//===- PowerPCInstrInfo.td - The PowerPC Instruction Set -----*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the subset of the 32-bit PowerPC instruction set, as used // by the PowerPC instruction selector. // //===----------------------------------------------------------------------===// include "PowerPCInstrFormats.td" //===----------------------------------------------------------------------===// // Selection DAG Type Constraint definitions. // // Note that the semantics of these constraints are hard coded into tblgen. To // modify or add constraints, you have to hack tblgen. // class SDTypeConstraint { int OperandNum = opnum; } // SDTCisVT - The specified operand has exactly this VT. class SDTCisVT : SDTypeConstraint { ValueType VT = vt; } // SDTCisInt - The specified operand is has integer type. class SDTCisInt : SDTypeConstraint; // SDTCisFP - The specified operand is has floating point type. class SDTCisFP : SDTypeConstraint; // SDTCisSameAs - The two specified operands have identical types. class SDTCisSameAs : SDTypeConstraint { int OtherOperandNum = OtherOp; } // SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is // smaller than the 'Other' operand. class SDTCisVTSmallerThanOp : SDTypeConstraint { int OtherOperandNum = OtherOp; } //===----------------------------------------------------------------------===// // Selection DAG Type Profile definitions. // // These use the constraints defined above to describe the type requirements of // the various nodes. These are not hard coded into tblgen, allowing targets to // add their own if needed. // // SDTypeProfile - This profile describes the type requirements of a Selection // DAG node. class SDTypeProfile constraints> { int NumResults = numresults; int NumOperands = numoperands; list Constraints = constraints; } // Builtin profiles. def SDTImm : SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. def SDTVT : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt' def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> ]>; def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> ]>; def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz SDTCisSameAs<0, 1>, SDTCisInt<0> ]>; def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc SDTCisSameAs<0, 1>, SDTCisFP<0> ]>; def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, SDTCisVTSmallerThanOp<2, 1> ]>; //===----------------------------------------------------------------------===// // Selection DAG Node Properties. // // Note: These are hard coded into tblgen. // class SDNodeProperty; def SDNPCommutative : SDNodeProperty; // X op Y == Y op X def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z) //===----------------------------------------------------------------------===// // Selection DAG Node definitions. // class SDNode props = [], string sdclass = "SDNode"> { string Opcode = opcode; string SDClass = sdclass; list Properties = props; SDTypeProfile TypeProfile = typeprof; } def set; def node; def imm : SDNode<"ISD::Constant" , SDTImm , [], "ConstantSDNode">; def vt : SDNode<"ISD::VALUETYPE" , SDTVT , [], "VTSDNode">; def add : SDNode<"ISD::ADD" , SDTIntBinOp , [SDNPCommutative, SDNPAssociative]>; def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; def mul : SDNode<"ISD::MUL" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; def srl : SDNode<"ISD::SRL" , SDTIntBinOp>; def sra : SDNode<"ISD::SRA" , SDTIntBinOp>; def shl : SDNode<"ISD::SHL" , SDTIntBinOp>; def and : SDNode<"ISD::AND" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def or : SDNode<"ISD::OR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def xor : SDNode<"ISD::XOR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>; //===----------------------------------------------------------------------===// // Selection DAG Node Transformation Functions. // // This mechanism allows targets to manipulate nodes in the output DAG once a // match has been formed. This is typically used to manipulate immediate // values. // class SDNodeXForm { SDNode Opcode = opc; code XFormFunction = xformFunction; } def NOOP_SDNodeXForm : SDNodeXForm; //===----------------------------------------------------------------------===// // Selection DAG Pattern Fragments. // // Pattern fragments are reusable chunks of dags that match specific things. // They can take arguments and have C++ predicates that control whether they // match. They are intended to make the patterns for common instructions more // compact and readable. // /// PatFrag - Represents a pattern fragment. This can match something on the /// DAG, frame a single node to multiply nested other fragments. /// class PatFrag { dag Operands = ops; dag Fragment = frag; code Predicate = pred; SDNodeXForm OperandTransform = xform; } // PatLeaf's are pattern fragments that have no operands. This is just a helper // to define immediates and other common things concisely. class PatLeaf : PatFrag<(ops), frag, pred, xform>; // Leaf fragments. def immAllOnes : PatLeaf<(imm), [{ return N->isAllOnesValue(); }]>; def immZero : PatLeaf<(imm), [{ return N->isNullValue(); }]>; def vtInt : PatLeaf<(vt), [{ return MVT::isInteger(N->getVT()); }]>; def vtFP : PatLeaf<(vt), [{ return MVT::isFloatingPoint(N->getVT()); }]>; // Other helper fragments. def not : PatFrag<(ops node:$in), (xor node:$in, immAllOnes)>; def ineg : PatFrag<(ops node:$in), (sub immZero, node:$in)>; //===----------------------------------------------------------------------===// // Selection DAG Pattern Support. // // Patterns are what are actually matched against the target-flavored // instruction selection DAG. Instructions defined by the target implicitly // define patterns in most cases, but patterns can also be explicitly added when // an operation is defined by a sequence of instructions (e.g. loading a large // immediate value on RISC targets that do not support immediates as large as // their GPRs). // class Pattern resultInstrs> { dag PatternToMatch = patternToMatch; list ResultInstrs = resultInstrs; } // Pat - A simple (but common) form of a pattern, which produces a simple result // not needing a full list. class Pat : Pattern; //===----------------------------------------------------------------------===// // PowerPC specific transformation functions and pattern fragments. // def LO16 : SDNodeXFormgetValue()); }]>; def HI16 : SDNodeXFormgetValue() >> 16); }]>; def HA16 : SDNodeXFormgetValue(); return getI32Imm((Val - (signed short)Val) >> 16); }]>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended // field. Used by instructions like 'addi'. return (int)N->getValue() == (short)N->getValue(); }]>; def immZExt16 : PatLeaf<(imm), [{ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended // field. Used by instructions like 'ori'. return (unsigned)N->getValue() == (unsigned short)N->getValue(); }], LO16>; def imm16Shifted : PatLeaf<(imm), [{ // imm16Shifted predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'addis'. return ((unsigned)N->getValue() & 0xFFFF0000U) == (unsigned)N->getValue(); }], HI16>; /* // Example of a legalize expander: Only for PPC64. def : Expander<(set i64:$dst, (fp_to_sint f64:$src)), [(set f64:$tmp , (FCTIDZ f64:$src)), (set i32:$tmpFI, (CreateNewFrameIndex 8, 8)), (store f64:$tmp, i32:$tmpFI), (set i64:$dst, (load i32:$tmpFI))], Subtarget_PPC64>; */ //===----------------------------------------------------------------------===// // PowerPC Flag Definitions. class isPPC64 { bit PPC64 = 1; } class isVMX { bit VMX = 1; } class isDOT { list Defs = [CR0]; bit RC = 1; } //===----------------------------------------------------------------------===// // PowerPC Operand Definitions. def u5imm : Operand { let PrintMethod = "printU5ImmOperand"; } def u6imm : Operand { let PrintMethod = "printU6ImmOperand"; } def s16imm : Operand { let PrintMethod = "printS16ImmOperand"; } def u16imm : Operand { let PrintMethod = "printU16ImmOperand"; } def target : Operand { let PrintMethod = "printBranchOperand"; } def piclabel: Operand { let PrintMethod = "printPICLabel"; } def symbolHi: Operand { let PrintMethod = "printSymbolHi"; } def symbolLo: Operand { let PrintMethod = "printSymbolLo"; } def crbitm: Operand { let PrintMethod = "printcrbitm"; } //===----------------------------------------------------------------------===// // PowerPC Instruction Definitions. // Pseudo-instructions: def PHI : Pseudo<(ops variable_ops), "; PHI">; let isLoad = 1 in { def ADJCALLSTACKDOWN : Pseudo<(ops u16imm:$amt), "; ADJCALLSTACKDOWN">; def ADJCALLSTACKUP : Pseudo<(ops u16imm:$amt), "; ADJCALLSTACKUP">; } def IMPLICIT_DEF_GPR : Pseudo<(ops GPRC:$rD), "; $rD = IMPLICIT_DEF_GPRC">; def IMPLICIT_DEF_F8 : Pseudo<(ops F8RC:$rD), "; %rD = IMPLICIT_DEF_F8">; def IMPLICIT_DEF_F4 : Pseudo<(ops F4RC:$rD), "; %rD = IMPLICIT_DEF_F4">; // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the // scheduler into a branch sequence. let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. def SELECT_CC_Int : Pseudo<(ops GPRC:$dst, CRRC:$cond, GPRC:$T, GPRC:$F, i32imm:$BROPC), "; SELECT_CC PSEUDO!">; def SELECT_CC_F4 : Pseudo<(ops F4RC:$dst, CRRC:$cond, F4RC:$T, F4RC:$F, i32imm:$BROPC), "; SELECT_CC PSEUDO!">; def SELECT_CC_F8 : Pseudo<(ops F8RC:$dst, CRRC:$cond, F8RC:$T, F8RC:$F, i32imm:$BROPC), "; SELECT_CC PSEUDO!">; } let isTerminator = 1 in { let isReturn = 1 in def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (ops), "blr">; def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (ops), "bctr">; } let Defs = [LR] in def MovePCtoLR : Pseudo<(ops piclabel:$label), "bl $label">; let isBranch = 1, isTerminator = 1 in { def COND_BRANCH : Pseudo<(ops CRRC:$crS, u16imm:$opc, target:$true, target:$false), "; COND_BRANCH">; def B : IForm<18, 0, 0, (ops target:$func), "b $func">; //def BA : IForm<18, 1, 0, (ops target:$func), "ba $func">; def BL : IForm<18, 0, 1, (ops target:$func), "bl $func">; //def BLA : IForm<18, 1, 1, (ops target:$func), "bla $func">; // FIXME: 4*CR# needs to be added to the BI field! // This will only work for CR0 as it stands now def BLT : BForm<16, 0, 0, 12, 0, (ops CRRC:$crS, target:$block), "blt $crS, $block">; def BLE : BForm<16, 0, 0, 4, 1, (ops CRRC:$crS, target:$block), "ble $crS, $block">; def BEQ : BForm<16, 0, 0, 12, 2, (ops CRRC:$crS, target:$block), "beq $crS, $block">; def BGE : BForm<16, 0, 0, 4, 0, (ops CRRC:$crS, target:$block), "bge $crS, $block">; def BGT : BForm<16, 0, 0, 12, 1, (ops CRRC:$crS, target:$block), "bgt $crS, $block">; def BNE : BForm<16, 0, 0, 4, 2, (ops CRRC:$crS, target:$block), "bne $crS, $block">; } let isCall = 1, // All calls clobber the non-callee saved registers... Defs = [R0,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12, F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13, LR,CTR, CR0,CR1,CR5,CR6,CR7] in { // Convenient aliases for call instructions def CALLpcrel : IForm<18, 0, 1, (ops target:$func, variable_ops), "bl $func">; def CALLindirect : XLForm_2_ext<19, 528, 20, 0, 1, (ops variable_ops), "bctrl">; } // D-Form instructions. Most instructions that perform an operation on a // register and an immediate are of this type. // let isLoad = 1 in { def LBZ : DForm_1<34, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA), "lbz $rD, $disp($rA)">; def LHA : DForm_1<42, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA), "lha $rD, $disp($rA)">; def LHZ : DForm_1<40, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA), "lhz $rD, $disp($rA)">; def LMW : DForm_1<46, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA), "lmw $rD, $disp($rA)">; def LWZ : DForm_1<32, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA), "lwz $rD, $disp($rA)">; def LWZU : DForm_1<35, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA), "lwzu $rD, $disp($rA)">; } def ADDI : DForm_2<14, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm), "addi $rD, $rA, $imm", [(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>; def ADDIC : DForm_2<12, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm), "addic $rD, $rA, $imm", []>; def ADDICo : DForm_2<13, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm), "addic. $rD, $rA, $imm", []>; def ADDIS : DForm_2<15, (ops GPRC:$rD, GPRC:$rA, symbolHi:$imm), "addis $rD, $rA, $imm", [(set GPRC:$rD, (add GPRC:$rA, imm16Shifted:$imm))]>; def LA : DForm_2<14, (ops GPRC:$rD, GPRC:$rA, symbolLo:$sym), "la $rD, $sym($rA)", []>; def MULLI : DForm_2< 7, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm), "mulli $rD, $rA, $imm", [(set GPRC:$rD, (mul GPRC:$rA, immSExt16:$imm))]>; def SUBFIC : DForm_2< 8, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm), "subfic $rD, $rA, $imm", [(set GPRC:$rD, (sub immSExt16:$imm, GPRC:$rA))]>; def LI : DForm_2_r0<14, (ops GPRC:$rD, s16imm:$imm), "li $rD, $imm", [(set GPRC:$rD, immSExt16:$imm)]>; def LIS : DForm_2_r0<15, (ops GPRC:$rD, symbolHi:$imm), "lis $rD, $imm", [(set GPRC:$rD, imm16Shifted:$imm)]>; let isStore = 1 in { def STMW : DForm_3<47, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA), "stmw $rS, $disp($rA)">; def STB : DForm_3<38, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA), "stb $rS, $disp($rA)">; def STH : DForm_3<44, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA), "sth $rS, $disp($rA)">; def STW : DForm_3<36, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA), "stw $rS, $disp($rA)">; def STWU : DForm_3<37, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA), "stwu $rS, $disp($rA)">; } def ANDIo : DForm_4<28, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "andi. $dst, $src1, $src2", []>, isDOT; def ANDISo : DForm_4<29, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "andis. $dst, $src1, $src2", []>, isDOT; def ORI : DForm_4<24, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "ori $dst, $src1, $src2", [(set GPRC:$dst, (or GPRC:$src1, immZExt16:$src2))]>; def ORIS : DForm_4<25, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "oris $dst, $src1, $src2", [(set GPRC:$dst, (or GPRC:$src1, imm16Shifted:$src2))]>; def XORI : DForm_4<26, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "xori $dst, $src1, $src2", [(set GPRC:$dst, (xor GPRC:$src1, immZExt16:$src2))]>; def XORIS : DForm_4<27, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2), "xoris $dst, $src1, $src2", [(set GPRC:$dst, (xor GPRC:$src1, imm16Shifted:$src2))]>; def NOP : DForm_4_zero<24, (ops), "nop">; def CMPI : DForm_5<11, (ops CRRC:$crD, i1imm:$L, GPRC:$rA, s16imm:$imm), "cmpi $crD, $L, $rA, $imm">; def CMPWI : DForm_5_ext<11, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm), "cmpwi $crD, $rA, $imm">; def CMPDI : DForm_5_ext<11, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm), "cmpdi $crD, $rA, $imm">, isPPC64; def CMPLI : DForm_6<10, (ops CRRC:$dst, i1imm:$size, GPRC:$src1, u16imm:$src2), "cmpli $dst, $size, $src1, $src2">; def CMPLWI : DForm_6_ext<10, (ops CRRC:$dst, GPRC:$src1, u16imm:$src2), "cmplwi $dst, $src1, $src2">; def CMPLDI : DForm_6_ext<10, (ops CRRC:$dst, GPRC:$src1, u16imm:$src2), "cmpldi $dst, $src1, $src2">, isPPC64; let isLoad = 1 in { def LFS : DForm_8<48, (ops F4RC:$rD, symbolLo:$disp, GPRC:$rA), "lfs $rD, $disp($rA)">; def LFD : DForm_8<50, (ops F8RC:$rD, symbolLo:$disp, GPRC:$rA), "lfd $rD, $disp($rA)">; } let isStore = 1 in { def STFS : DForm_9<52, (ops F4RC:$rS, symbolLo:$disp, GPRC:$rA), "stfs $rS, $disp($rA)">; def STFD : DForm_9<54, (ops F8RC:$rS, symbolLo:$disp, GPRC:$rA), "stfd $rS, $disp($rA)">; } // DS-Form instructions. Load/Store instructions available in PPC-64 // let isLoad = 1 in { def LWA : DSForm_1<58, 2, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA), "lwa $rT, $DS($rA)">, isPPC64; def LD : DSForm_2<58, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA), "ld $rT, $DS($rA)">, isPPC64; } let isStore = 1 in { def STD : DSForm_2<62, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA), "std $rT, $DS($rA)">, isPPC64; def STDU : DSForm_2<62, 1, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA), "stdu $rT, $DS($rA)">, isPPC64; } // X-Form instructions. Most instructions that perform an operation on a // register and another register are of this type. // let isLoad = 1 in { def LBZX : XForm_1<31, 87, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "lbzx $dst, $base, $index">; def LHAX : XForm_1<31, 343, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "lhax $dst, $base, $index">; def LHZX : XForm_1<31, 279, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "lhzx $dst, $base, $index">; def LWAX : XForm_1<31, 341, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "lwax $dst, $base, $index">, isPPC64; def LWZX : XForm_1<31, 23, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "lwzx $dst, $base, $index">; def LDX : XForm_1<31, 21, (ops GPRC:$dst, GPRC:$base, GPRC:$index), "ldx $dst, $base, $index">, isPPC64; } def NAND : XForm_6<31, 476, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "nand $rA, $rS, $rB", [(set GPRC:$rA, (not (and GPRC:$rS, GPRC:$rB)))]>; def AND : XForm_6<31, 28, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "and $rA, $rS, $rB", [(set GPRC:$rA, (and GPRC:$rS, GPRC:$rB))]>; def ANDo : XForm_6<31, 28, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "and. $rA, $rS, $rB", []>, isDOT; def ANDC : XForm_6<31, 60, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "andc $rA, $rS, $rB", [(set GPRC:$rA, (and GPRC:$rS, (not GPRC:$rB)))]>; def OR : XForm_6<31, 444, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "or $rA, $rS, $rB", [(set GPRC:$rA, (or GPRC:$rS, GPRC:$rB))]>; def NOR : XForm_6<31, 124, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "nor $rA, $rS, $rB", [(set GPRC:$rA, (not (or GPRC:$rS, GPRC:$rB)))]>; def ORo : XForm_6<31, 444, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "or. $rA, $rS, $rB", []>, isDOT; def ORC : XForm_6<31, 412, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "orc $rA, $rS, $rB", [(set GPRC:$rA, (or GPRC:$rS, (not GPRC:$rB)))]>; def EQV : XForm_6<31, 284, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "eqv $rA, $rS, $rB", [(set GPRC:$rA, (not (xor GPRC:$rS, GPRC:$rB)))]>; def XOR : XForm_6<31, 316, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "xor $rA, $rS, $rB", [(set GPRC:$rA, (xor GPRC:$rS, GPRC:$rB))]>; def SLD : XForm_6<31, 27, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "sld $rA, $rS, $rB", []>, isPPC64; def SLW : XForm_6<31, 24, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "slw $rA, $rS, $rB", [(set GPRC:$rA, (shl GPRC:$rS, GPRC:$rB))]>; def SRD : XForm_6<31, 539, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "srd $rA, $rS, $rB", []>, isPPC64; def SRW : XForm_6<31, 536, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "srw $rA, $rS, $rB", [(set GPRC:$rA, (srl GPRC:$rS, GPRC:$rB))]>; def SRAD : XForm_6<31, 794, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "srad $rA, $rS, $rB", []>, isPPC64; def SRAW : XForm_6<31, 792, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB), "sraw $rA, $rS, $rB", [(set GPRC:$rA, (sra GPRC:$rS, GPRC:$rB))]>; let isStore = 1 in { def STBX : XForm_8<31, 215, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "stbx $rS, $rA, $rB">; def STHX : XForm_8<31, 407, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "sthx $rS, $rA, $rB">; def STWX : XForm_8<31, 151, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "stwx $rS, $rA, $rB">; def STWUX : XForm_8<31, 183, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "stwux $rS, $rA, $rB">; def STDX : XForm_8<31, 149, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "stdx $rS, $rA, $rB">, isPPC64; def STDUX : XForm_8<31, 181, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB), "stdux $rS, $rA, $rB">, isPPC64; } def SRAWI : XForm_10<31, 824, (ops GPRC:$rA, GPRC:$rS, u5imm:$SH), "srawi $rA, $rS, $SH", [(set GPRC:$rA, (sra GPRC:$rS, imm:$SH))]>; def CNTLZW : XForm_11<31, 26, (ops GPRC:$rA, GPRC:$rS), "cntlzw $rA, $rS", [(set GPRC:$rA, (ctlz GPRC:$rS))]>; def EXTSB : XForm_11<31, 954, (ops GPRC:$rA, GPRC:$rS), "extsb $rA, $rS", [(set GPRC:$rA, (sext_inreg GPRC:$rS, i8))]>; def EXTSH : XForm_11<31, 922, (ops GPRC:$rA, GPRC:$rS), "extsh $rA, $rS", [(set GPRC:$rA, (sext_inreg GPRC:$rS, i16))]>; def EXTSW : XForm_11<31, 986, (ops GPRC:$rA, GPRC:$rS), "extsw $rA, $rS", []>, isPPC64; def CMP : XForm_16<31, 0, (ops CRRC:$crD, i1imm:$long, GPRC:$rA, GPRC:$rB), "cmp $crD, $long, $rA, $rB">; def CMPL : XForm_16<31, 32, (ops CRRC:$crD, i1imm:$long, GPRC:$rA, GPRC:$rB), "cmpl $crD, $long, $rA, $rB">; def CMPW : XForm_16_ext<31, 0, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB), "cmpw $crD, $rA, $rB">; def CMPD : XForm_16_ext<31, 0, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB), "cmpd $crD, $rA, $rB">, isPPC64; def CMPLW : XForm_16_ext<31, 32, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB), "cmplw $crD, $rA, $rB">; def CMPLD : XForm_16_ext<31, 32, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB), "cmpld $crD, $rA, $rB">, isPPC64; //def FCMPO : XForm_17<63, 32, (ops CRRC:$crD, FPRC:$fA, FPRC:$fB), // "fcmpo $crD, $fA, $fB">; def FCMPUS : XForm_17<63, 0, (ops CRRC:$crD, F4RC:$fA, F4RC:$fB), "fcmpu $crD, $fA, $fB">; def FCMPUD : XForm_17<63, 0, (ops CRRC:$crD, F8RC:$fA, F8RC:$fB), "fcmpu $crD, $fA, $fB">; let isLoad = 1 in { def LFSX : XForm_25<31, 535, (ops F4RC:$dst, GPRC:$base, GPRC:$index), "lfsx $dst, $base, $index">; def LFDX : XForm_25<31, 599, (ops F8RC:$dst, GPRC:$base, GPRC:$index), "lfdx $dst, $base, $index">; } def FCFID : XForm_26<63, 846, (ops F8RC:$frD, F8RC:$frB), "fcfid $frD, $frB", []>, isPPC64; def FCTIDZ : XForm_26<63, 815, (ops F8RC:$frD, F8RC:$frB), "fctidz $frD, $frB", []>, isPPC64; def FCTIWZ : XForm_26<63, 15, (ops F8RC:$frD, F8RC:$frB), "fctiwz $frD, $frB", []>; def FRSP : XForm_26<63, 12, (ops F4RC:$frD, F8RC:$frB), "frsp $frD, $frB", []>; def FSQRT : XForm_26<63, 22, (ops F8RC:$frD, F8RC:$frB), "fsqrt $frD, $frB", [(set F8RC:$frD, (fsqrt F8RC:$frB))]>; def FSQRTS : XForm_26<59, 22, (ops F4RC:$frD, F4RC:$frB), "fsqrts $frD, $frB", []>; /// FMR is split into 3 versions, one for 4/8 byte FP, and one for extending. def FMRS : XForm_26<63, 72, (ops F4RC:$frD, F4RC:$frB), "fmr $frD, $frB", []>; // (set F4RC:$frD, F4RC:$frB) def FMRD : XForm_26<63, 72, (ops F8RC:$frD, F8RC:$frB), "fmr $frD, $frB", []>; // (set F8RC:$frD, F8RC:$frB) def FMRSD : XForm_26<63, 72, (ops F8RC:$frD, F4RC:$frB), "fmr $frD, $frB", []>; // (set F8RC:$frD, (fpextend F4RC:$frB)) // These are artificially split into two different forms, for 4/8 byte FP. def FABSS : XForm_26<63, 264, (ops F4RC:$frD, F4RC:$frB), "fabs $frD, $frB", [(set F4RC:$frD, (fabs F4RC:$frB))]>; def FABSD : XForm_26<63, 264, (ops F8RC:$frD, F8RC:$frB), "fabs $frD, $frB", [(set F8RC:$frD, (fabs F8RC:$frB))]>; def FNABSS : XForm_26<63, 136, (ops F4RC:$frD, F4RC:$frB), "fnabs $frD, $frB", [(set F4RC:$frD, (fneg (fabs F4RC:$frB)))]>; def FNABSD : XForm_26<63, 136, (ops F8RC:$frD, F8RC:$frB), "fnabs $frD, $frB", [(set F8RC:$frD, (fneg (fabs F8RC:$frB)))]>; def FNEGS : XForm_26<63, 40, (ops F4RC:$frD, F4RC:$frB), "fneg $frD, $frB", [(set F4RC:$frD, (fneg F4RC:$frB))]>; def FNEGD : XForm_26<63, 40, (ops F8RC:$frD, F8RC:$frB), "fneg $frD, $frB", [(set F8RC:$frD, (fneg F8RC:$frB))]>; let isStore = 1 in { def STFSX : XForm_28<31, 663, (ops F4RC:$frS, GPRC:$rA, GPRC:$rB), "stfsx $frS, $rA, $rB">; def STFDX : XForm_28<31, 727, (ops F8RC:$frS, GPRC:$rA, GPRC:$rB), "stfdx $frS, $rA, $rB">; } // XL-Form instructions. condition register logical ops. // def MCRF : XLForm_3<19, 0, (ops CRRC:$BF, CRRC:$BFA), "mcrf $BF, $BFA">; // XFX-Form instructions. Instructions that deal with SPRs // // Note that although LR should be listed as `8' and CTR as `9' in the SPR // field, the manual lists the groups of bits as [5-9] = 0, [0-4] = 8 or 9 // which means the SPR value needs to be multiplied by a factor of 32. def MFCTR : XFXForm_1_ext<31, 339, 288, (ops GPRC:$rT), "mfctr $rT">; def MFLR : XFXForm_1_ext<31, 339, 256, (ops GPRC:$rT), "mflr $rT">; def MFCR : XFXForm_3<31, 19, (ops GPRC:$rT), "mfcr $rT">; def MTCRF : XFXForm_5<31, 144, (ops crbitm:$FXM, GPRC:$rS), "mtcrf $FXM, $rS">; def MFOCRF : XFXForm_5a<31, 19, (ops GPRC:$rT, crbitm:$FXM), "mfcr $rT, $FXM">; def MTCTR : XFXForm_7_ext<31, 467, 288, (ops GPRC:$rS), "mtctr $rS">; def MTLR : XFXForm_7_ext<31, 467, 256, (ops GPRC:$rS), "mtlr $rS">; // XS-Form instructions. Just 'sradi' // def SRADI : XSForm_1<31, 413, (ops GPRC:$rA, GPRC:$rS, u6imm:$SH), "sradi $rA, $rS, $SH">, isPPC64; // XO-Form instructions. Arithmetic instructions that can set overflow bit // def ADD : XOForm_1<31, 266, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "add $rT, $rA, $rB", [(set GPRC:$rT, (add GPRC:$rA, GPRC:$rB))]>; def ADDC : XOForm_1<31, 10, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "addc $rT, $rA, $rB", []>; def ADDE : XOForm_1<31, 138, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "adde $rT, $rA, $rB", []>; def DIVD : XOForm_1<31, 489, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "divd $rT, $rA, $rB", []>, isPPC64; def DIVDU : XOForm_1<31, 457, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "divdu $rT, $rA, $rB", []>, isPPC64; def DIVW : XOForm_1<31, 491, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "divw $rT, $rA, $rB", [(set GPRC:$rT, (sdiv GPRC:$rA, GPRC:$rB))]>; def DIVWU : XOForm_1<31, 459, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "divwu $rT, $rA, $rB", [(set GPRC:$rT, (udiv GPRC:$rA, GPRC:$rB))]>; def MULHW : XOForm_1<31, 75, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "mulhw $rT, $rA, $rB", [(set GPRC:$rT, (mulhs GPRC:$rA, GPRC:$rB))]>; def MULHWU : XOForm_1<31, 11, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "mulhwu $rT, $rA, $rB", [(set GPRC:$rT, (mulhu GPRC:$rA, GPRC:$rB))]>; def MULLD : XOForm_1<31, 233, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "mulld $rT, $rA, $rB", []>, isPPC64; def MULLW : XOForm_1<31, 235, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "mullw $rT, $rA, $rB", [(set GPRC:$rT, (mul GPRC:$rA, GPRC:$rB))]>; def SUBF : XOForm_1<31, 40, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "subf $rT, $rA, $rB", [(set GPRC:$rT, (sub GPRC:$rB, GPRC:$rA))]>; def SUBFC : XOForm_1<31, 8, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "subfc $rT, $rA, $rB", []>; def SUBFE : XOForm_1<31, 136, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB), "subfe $rT, $rA, $rB", []>; def ADDME : XOForm_3<31, 234, 0, (ops GPRC:$rT, GPRC:$rA), "addme $rT, $rA", []>; def ADDZE : XOForm_3<31, 202, 0, (ops GPRC:$rT, GPRC:$rA), "addze $rT, $rA", []>; def NEG : XOForm_3<31, 104, 0, (ops GPRC:$rT, GPRC:$rA), "neg $rT, $rA", [(set GPRC:$rT, (ineg GPRC:$rA))]>; def SUBFZE : XOForm_3<31, 200, 0, (ops GPRC:$rT, GPRC:$rA), "subfze $rT, $rA", []>; // A-Form instructions. Most of the instructions executed in the FPU are of // this type. // def FMADD : AForm_1<63, 29, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fmadd $FRT, $FRA, $FRC, $FRB", [(set F8RC:$FRT, (fadd (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB))]>; def FMADDS : AForm_1<59, 29, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fmadds $FRT, $FRA, $FRC, $FRB", [(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB))]>; def FMSUB : AForm_1<63, 28, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fmsub $FRT, $FRA, $FRC, $FRB", [(set F8RC:$FRT, (fsub (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB))]>; def FMSUBS : AForm_1<59, 28, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fmsubs $FRT, $FRA, $FRC, $FRB", [(set F4RC:$FRT, (fsub (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB))]>; def FNMADD : AForm_1<63, 31, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fnmadd $FRT, $FRA, $FRC, $FRB", [(set F8RC:$FRT, (fneg (fadd (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB)))]>; def FNMADDS : AForm_1<59, 31, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fnmadds $FRT, $FRA, $FRC, $FRB", [(set F4RC:$FRT, (fneg (fadd (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB)))]>; def FNMSUB : AForm_1<63, 30, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fnmsub $FRT, $FRA, $FRC, $FRB", [(set F8RC:$FRT, (fneg (fsub (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB)))]>; def FNMSUBS : AForm_1<59, 30, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fnmsubs $FRT, $FRA, $FRC, $FRB", [(set F4RC:$FRT, (fneg (fsub (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB)))]>; // FSEL is artificially split into 4 and 8-byte forms for the result. To avoid // having 4 of these, force the comparison to always be an 8-byte double (code // should use an FMRSD if the input comparison value really wants to be a float) // and 4/8 byte forms for the result and operand type.. def FSELD : AForm_1<63, 23, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fsel $FRT, $FRA, $FRC, $FRB", []>; def FSELS : AForm_1<63, 23, (ops F4RC:$FRT, F8RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fsel $FRT, $FRA, $FRC, $FRB", []>; def FADD : AForm_2<63, 21, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRB), "fadd $FRT, $FRA, $FRB", [(set F8RC:$FRT, (fadd F8RC:$FRA, F8RC:$FRB))]>; def FADDS : AForm_2<59, 21, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), "fadds $FRT, $FRA, $FRB", [(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>; def FDIV : AForm_2<63, 18, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRB), "fdiv $FRT, $FRA, $FRB", [(set F8RC:$FRT, (fdiv F8RC:$FRA, F8RC:$FRB))]>; def FDIVS : AForm_2<59, 18, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), "fdivs $FRT, $FRA, $FRB", [(set F4RC:$FRT, (fdiv F4RC:$FRA, F4RC:$FRB))]>; def FMUL : AForm_3<63, 25, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRB), "fmul $FRT, $FRA, $FRB", [(set F8RC:$FRT, (fmul F8RC:$FRA, F8RC:$FRB))]>; def FMULS : AForm_3<59, 25, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), "fmuls $FRT, $FRA, $FRB", [(set F4RC:$FRT, (fmul F4RC:$FRA, F4RC:$FRB))]>; def FSUB : AForm_2<63, 20, (ops F8RC:$FRT, F8RC:$FRA, F8RC:$FRB), "fsub $FRT, $FRA, $FRB", [(set F8RC:$FRT, (fsub F8RC:$FRA, F8RC:$FRB))]>; def FSUBS : AForm_2<59, 20, (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), "fsubs $FRT, $FRA, $FRB", [(set F4RC:$FRT, (fsub F4RC:$FRA, F4RC:$FRB))]>; // M-Form instructions. rotate and mask instructions. // let isTwoAddress = 1, isCommutable = 1 in { // RLWIMI can be commuted if the rotate amount is zero. def RLWIMI : MForm_2<20, (ops GPRC:$rA, GPRC:$rSi, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwimi $rA, $rS, $SH, $MB, $ME">; } def RLWINM : MForm_2<21, (ops GPRC:$rA, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm $rA, $rS, $SH, $MB, $ME">; def RLWINMo : MForm_2<21, (ops GPRC:$rA, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm. $rA, $rS, $SH, $MB, $ME">, isDOT; def RLWNM : MForm_2<23, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB, u5imm:$MB, u5imm:$ME), "rlwnm $rA, $rS, $rB, $MB, $ME">; // MD-Form instructions. 64 bit rotate instructions. // def RLDICL : MDForm_1<30, 0, (ops GPRC:$rA, GPRC:$rS, u6imm:$SH, u6imm:$MB), "rldicl $rA, $rS, $SH, $MB">, isPPC64; def RLDICR : MDForm_1<30, 1, (ops GPRC:$rA, GPRC:$rS, u6imm:$SH, u6imm:$ME), "rldicr $rA, $rS, $SH, $ME">, isPPC64; //===----------------------------------------------------------------------===// // PowerPC Instruction Patterns // // Arbitrary immediate support. Implement in terms of LIS/ORI. def : Pat<(i32 imm:$imm), (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; // Implement the 'not' operation with the NOR instruction. def NOT : Pat<(not GPRC:$in), (NOR GPRC:$in, GPRC:$in)>; // ADD an arbitrary immediate. def : Pat<(add GPRC:$in, imm:$imm), (ADDIS (ADDI GPRC:$in, (LO16 imm:$imm)), (HA16 imm:$imm))>; // OR an arbitrary immediate. def : Pat<(or GPRC:$in, imm:$imm), (ORIS (ORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // XOR an arbitrary immediate. def : Pat<(xor GPRC:$in, imm:$imm), (XORIS (XORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // Same as above, but using a temporary. FIXME: implement temporaries :) /* def : Pattern<(xor GPRC:$in, imm:$imm), [(set GPRC:$tmp, (XORI GPRC:$in, (LO16 imm:$imm))), (XORIS GPRC:$tmp, (HI16 imm:$imm))]>; */ //===----------------------------------------------------------------------===// // PowerPCInstrInfo Definition // def PowerPCInstrInfo : InstrInfo { let PHIInst = PHI; let TSFlagsFields = [ "VMX", "PPC64" ]; let TSFlagsShifts = [ 0, 1 ]; let isLittleEndianEncoding = 1; }