vectorize // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in // the address space. if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ DEBUG(dbgs() << "Non-consecutive pointer access\n"); return true; } const SCEVConstant *C = dyn_cast(Dist); if (!C) { DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); ShouldRetryWithRuntimeCheck = true; return true; } Type *ATy = APtr->getType()->getPointerElementType(); Type *BTy = BPtr->getType()->getPointerElementType(); unsigned TypeByteSize = DL->getTypeAllocSize(ATy); // Negative distances are not plausible dependencies. const APInt &Val = C->getValue()->getValue(); if (Val.isNegative()) { bool IsTrueDataDependence = (AIsWrite && !BIsWrite); if (IsTrueDataDependence && (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || ATy != BTy)) return true; DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); return false; } // Write to the same location with the same size. // Could be improved to assert type sizes are the same (i32 == float, etc). if (Val == 0) { if (ATy == BTy) return false; DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); return true; } assert(Val.isStrictlyPositive() && "Expect a positive value"); // Positive distance bigger than max vectorization factor. if (ATy != BTy) { DEBUG(dbgs() << "LV: ReadWrite-Write positive dependency with different types\n"); return false; } unsigned Distance = (unsigned) Val.getZExtValue(); // Bail out early if passed-in parameters make vectorization not feasible. unsigned ForcedFactor = (VectParams.VectorizationFactor ? VectParams.VectorizationFactor : 1); unsigned ForcedUnroll = (VectParams.VectorizationInterleave ? VectParams.VectorizationInterleave : 1); // The distance must be bigger than the size needed for a vectorized version // of the operation and the size of the vectorized operation must not be // bigger than the currrent maximum size. if (Distance < 2*TypeByteSize || 2*TypeByteSize > MaxSafeDepDistBytes || Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { DEBUG(dbgs() << "LV: Failure because of Positive distance " << Val.getSExtValue() << '\n'); return true; } MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; bool IsTrueDataDependence = (!AIsWrite && BIsWrite); if (IsTrueDataDependence && couldPreventStoreLoadForward(Distance, TypeByteSize)) return true; DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); return false; } bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides) { MaxSafeDepDistBytes = -1U; while (!CheckDeps.empty()) { MemAccessInfo CurAccess = *CheckDeps.begin(); // Get the relevant memory access set. EquivalenceClasses::iterator I = AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); // Check accesses within this set. EquivalenceClasses::member_iterator AI, AE; AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); // Check every access pair. while (AI != AE) { CheckDeps.erase(*AI); EquivalenceClasses::member_iterator OI = std::next(AI); while (OI != AE) { // Check every accessing instruction pair in program order. for (std::vector::iterator I1 = Accesses[*AI].begin(), I1E = Accesses[*AI].end(); I1 != I1E; ++I1) for (std::vector::iterator I2 = Accesses[*OI].begin(), I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) return false; if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) return false; } ++OI; } AI++; } } return true; } bool LoopAccessInfo::canVectorizeMemory(ValueToValueMap &Strides) { typedef SmallVector ValueVector; typedef SmallPtrSet ValueSet; // Holds the Load and Store *instructions*. ValueVector Loads; ValueVector Stores; // Holds all the different accesses in the loop. unsigned NumReads = 0; unsigned NumReadWrites = 0; PtrRtCheck.Pointers.clear(); PtrRtCheck.Need = false; const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams); // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the BB and collect legal loads and stores. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { // If this is a load, save it. If this instruction can read from memory // but is not a load, then we quit. Notice that we don't handle function // calls that read or write. if (it->mayReadFromMemory()) { // Many math library functions read the rounding mode. We will only // vectorize a loop if it contains known function calls that don't set // the flag. Therefore, it is safe to ignore this read from memory. CallInst *Call = dyn_cast(it); if (Call && getIntrinsicIDForCall(Call, TLI)) continue; LoadInst *Ld = dyn_cast(it); if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { emitAnalysis(VectorizationReport(Ld) << "read with atomic ordering or volatile read"); DEBUG(dbgs() << "LV: Found a non-simple load.\n"); return false; } NumLoads++; Loads.push_back(Ld); DepChecker.addAccess(Ld); continue; } // Save 'store' instructions. Abort if other instructions write to memory. if (it->mayWriteToMemory()) { StoreInst *St = dyn_cast(it); if (!St) { emitAnalysis(VectorizationReport(it) << "instruction cannot be vectorized"); return false; } if (!St->isSimple() && !IsAnnotatedParallel) { emitAnalysis(VectorizationReport(St) << "write with atomic ordering or volatile write"); DEBUG(dbgs() << "LV: Found a non-simple store.\n"); return false; } NumStores++; Stores.push_back(St); DepChecker.addAccess(St); } } // Next instr. } // Next block. // Now we have two lists that hold the loads and the stores. // Next, we find the pointers that they use. // Check if we see any stores. If there are no stores, then we don't // care if the pointers are *restrict*. if (!Stores.size()) { DEBUG(dbgs() << "LV: Found a read-only loop!\n"); return true; } AccessAnalysis::DepCandidates DependentAccesses; AccessAnalysis Accesses(DL, AA, DependentAccesses); // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects // multiple times on the same object. If the ptr is accessed twice, once // for read and once for write, it will only appear once (on the write // list). This is okay, since we are going to check for conflicts between // writes and between reads and writes, but not between reads and reads. ValueSet Seen; ValueVector::iterator I, IE; for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { StoreInst *ST = cast(*I); Value* Ptr = ST->getPointerOperand(); if (isUniform(Ptr)) { emitAnalysis( VectorizationReport(ST) << "write to a loop invariant address could not be vectorized"); DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); return false; } // If we did *not* see this pointer before, insert it to the read-write // list. At this phase it is only a 'write' list. if (Seen.insert(Ptr).second) { ++NumReadWrites; AliasAnalysis::Location Loc = AA->getLocation(ST); // The TBAA metadata could have a control dependency on the predication // condition, so we cannot rely on it when determining whether or not we // need runtime pointer checks. if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) Loc.AATags.TBAA = nullptr; Accesses.addStore(Loc); } } if (IsAnnotatedParallel) { DEBUG(dbgs() << "LV: A loop annotated parallel, ignore memory dependency " << "checks.\n"); return true; } for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { LoadInst *LD = cast(*I); Value* Ptr = LD->getPointerOperand(); // If we did *not* see this pointer before, insert it to the // read list. If we *did* see it before, then it is already in // the read-write list. This allows us to vectorize expressions // such as A[i] += x; Because the address of A[i] is a read-write // pointer. This only works if the index of A[i] is consecutive. // If the address of i is unknown (for example A[B[i]]) then we may // read a few words, modify, and write a few words, and some of the // words may be written to the same address. bool IsReadOnlyPtr = false; if (Seen.insert(Ptr).second || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { ++NumReads; IsReadOnlyPtr = true; } AliasAnalysis::Location Loc = AA->getLocation(LD); // The TBAA metadata could have a control dependency on the predication // condition, so we cannot rely on it when determining whether or not we // need runtime pointer checks. if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) Loc.AATags.TBAA = nullptr; Accesses.addLoad(Loc, IsReadOnlyPtr); } // If we write (or read-write) to a single destination and there are no // other reads in this loop then is it safe to vectorize. if (NumReadWrites == 1 && NumReads == 0) { DEBUG(dbgs() << "LV: Found a write-only loop!\n"); return true; } // Build dependence sets and check whether we need a runtime pointer bounds // check. Accesses.buildDependenceSets(); bool NeedRTCheck = Accesses.isRTCheckNeeded(); // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. unsigned NumComparisons = 0; bool CanDoRT = false; if (NeedRTCheck) CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, Strides); DEBUG(dbgs() << "LV: We need to do " << NumComparisons << " pointer comparisons.\n"); // If we only have one set of dependences to check pointers among we don't // need a runtime check. if (NumComparisons == 0 && NeedRTCheck) NeedRTCheck = false; // Check that we did not collect too many pointers or found an unsizeable // pointer. if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { PtrRtCheck.reset(); CanDoRT = false; } if (CanDoRT) { DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); } if (NeedRTCheck && !CanDoRT) { emitAnalysis(VectorizationReport() << "cannot identify array bounds"); DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << "the array bounds.\n"); PtrRtCheck.reset(); return false; } PtrRtCheck.Need = NeedRTCheck; bool CanVecMem = true; if (Accesses.isDependencyCheckNeeded()) { DEBUG(dbgs() << "LV: Checking memory dependencies\n"); CanVecMem = DepChecker.areDepsSafe( DependentAccesses, Accesses.getDependenciesToCheck(), Strides); MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { DEBUG(dbgs() << "LV: Retrying with memory checks\n"); NeedRTCheck = true; // Clear the dependency checks. We assume they are not needed. Accesses.resetDepChecks(); PtrRtCheck.reset(); PtrRtCheck.Need = true; CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, Strides, true); // Check that we did not collect too many pointers or found an unsizeable // pointer. if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { if (!CanDoRT && NumComparisons > 0) emitAnalysis(VectorizationReport() << "cannot check memory dependencies at runtime"); else emitAnalysis(VectorizationReport() << NumComparisons << " exceeds limit of " << VectParams.RuntimeMemoryCheckThreshold << " dependent memory operations checked at runtime"); DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); PtrRtCheck.reset(); return false; } CanVecMem = true; } } if (!CanVecMem) emitAnalysis(VectorizationReport() << "unsafe dependent memory operations in loop"); DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << " need a runtime memory check.\n"); return CanVecMem; } bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT) { assert(TheLoop->contains(BB) && "Unknown block used"); // Blocks that do not dominate the latch need predication. BasicBlock* Latch = TheLoop->getLoopLatch(); return !DT->dominates(BB, Latch); } void LoopAccessInfo::emitAnalysis(VectorizationReport &Message) { VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); } bool LoopAccessInfo::isUniform(Value *V) { return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); } // FIXME: this function is currently a duplicate of the one in // LoopVectorize.cpp. static Instruction *getFirstInst(Instruction *FirstInst, Value *V, Instruction *Loc) { if (FirstInst) return FirstInst; if (Instruction *I = dyn_cast(V)) return I->getParent() == Loc->getParent() ? I : nullptr; return nullptr; } std::pair LoopAccessInfo::addRuntimeCheck(Instruction *Loc) { Instruction *tnullptr = nullptr; if (!PtrRtCheck.Need) return std::pair(tnullptr, tnullptr); unsigned NumPointers = PtrRtCheck.Pointers.size(); SmallVector , 2> Starts; SmallVector , 2> Ends; LLVMContext &Ctx = Loc->getContext(); SCEVExpander Exp(*SE, "induction"); Instruction *FirstInst = nullptr; for (unsigned i = 0; i < NumPointers; ++i) { Value *Ptr = PtrRtCheck.Pointers[i]; const SCEV *Sc = SE->getSCEV(Ptr); if (SE->isLoopInvariant(Sc, TheLoop)) { DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << *Ptr << "\n"); Starts.push_back(Ptr); Ends.push_back(Ptr); } else { DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); unsigned AS = Ptr->getType()->getPointerAddressSpace(); // Use this type for pointer arithmetic. Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); Starts.push_back(Start); Ends.push_back(End); } } IRBuilder<> ChkBuilder(Loc); // Our instructions might fold to a constant. Value *MemoryRuntimeCheck = nullptr; for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i+1; j < NumPointers; ++j) { if (!PtrRtCheck.needsChecking(i, j)) continue; unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && "Trying to bounds check pointers with different address spaces"); Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); FirstInst = getFirstInst(FirstInst, Cmp0, Loc); Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); FirstInst = getFirstInst(FirstInst, Cmp1, Loc); Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); if (MemoryRuntimeCheck) { IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); } MemoryRuntimeCheck = IsConflict; } } // We have to do this trickery because the IRBuilder might fold the check to a // constant expression in which case there is no Instruction anchored in a // the block. Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); ChkBuilder.Insert(Check, "memcheck.conflict"); FirstInst = getFirstInst(FirstInst, Check, Loc); return std::make_pair(FirstInst, Check); }