//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of some scaled number algorithms. // //===----------------------------------------------------------------------===// #include "llvm/Support/ScaledNumber.h" using namespace llvm; using namespace llvm::ScaledNumbers; std::pair ScaledNumbers::multiply64(uint64_t LHS, uint64_t RHS) { // Separate into two 32-bit digits (U.L). auto getU = [](uint64_t N) { return N >> 32; }; auto getL = [](uint64_t N) { return N & UINT32_MAX; }; uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); // Compute cross products. uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; // Sum into two 64-bit digits. uint64_t Upper = P1, Lower = P4; auto addWithCarry = [&](uint64_t N) { uint64_t NewLower = Lower + (getL(N) << 32); Upper += getU(N) + (NewLower < Lower); Lower = NewLower; }; addWithCarry(P2); addWithCarry(P3); // Check whether the upper digit is empty. if (!Upper) return std::make_pair(Lower, 0); // Shift as little as possible to maximize precision. unsigned LeadingZeros = countLeadingZeros(Upper); int Shift = 64 - LeadingZeros; if (LeadingZeros) Upper = Upper << LeadingZeros | Lower >> Shift; return getRounded(Upper, Shift, Shift && (Lower & UINT64_C(1) << (Shift - 1))); } static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } std::pair ScaledNumbers::divide32(uint32_t Dividend, uint32_t Divisor) { assert(Dividend && "expected non-zero dividend"); assert(Divisor && "expected non-zero divisor"); // Use 64-bit math and canonicalize the dividend to gain precision. uint64_t Dividend64 = Dividend; int Shift = 0; if (int Zeros = countLeadingZeros(Dividend64)) { Shift -= Zeros; Dividend64 <<= Zeros; } uint64_t Quotient = Dividend64 / Divisor; uint64_t Remainder = Dividend64 % Divisor; // If Quotient needs to be shifted, leave the rounding to getAdjusted(). if (Quotient > UINT32_MAX) return getAdjusted(Quotient, Shift); // Round based on the value of the next bit. return getRounded(Quotient, Shift, Remainder >= getHalf(Divisor)); } std::pair ScaledNumbers::divide64(uint64_t Dividend, uint64_t Divisor) { assert(Dividend && "expected non-zero dividend"); assert(Divisor && "expected non-zero divisor"); // Minimize size of divisor. int Shift = 0; if (int Zeros = countTrailingZeros(Divisor)) { Shift -= Zeros; Divisor >>= Zeros; } // Check for powers of two. if (Divisor == 1) return std::make_pair(Dividend, Shift); // Maximize size of dividend. if (int Zeros = countLeadingZeros(Dividend)) { Shift -= Zeros; Dividend <<= Zeros; } // Start with the result of a divide. uint64_t Quotient = Dividend / Divisor; Dividend %= Divisor; // Continue building the quotient with long division. while (!(Quotient >> 63) && Dividend) { // Shift Dividend and check for overflow. bool IsOverflow = Dividend >> 63; Dividend <<= 1; --Shift; // Get the next bit of Quotient. Quotient <<= 1; if (IsOverflow || Divisor <= Dividend) { Quotient |= 1; Dividend -= Divisor; } } return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); } int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { assert(ScaleDiff >= 0 && "wrong argument order"); assert(ScaleDiff < 64 && "numbers too far apart"); uint64_t L_adjusted = L >> ScaleDiff; if (L_adjusted < R) return -1; if (L_adjusted > R) return 1; return L > L_adjusted << ScaleDiff ? 1 : 0; }