//===- ARMBaseInstrInfo.h - ARM Base Instruction Information ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Base ARM implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef ARMBASEINSTRUCTIONINFO_H #define ARMBASEINSTRUCTIONINFO_H #include "ARM.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" namespace llvm { class ARMSubtarget; class ARMBaseRegisterInfo; /// ARMII - This namespace holds all of the target specific flags that /// instruction info tracks. /// namespace ARMII { enum { //===------------------------------------------------------------------===// // Instruction Flags. //===------------------------------------------------------------------===// // This four-bit field describes the addressing mode used. AddrModeMask = 0x1f, AddrModeNone = 0, AddrMode1 = 1, AddrMode2 = 2, AddrMode3 = 3, AddrMode4 = 4, AddrMode5 = 5, AddrMode6 = 6, AddrModeT1_1 = 7, AddrModeT1_2 = 8, AddrModeT1_4 = 9, AddrModeT1_s = 10, // i8 * 4 for pc and sp relative data AddrModeT2_i12 = 11, AddrModeT2_i8 = 12, AddrModeT2_so = 13, AddrModeT2_pc = 14, // +/- i12 for pc relative data AddrModeT2_i8s4 = 15, // i8 * 4 AddrMode_i12 = 16, // Size* - Flags to keep track of the size of an instruction. SizeShift = 5, SizeMask = 7 << SizeShift, SizeSpecial = 1, // 0 byte pseudo or special case. Size8Bytes = 2, Size4Bytes = 3, Size2Bytes = 4, // IndexMode - Unindex, pre-indexed, or post-indexed are valid for load // and store ops only. Generic "updating" flag is used for ld/st multiple. IndexModeShift = 8, IndexModeMask = 3 << IndexModeShift, IndexModePre = 1, IndexModePost = 2, IndexModeUpd = 3, //===------------------------------------------------------------------===// // Instruction encoding formats. // FormShift = 10, FormMask = 0x3f << FormShift, // Pseudo instructions Pseudo = 0 << FormShift, // Multiply instructions MulFrm = 1 << FormShift, // Branch instructions BrFrm = 2 << FormShift, BrMiscFrm = 3 << FormShift, // Data Processing instructions DPFrm = 4 << FormShift, DPSoRegFrm = 5 << FormShift, // Load and Store LdFrm = 6 << FormShift, StFrm = 7 << FormShift, LdMiscFrm = 8 << FormShift, StMiscFrm = 9 << FormShift, LdStMulFrm = 10 << FormShift, LdStExFrm = 11 << FormShift, // Miscellaneous arithmetic instructions ArithMiscFrm = 12 << FormShift, SatFrm = 13 << FormShift, // Extend instructions ExtFrm = 14 << FormShift, // VFP formats VFPUnaryFrm = 15 << FormShift, VFPBinaryFrm = 16 << FormShift, VFPConv1Frm = 17 << FormShift, VFPConv2Frm = 18 << FormShift, VFPConv3Frm = 19 << FormShift, VFPConv4Frm = 20 << FormShift, VFPConv5Frm = 21 << FormShift, VFPLdStFrm = 22 << FormShift, VFPLdStMulFrm = 23 << FormShift, VFPMiscFrm = 24 << FormShift, // Thumb format ThumbFrm = 25 << FormShift, // Miscelleaneous format MiscFrm = 26 << FormShift, // NEON formats NGetLnFrm = 27 << FormShift, NSetLnFrm = 28 << FormShift, NDupFrm = 29 << FormShift, NLdStFrm = 30 << FormShift, N1RegModImmFrm= 31 << FormShift, N2RegFrm = 32 << FormShift, NVCVTFrm = 33 << FormShift, NVDupLnFrm = 34 << FormShift, N2RegVShLFrm = 35 << FormShift, N2RegVShRFrm = 36 << FormShift, N3RegFrm = 37 << FormShift, N3RegVShFrm = 38 << FormShift, NVExtFrm = 39 << FormShift, NVMulSLFrm = 40 << FormShift, NVTBLFrm = 41 << FormShift, //===------------------------------------------------------------------===// // Misc flags. // UnaryDP - Indicates this is a unary data processing instruction, i.e. // it doesn't have a Rn operand. UnaryDP = 1 << 16, // Xform16Bit - Indicates this Thumb2 instruction may be transformed into // a 16-bit Thumb instruction if certain conditions are met. Xform16Bit = 1 << 17, //===------------------------------------------------------------------===// // Code domain. DomainShift = 18, DomainMask = 3 << DomainShift, DomainGeneral = 0 << DomainShift, DomainVFP = 1 << DomainShift, DomainNEON = 2 << DomainShift, //===------------------------------------------------------------------===// // Field shifts - such shifts are used to set field while generating // machine instructions. // // FIXME: This list will need adjusting/fixing as the MC code emitter // takes shape and the ARMCodeEmitter.cpp bits go away. ShiftTypeShift = 4, M_BitShift = 5, ShiftImmShift = 5, ShiftShift = 7, N_BitShift = 7, ImmHiShift = 8, SoRotImmShift = 8, RegRsShift = 8, ExtRotImmShift = 10, RegRdLoShift = 12, RegRdShift = 12, RegRdHiShift = 16, RegRnShift = 16, S_BitShift = 20, W_BitShift = 21, AM3_I_BitShift = 22, D_BitShift = 22, U_BitShift = 23, P_BitShift = 24, I_BitShift = 25, CondShift = 28 }; } class ARMBaseInstrInfo : public TargetInstrInfoImpl { const ARMSubtarget &Subtarget; protected: // Can be only subclassed. explicit ARMBaseInstrInfo(const ARMSubtarget &STI); public: // Return the non-pre/post incrementing version of 'Opc'. Return 0 // if there is not such an opcode. virtual unsigned getUnindexedOpcode(unsigned Opc) const =0; virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const; virtual const ARMBaseRegisterInfo &getRegisterInfo() const =0; const ARMSubtarget &getSubtarget() const { return Subtarget; } ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II) const; // Branch analysis. virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const; virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const; virtual bool ReverseBranchCondition(SmallVectorImpl &Cond) const; // Predication support. bool isPredicated(const MachineInstr *MI) const { int PIdx = MI->findFirstPredOperandIdx(); return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; } ARMCC::CondCodes getPredicate(const MachineInstr *MI) const { int PIdx = MI->findFirstPredOperandIdx(); return PIdx != -1 ? (ARMCC::CondCodes)MI->getOperand(PIdx).getImm() : ARMCC::AL; } virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const; virtual bool SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const; virtual bool DefinesPredicate(MachineInstr *MI, std::vector &Pred) const; virtual bool isPredicable(MachineInstr *MI) const; /// GetInstSize - Returns the size of the specified MachineInstr. /// virtual unsigned GetInstSizeInBytes(const MachineInstr* MI) const; virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; virtual unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const; virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const; virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const; virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const; virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const; MachineInstr *duplicate(MachineInstr *Orig, MachineFunction &MF) const; virtual bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1) const; /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to /// determine if two loads are loading from the same base address. It should /// only return true if the base pointers are the same and the only /// differences between the two addresses is the offset. It also returns the /// offsets by reference. virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2)const; /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should /// be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const; virtual bool isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const; virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, unsigned ExtraPredCycles, float Prob, float Confidence) const; virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT, unsigned ExtraT, MachineBasicBlock &FMBB, unsigned NumF, unsigned ExtraF, float Probability, float Confidence) const; virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, float Probability, float Confidence) const { return NumCyles == 1; } /// AnalyzeCompare - For a comparison instruction, return the source register /// in SrcReg and the value it compares against in CmpValue. Return true if /// the comparison instruction can be analyzed. virtual bool AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask, int &CmpValue) const; /// OptimizeCompareInstr - Convert the instruction to set the zero flag so /// that we can remove a "comparison with zero". virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const; /// FoldImmediate - 'Reg' is known to be defined by a move immediate /// instruction, try to fold the immediate into the use instruction. virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const; virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const; virtual int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const; private: int getVLDMDefCycle(const InstrItineraryData *ItinData, const TargetInstrDesc &DefTID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getLDMDefCycle(const InstrItineraryData *ItinData, const TargetInstrDesc &DefTID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getVSTMUseCycle(const InstrItineraryData *ItinData, const TargetInstrDesc &UseTID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getSTMUseCycle(const InstrItineraryData *ItinData, const TargetInstrDesc &UseTID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getOperandLatency(const InstrItineraryData *ItinData, const TargetInstrDesc &DefTID, unsigned DefIdx, unsigned DefAlign, const TargetInstrDesc &UseTID, unsigned UseIdx, unsigned UseAlign) const; int getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost = 0) const; int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const; bool hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; bool hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const; private: /// Modeling special VFP / NEON fp MLA / MLS hazards. /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal /// MLx table. DenseMap MLxEntryMap; /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause /// stalls when scheduled together with fp MLA / MLS opcodes. SmallSet MLxHazardOpcodes; public: /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS /// instruction. bool isFpMLxInstruction(unsigned Opcode) const { return MLxEntryMap.count(Opcode); } /// isFpMLxInstruction - This version also returns the multiply opcode and the /// addition / subtraction opcode to expand to. Return true for 'HasLane' for /// the MLX instructions with an extra lane operand. bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, unsigned &AddSubOpc, bool &NegAcc, bool &HasLane) const; /// canCauseFpMLxStall - Return true if an instruction of the specified opcode /// will cause stalls when scheduled after (within 4-cycle window) a fp /// MLA / MLS instruction. bool canCauseFpMLxStall(unsigned Opcode) const { return MLxHazardOpcodes.count(Opcode); } }; static inline const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) { return MIB.addImm((int64_t)ARMCC::AL).addReg(0); } static inline const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) { return MIB.addReg(0); } static inline const MachineInstrBuilder &AddDefaultT1CC(const MachineInstrBuilder &MIB, bool isDead = false) { return MIB.addReg(ARM::CPSR, getDefRegState(true) | getDeadRegState(isDead)); } static inline const MachineInstrBuilder &AddNoT1CC(const MachineInstrBuilder &MIB) { return MIB.addReg(0); } static inline bool isUncondBranchOpcode(int Opc) { return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B; } static inline bool isCondBranchOpcode(int Opc) { return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc; } static inline bool isJumpTableBranchOpcode(int Opc) { return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT; } static inline bool isIndirectBranchOpcode(int Opc) { return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND; } /// getInstrPredicate - If instruction is predicated, returns its predicate /// condition, otherwise returns AL. It also returns the condition code /// register by reference. ARMCC::CondCodes getInstrPredicate(const MachineInstr *MI, unsigned &PredReg); int getMatchingCondBranchOpcode(int Opc); /// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of /// instructions to materializea destreg = basereg + immediate in ARM / Thumb2 /// code. void emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII); void emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII); void emitThumbRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, unsigned BaseReg, int NumBytes, const TargetInstrInfo &TII, const ARMBaseRegisterInfo& MRI, DebugLoc dl); /// rewriteARMFrameIndex / rewriteT2FrameIndex - /// Rewrite MI to access 'Offset' bytes from the FP. Return false if the /// offset could not be handled directly in MI, and return the left-over /// portion by reference. bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII); bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII); } // End llvm namespace #endif