//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of ELF support for the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #include "RuntimeDyldELF.h" #include "JITRegistrar.h" #include "ObjectImageCommon.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ExecutionEngine/ObjectBuffer.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/ELF.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" using namespace llvm; using namespace llvm::object; #define DEBUG_TYPE "dyld" namespace { static inline std::error_code check(std::error_code Err) { if (Err) { report_fatal_error(Err.message()); } return Err; } template class DyldELFObject : public ELFObjectFile { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) typedef Elf_Shdr_Impl Elf_Shdr; typedef Elf_Sym_Impl Elf_Sym; typedef Elf_Rel_Impl Elf_Rel; typedef Elf_Rel_Impl Elf_Rela; typedef Elf_Ehdr_Impl Elf_Ehdr; typedef typename ELFDataTypeTypedefHelper::value_type addr_type; std::unique_ptr UnderlyingFile; public: DyldELFObject(std::unique_ptr UnderlyingFile, MemoryBufferRef Wrapper, std::error_code &ec); DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec); void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr); // Methods for type inquiry through isa, cast and dyn_cast static inline bool classof(const Binary *v) { return (isa>(v) && classof(cast>(v))); } static inline bool classof(const ELFObjectFile *v) { return v->isDyldType(); } }; template class ELFObjectImage : public ObjectImageCommon { bool Registered; public: ELFObjectImage(std::unique_ptr Input, std::unique_ptr> Obj) : ObjectImageCommon(std::move(Input), std::move(Obj)), Registered(false) { } virtual ~ELFObjectImage() { if (Registered) deregisterWithDebugger(); } // Subclasses can override these methods to update the image with loaded // addresses for sections and common symbols void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override { static_cast*>(getObjectFile()) ->updateSectionAddress(Sec, Addr); } void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override { static_cast*>(getObjectFile()) ->updateSymbolAddress(Sym, Addr); } void registerWithDebugger() override { JITRegistrar::getGDBRegistrar().registerObject(*Buffer); Registered = true; } void deregisterWithDebugger() override { JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer); } }; // The MemoryBuffer passed into this constructor is just a wrapper around the // actual memory. Ultimately, the Binary parent class will take ownership of // this MemoryBuffer object but not the underlying memory. template DyldELFObject::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC) : ELFObjectFile(Wrapper, EC) { this->isDyldELFObject = true; } template DyldELFObject::DyldELFObject(std::unique_ptr UnderlyingFile, MemoryBufferRef Wrapper, std::error_code &EC) : ELFObjectFile(Wrapper, EC), UnderlyingFile(std::move(UnderlyingFile)) { this->isDyldELFObject = true; } template void DyldELFObject::updateSectionAddress(const SectionRef &Sec, uint64_t Addr) { DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); Elf_Shdr *shdr = const_cast(reinterpret_cast(ShdrRef.p)); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. shdr->sh_addr = static_cast(Addr); } template void DyldELFObject::updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr) { Elf_Sym *sym = const_cast( ELFObjectFile::getSymbol(SymRef.getRawDataRefImpl())); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. sym->st_value = static_cast(Addr); } } // namespace namespace llvm { void RuntimeDyldELF::registerEHFrames() { if (!MemMgr) return; for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { SID EHFrameSID = UnregisteredEHFrameSections[i]; uint8_t *EHFrameAddr = Sections[EHFrameSID].Address; uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress; size_t EHFrameSize = Sections[EHFrameSID].Size; MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); RegisteredEHFrameSections.push_back(EHFrameSID); } UnregisteredEHFrameSections.clear(); } void RuntimeDyldELF::deregisterEHFrames() { if (!MemMgr) return; for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) { SID EHFrameSID = RegisteredEHFrameSections[i]; uint8_t *EHFrameAddr = Sections[EHFrameSID].Address; uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress; size_t EHFrameSize = Sections[EHFrameSID].Size; MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); } RegisteredEHFrameSections.clear(); } ObjectImage * RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr ObjFile) { if (!ObjFile) return nullptr; std::error_code ec; MemoryBufferRef Buffer = ObjFile->getMemoryBufferRef(); if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) { auto Obj = llvm::make_unique>>( std::move(ObjFile), Buffer, ec); return new ELFObjectImage>( nullptr, std::move(Obj)); } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) { auto Obj = llvm::make_unique>>( std::move(ObjFile), Buffer, ec); return new ELFObjectImage>(nullptr, std::move(Obj)); } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) { auto Obj = llvm::make_unique>>( std::move(ObjFile), Buffer, ec); return new ELFObjectImage>(nullptr, std::move(Obj)); } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) { auto Obj = llvm::make_unique>>( std::move(ObjFile), Buffer, ec); return new ELFObjectImage>( nullptr, std::move(Obj)); } else llvm_unreachable("Unexpected ELF format"); } std::unique_ptr RuntimeDyldELF::createObjectImage(std::unique_ptr Buffer) { if (Buffer->getBufferSize() < ELF::EI_NIDENT) llvm_unreachable("Unexpected ELF object size"); std::pair Ident = std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS], (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]); std::error_code ec; MemoryBufferRef Buf = Buffer->getMemBuffer(); if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) { auto Obj = llvm::make_unique>>( Buf, ec); return llvm::make_unique< ELFObjectImage>>(std::move(Buffer), std::move(Obj)); } if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) { auto Obj = llvm::make_unique>>(Buf, ec); return llvm::make_unique>>( std::move(Buffer), std::move(Obj)); } if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) { auto Obj = llvm::make_unique>>( Buf, ec); return llvm::make_unique>>( std::move(Buffer), std::move(Obj)); } assert(Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB && "Unexpected ELF format"); auto Obj = llvm::make_unique>>(Buf, ec); return llvm::make_unique>>( std::move(Buffer), std::move(Obj)); } RuntimeDyldELF::~RuntimeDyldELF() {} void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend, uint64_t SymOffset) { switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_X86_64_64: { support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend; DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " << format("%p\n", Section.Address + Offset)); break; } case ELF::R_X86_64_32: case ELF::R_X86_64_32S: { Value += Addend; assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr; DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " << format("%p\n", Section.Address + Offset)); break; } case ELF::R_X86_64_GOTPCREL: { // findGOTEntry returns the 'G + GOT' part of the relocation calculation // based on the load/target address of the GOT (not the current/local addr). uint64_t GOTAddr = findGOTEntry(Value, SymOffset); uint64_t FinalAddress = Section.LoadAddress + Offset; // The processRelocationRef method combines the symbol offset and the addend // and in most cases that's what we want. For this relocation type, we need // the raw addend, so we subtract the symbol offset to get it. int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; break; } case ELF::R_X86_64_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version support::ulittle32_t::ref Placeholder( (void *)(Section.ObjAddress + Offset)); uint64_t FinalAddress = Section.LoadAddress + Offset; int64_t RealOffset = Placeholder + Value + Addend - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; break; } case ELF::R_X86_64_PC64: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version support::ulittle64_t::ref Placeholder( (void *)(Section.ObjAddress + Offset)); uint64_t FinalAddress = Section.LoadAddress + Offset; support::ulittle64_t::ref(Section.Address + Offset) = Placeholder + Value + Addend - FinalAddress; break; } } } void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, uint64_t Offset, uint32_t Value, uint32_t Type, int32_t Addend) { switch (Type) { case ELF::R_386_32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version support::ulittle32_t::ref Placeholder( (void *)(Section.ObjAddress + Offset)); support::ulittle32_t::ref(Section.Address + Offset) = Placeholder + Value + Addend; break; } case ELF::R_386_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version support::ulittle32_t::ref Placeholder( (void *)(Section.ObjAddress + Offset)); uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress; support::ulittle32_t::ref(Section.Address + Offset) = RealOffset; break; } default: // There are other relocation types, but it appears these are the // only ones currently used by the LLVM ELF object writer llvm_unreachable("Relocation type not implemented yet!"); break; } } void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint32_t *TargetPtr = reinterpret_cast(Section.Address + Offset); uint64_t FinalAddress = Section.LoadAddress + Offset; DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" << format("%llx", Section.Address + Offset) << " FinalAddress: 0x" << format("%llx", FinalAddress) << " Value: 0x" << format("%llx", Value) << " Type: 0x" << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) << "\n"); switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_AARCH64_ABS64: { uint64_t *TargetPtr = reinterpret_cast(Section.Address + Offset); *TargetPtr = Value + Addend; break; } case ELF::R_AARCH64_PREL32: { uint64_t Result = Value + Addend - FinalAddress; assert(static_cast(Result) >= INT32_MIN && static_cast(Result) <= UINT32_MAX); *TargetPtr = static_cast(Result & 0xffffffffU); break; } case ELF::R_AARCH64_CALL26: // fallthrough case ELF::R_AARCH64_JUMP26: { // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the // calculation. uint64_t BranchImm = Value + Addend - FinalAddress; // "Check that -2^27 <= result < 2^27". assert(-(1LL << 27) <= static_cast(BranchImm) && static_cast(BranchImm) < (1LL << 27)); // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xfc000000U; // Immediate goes in bits 25:0 of B and BL. *TargetPtr |= static_cast(BranchImm & 0xffffffcU) >> 2; break; } case ELF::R_AARCH64_MOVW_UABS_G3: { uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffe0001fU; // Immediate goes in bits 20:5 of MOVZ/MOVK instruction *TargetPtr |= Result >> (48 - 5); // Shift must be "lsl #48", in bits 22:21 assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation"); break; } case ELF::R_AARCH64_MOVW_UABS_G2_NC: { uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffe0001fU; // Immediate goes in bits 20:5 of MOVZ/MOVK instruction *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5)); // Shift must be "lsl #32", in bits 22:21 assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation"); break; } case ELF::R_AARCH64_MOVW_UABS_G1_NC: { uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffe0001fU; // Immediate goes in bits 20:5 of MOVZ/MOVK instruction *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5)); // Shift must be "lsl #16", in bits 22:2 assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation"); break; } case ELF::R_AARCH64_MOVW_UABS_G0_NC: { uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffe0001fU; // Immediate goes in bits 20:5 of MOVZ/MOVK instruction *TargetPtr |= ((Result & 0xffffU) << 5); // Shift must be "lsl #0", in bits 22:21. assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation"); break; } case ELF::R_AARCH64_ADR_PREL_PG_HI21: { // Operation: Page(S+A) - Page(P) uint64_t Result = ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); // Check that -2^32 <= X < 2^32 assert(static_cast(Result) >= (-1LL << 32) && static_cast(Result) < (1LL << 32) && "overflow check failed for relocation"); // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0x9f00001fU; // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken // from bits 32:12 of X. *TargetPtr |= ((Result & 0x3000U) << (29 - 12)); *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5)); break; } case ELF::R_AARCH64_LDST32_ABS_LO12_NC: { // Operation: S + A uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffc003ffU; // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:2 of X *TargetPtr |= ((Result & 0xffc) << (10 - 2)); break; } case ELF::R_AARCH64_LDST64_ABS_LO12_NC: { // Operation: S + A uint64_t Result = Value + Addend; // AArch64 code is emitted with .rela relocations. The data already in any // bits affected by the relocation on entry is garbage. *TargetPtr &= 0xffc003ffU; // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:3 of X *TargetPtr |= ((Result & 0xff8) << (10 - 3)); break; } } } void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, uint64_t Offset, uint32_t Value, uint32_t Type, int32_t Addend) { // TODO: Add Thumb relocations. uint32_t *Placeholder = reinterpret_cast(Section.ObjAddress + Offset); uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); Value += Addend; DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << Section.Address + Offset << " FinalAddress: " << format("%p", FinalAddress) << " Value: " << format("%x", Value) << " Type: " << format("%x", Type) << " Addend: " << format("%x", Addend) << "\n"); switch (Type) { default: llvm_unreachable("Not implemented relocation type!"); case ELF::R_ARM_NONE: break; // Write a 32bit value to relocation address, taking into account the // implicit addend encoded in the target. case ELF::R_ARM_PREL31: case ELF::R_ARM_TARGET1: case ELF::R_ARM_ABS32: *TargetPtr = *Placeholder + Value; break; // Write first 16 bit of 32 bit value to the mov instruction. // Last 4 bit should be shifted. case ELF::R_ARM_MOVW_ABS_NC: // We are not expecting any other addend in the relocation address. // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 // non-contiguous fields. assert((*Placeholder & 0x000F0FFF) == 0); Value = Value & 0xFFFF; *TargetPtr = *Placeholder | (Value & 0xFFF); *TargetPtr |= ((Value >> 12) & 0xF) << 16; break; // Write last 16 bit of 32 bit value to the mov instruction. // Last 4 bit should be shifted. case ELF::R_ARM_MOVT_ABS: // We are not expecting any other addend in the relocation address. // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC. assert((*Placeholder & 0x000F0FFF) == 0); Value = (Value >> 16) & 0xFFFF; *TargetPtr = *Placeholder | (Value & 0xFFF); *TargetPtr |= ((Value >> 12) & 0xF) << 16; break; // Write 24 bit relative value to the branch instruction. case ELF::R_ARM_PC24: // Fall through. case ELF::R_ARM_CALL: // Fall through. case ELF::R_ARM_JUMP24: { int32_t RelValue = static_cast(Value - FinalAddress - 8); RelValue = (RelValue & 0x03FFFFFC) >> 2; assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE); *TargetPtr &= 0xFF000000; *TargetPtr |= RelValue; break; } case ELF::R_ARM_PRIVATE_0: // This relocation is reserved by the ARM ELF ABI for internal use. We // appropriate it here to act as an R_ARM_ABS32 without any addend for use // in the stubs created during JIT (which can't put an addend into the // original object file). *TargetPtr = Value; break; } } void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, uint64_t Offset, uint32_t Value, uint32_t Type, int32_t Addend) { uint32_t *Placeholder = reinterpret_cast(Section.ObjAddress + Offset); uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); Value += Addend; DEBUG(dbgs() << "resolveMipselocation, LocalAddress: " << Section.Address + Offset << " FinalAddress: " << format("%p", Section.LoadAddress + Offset) << " Value: " << format("%x", Value) << " Type: " << format("%x", Type) << " Addend: " << format("%x", Addend) << "\n"); switch (Type) { default: llvm_unreachable("Not implemented relocation type!"); break; case ELF::R_MIPS_32: *TargetPtr = Value + (*Placeholder); break; case ELF::R_MIPS_26: *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2); break; case ELF::R_MIPS_HI16: // Get the higher 16-bits. Also add 1 if bit 15 is 1. Value += ((*Placeholder) & 0x0000ffff) << 16; *TargetPtr = ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); break; case ELF::R_MIPS_LO16: Value += ((*Placeholder) & 0x0000ffff); *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff); break; case ELF::R_MIPS_UNUSED1: // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2 // are used for internal JIT purpose. These relocations are similar to // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into // account. *TargetPtr = ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); break; case ELF::R_MIPS_UNUSED2: *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff); break; } } // Return the .TOC. section and offset. void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel) { // Set a default SectionID in case we do not find a TOC section below. // This may happen for references to TOC base base (sym@toc, .odp // relocation) without a .toc directive. In this case just use the // first section (which is usually the .odp) since the code won't // reference the .toc base directly. Rel.SymbolName = NULL; Rel.SectionID = 0; // The TOC consists of sections .got, .toc, .tocbss, .plt in that // order. The TOC starts where the first of these sections starts. for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections(); si != se; ++si) { StringRef SectionName; check(si->getName(SectionName)); if (SectionName == ".got" || SectionName == ".toc" || SectionName == ".tocbss" || SectionName == ".plt") { Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections); break; } } // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Rel.Addend = 0x8000; } // Returns the sections and offset associated with the ODP entry referenced // by Symbol. void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel) { // Get the ELF symbol value (st_value) to compare with Relocation offset in // .opd entries for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections(); si != se; ++si) { section_iterator RelSecI = si->getRelocatedSection(); if (RelSecI == Obj.end_sections()) continue; StringRef RelSectionName; check(RelSecI->getName(RelSectionName)); if (RelSectionName != ".opd") continue; for (relocation_iterator i = si->relocation_begin(), e = si->relocation_end(); i != e;) { // The R_PPC64_ADDR64 relocation indicates the first field // of a .opd entry uint64_t TypeFunc; check(i->getType(TypeFunc)); if (TypeFunc != ELF::R_PPC64_ADDR64) { ++i; continue; } uint64_t TargetSymbolOffset; symbol_iterator TargetSymbol = i->getSymbol(); check(i->getOffset(TargetSymbolOffset)); int64_t Addend; check(getELFRelocationAddend(*i, Addend)); ++i; if (i == e) break; // Just check if following relocation is a R_PPC64_TOC uint64_t TypeTOC; check(i->getType(TypeTOC)); if (TypeTOC != ELF::R_PPC64_TOC) continue; // Finally compares the Symbol value and the target symbol offset // to check if this .opd entry refers to the symbol the relocation // points to. if (Rel.Addend != (int64_t)TargetSymbolOffset) continue; section_iterator tsi(Obj.end_sections()); check(TargetSymbol->getSection(tsi)); bool IsCode = false; tsi->isText(IsCode); Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections); Rel.Addend = (intptr_t)Addend; return; } } llvm_unreachable("Attempting to get address of ODP entry!"); } // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } static inline uint16_t applyPPChi(uint64_t value) { return (value >> 16) & 0xffff; } static inline uint16_t applyPPCha (uint64_t value) { return ((value + 0x8000) >> 16) & 0xffff; } static inline uint16_t applyPPChigher(uint64_t value) { return (value >> 32) & 0xffff; } static inline uint16_t applyPPChighera (uint64_t value) { return ((value + 0x8000) >> 32) & 0xffff; } static inline uint16_t applyPPChighest(uint64_t value) { return (value >> 48) & 0xffff; } static inline uint16_t applyPPChighesta (uint64_t value) { return ((value + 0x8000) >> 48) & 0xffff; } void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.Address + Offset; switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_PPC64_ADDR16: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; case ELF::R_PPC64_ADDR16_DS: writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); break; case ELF::R_PPC64_ADDR16_LO: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; case ELF::R_PPC64_ADDR16_LO_DS: writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); break; case ELF::R_PPC64_ADDR16_HI: writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HA: writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHER: writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHERA: writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHEST: writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHESTA: writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); break; case ELF::R_PPC64_ADDR14: { assert(((Value + Addend) & 3) == 0); // Preserve the AA/LK bits in the branch instruction uint8_t aalk = *(LocalAddress + 3); writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); } break; case ELF::R_PPC64_REL16_LO: { uint64_t FinalAddress = (Section.LoadAddress + Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPClo(Delta)); } break; case ELF::R_PPC64_REL16_HI: { uint64_t FinalAddress = (Section.LoadAddress + Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPChi(Delta)); } break; case ELF::R_PPC64_REL16_HA: { uint64_t FinalAddress = (Section.LoadAddress + Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPCha(Delta)); } break; case ELF::R_PPC64_ADDR32: { int32_t Result = static_cast(Value + Addend); if (SignExtend32<32>(Result) != Result) llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); writeInt32BE(LocalAddress, Result); } break; case ELF::R_PPC64_REL24: { uint64_t FinalAddress = (Section.LoadAddress + Offset); int32_t delta = static_cast(Value - FinalAddress + Addend); if (SignExtend32<24>(delta) != delta) llvm_unreachable("Relocation R_PPC64_REL24 overflow"); // Generates a 'bl
' instruction writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC)); } break; case ELF::R_PPC64_REL32: { uint64_t FinalAddress = (Section.LoadAddress + Offset); int32_t delta = static_cast(Value - FinalAddress + Addend); if (SignExtend32<32>(delta) != delta) llvm_unreachable("Relocation R_PPC64_REL32 overflow"); writeInt32BE(LocalAddress, delta); } break; case ELF::R_PPC64_REL64: { uint64_t FinalAddress = (Section.LoadAddress + Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt64BE(LocalAddress, Delta); } break; case ELF::R_PPC64_ADDR64: writeInt64BE(LocalAddress, Value + Addend); break; } } void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.Address + Offset; switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_390_PC16DBL: case ELF::R_390_PLT16DBL: { int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); writeInt16BE(LocalAddress, Delta / 2); break; } case ELF::R_390_PC32DBL: case ELF::R_390_PLT32DBL: { int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); writeInt32BE(LocalAddress, Delta / 2); break; } case ELF::R_390_PC32: { int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); writeInt32BE(LocalAddress, Delta); break; } case ELF::R_390_64: writeInt64BE(LocalAddress, Value + Addend); break; } } // The target location for the relocation is described by RE.SectionID and // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each // SectionEntry has three members describing its location. // SectionEntry::Address is the address at which the section has been loaded // into memory in the current (host) process. SectionEntry::LoadAddress is the // address that the section will have in the target process. // SectionEntry::ObjAddress is the address of the bits for this section in the // original emitted object image (also in the current address space). // // Relocations will be applied as if the section were loaded at // SectionEntry::LoadAddress, but they will be applied at an address based // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to // Target memory contents if they are required for value calculations. // // The Value parameter here is the load address of the symbol for the // relocation to be applied. For relocations which refer to symbols in the // current object Value will be the LoadAddress of the section in which // the symbol resides (RE.Addend provides additional information about the // symbol location). For external symbols, Value will be the address of the // symbol in the target address space. void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, uint64_t Value) { const SectionEntry &Section = Sections[RE.SectionID]; return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, RE.SymOffset); } void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend, uint64_t SymOffset) { switch (Arch) { case Triple::x86_64: resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); break; case Triple::x86: resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::aarch64: case Triple::aarch64_be: resolveAArch64Relocation(Section, Offset, Value, Type, Addend); break; case Triple::arm: // Fall through. case Triple::armeb: case Triple::thumb: case Triple::thumbeb: resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::mips: // Fall through. case Triple::mipsel: resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::ppc64: // Fall through. case Triple::ppc64le: resolvePPC64Relocation(Section, Offset, Value, Type, Addend); break; case Triple::systemz: resolveSystemZRelocation(Section, Offset, Value, Type, Addend); break; default: llvm_unreachable("Unsupported CPU type!"); } } relocation_iterator RuntimeDyldELF::processRelocationRef( unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, StubMap &Stubs) { uint64_t RelType; Check(RelI->getType(RelType)); int64_t Addend; Check(getELFRelocationAddend(*RelI, Addend)); symbol_iterator Symbol = RelI->getSymbol(); // Obtain the symbol name which is referenced in the relocation StringRef TargetName; if (Symbol != Obj.end_symbols()) Symbol->getName(TargetName); DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend << " TargetName: " << TargetName << "\n"); RelocationValueRef Value; // First search for the symbol in the local symbol table SymbolTableMap::const_iterator lsi = Symbols.end(); SymbolRef::Type SymType = SymbolRef::ST_Unknown; if (Symbol != Obj.end_symbols()) { lsi = Symbols.find(TargetName.data()); Symbol->getType(SymType); } if (lsi != Symbols.end()) { Value.SectionID = lsi->second.first; Value.Offset = lsi->second.second; Value.Addend = lsi->second.second + Addend; } else { // Search for the symbol in the global symbol table SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end(); if (Symbol != Obj.end_symbols()) gsi = GlobalSymbolTable.find(TargetName.data()); if (gsi != GlobalSymbolTable.end()) { Value.SectionID = gsi->second.first; Value.Offset = gsi->second.second; Value.Addend = gsi->second.second + Addend; } else { switch (SymType) { case SymbolRef::ST_Debug: { // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously // and can be changed by another developers. Maybe best way is add // a new symbol type ST_Section to SymbolRef and use it. section_iterator si(Obj.end_sections()); Symbol->getSection(si); if (si == Obj.end_sections()) llvm_unreachable("Symbol section not found, bad object file format!"); DEBUG(dbgs() << "\t\tThis is section symbol\n"); // Default to 'true' in case isText fails (though it never does). bool isCode = true; si->isText(isCode); Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); Value.Addend = Addend; break; } case SymbolRef::ST_Data: case SymbolRef::ST_Unknown: { Value.SymbolName = TargetName.data(); Value.Addend = Addend; // Absolute relocations will have a zero symbol ID (STN_UNDEF), which // will manifest here as a NULL symbol name. // We can set this as a valid (but empty) symbol name, and rely // on addRelocationForSymbol to handle this. if (!Value.SymbolName) Value.SymbolName = ""; break; } default: llvm_unreachable("Unresolved symbol type!"); break; } } } uint64_t Offset; Check(RelI->getOffset(Offset)); DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset << "\n"); if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) && (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) { // This is an AArch64 branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); SectionEntry &Section = Sections[SectionID]; // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset); RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address, ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4, ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8, ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); RelocationEntry REmovk_g0(SectionID, StubTargetAddr - Section.Address + 12, ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REmovz_g3, Value.SymbolName); addRelocationForSymbol(REmovk_g2, Value.SymbolName); addRelocationForSymbol(REmovk_g1, Value.SymbolName); addRelocationForSymbol(REmovk_g0, Value.SymbolName); } else { addRelocationForSection(REmovz_g3, Value.SectionID); addRelocationForSection(REmovk_g2, Value.SectionID); addRelocationForSection(REmovk_g1, Value.SectionID); addRelocationForSection(REmovk_g0, Value.SectionID); } resolveRelocation(Section, Offset, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); Section.StubOffset += getMaxStubSize(); } } else if (Arch == Triple::arm && (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || RelType == ELF::R_ARM_JUMP24)) { // This is an ARM branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); SectionEntry &Section = Sections[SectionID]; // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset); RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, ELF::R_ARM_PRIVATE_0, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); resolveRelocation(Section, Offset, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); Section.StubOffset += getMaxStubSize(); } } else if ((Arch == Triple::mipsel || Arch == Triple::mips) && RelType == ELF::R_MIPS_26) { // This is an Mips branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); SectionEntry &Section = Sections[SectionID]; uint8_t *Target = Section.Address + Offset; uint32_t *TargetAddress = (uint32_t *)Target; // Extract the addend from the instruction. uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2; Value.Addend += Addend; // Look up for existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { RelocationEntry RE(SectionID, Offset, RelType, i->second); addRelocationForSection(RE, SectionID); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset); // Creating Hi and Lo relocations for the filled stub instructions. RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address, ELF::R_MIPS_UNUSED1, Value.Addend); RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4, ELF::R_MIPS_UNUSED2, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REHi, Value.SymbolName); addRelocationForSymbol(RELo, Value.SymbolName); } else { addRelocationForSection(REHi, Value.SectionID); addRelocationForSection(RELo, Value.SectionID); } RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset); addRelocationForSection(RE, SectionID); Section.StubOffset += getMaxStubSize(); } } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { if (RelType == ELF::R_PPC64_REL24) { // Determine ABI variant in use for this object. unsigned AbiVariant; Obj.getObjectFile()->getPlatformFlags(AbiVariant); AbiVariant &= ELF::EF_PPC64_ABI; // A PPC branch relocation will need a stub function if the target is // an external symbol (Symbol::ST_Unknown) or if the target address // is not within the signed 24-bits branch address. SectionEntry &Section = Sections[SectionID]; uint8_t *Target = Section.Address + Offset; bool RangeOverflow = false; if (SymType != SymbolRef::ST_Unknown) { if (AbiVariant != 2) { // In the ELFv1 ABI, a function call may point to the .opd entry, // so the final symbol value is calculated based on the relocation // values in the .opd section. findOPDEntrySection(Obj, ObjSectionToID, Value); } else { // In the ELFv2 ABI, a function symbol may provide a local entry // point, which must be used for direct calls. uint8_t SymOther; Symbol->getOther(SymOther); Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); } uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend; int32_t delta = static_cast(Target - RelocTarget); // If it is within 24-bits branch range, just set the branch target if (SignExtend32<24>(delta) == delta) { RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else { RangeOverflow = true; } } if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) { // It is an external symbol (SymbolRef::ST_Unknown) or within a range // larger than 24-bits. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { // Symbol function stub already created, just relocate to it resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = createStubFunction(Section.Address + Section.StubOffset, AbiVariant); RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, ELF::R_PPC64_ADDR64, Value.Addend); // Generates the 64-bits address loads as exemplified in section // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to // apply to the low part of the instructions, so we have to update // the offset according to the target endianness. uint64_t StubRelocOffset = StubTargetAddr - Section.Address; if (!IsTargetLittleEndian) StubRelocOffset += 2; RelocationEntry REhst(SectionID, StubRelocOffset + 0, ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); RelocationEntry REhr(SectionID, StubRelocOffset + 4, ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); RelocationEntry REh(SectionID, StubRelocOffset + 12, ELF::R_PPC64_ADDR16_HI, Value.Addend); RelocationEntry REl(SectionID, StubRelocOffset + 16, ELF::R_PPC64_ADDR16_LO, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REhst, Value.SymbolName); addRelocationForSymbol(REhr, Value.SymbolName); addRelocationForSymbol(REh, Value.SymbolName); addRelocationForSymbol(REl, Value.SymbolName); } else { addRelocationForSection(REhst, Value.SectionID); addRelocationForSection(REhr, Value.SectionID); addRelocationForSection(REh, Value.SectionID); addRelocationForSection(REl, Value.SectionID); } resolveRelocation(Section, Offset, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); Section.StubOffset += getMaxStubSize(); } if (SymType == SymbolRef::ST_Unknown) { // Restore the TOC for external calls if (AbiVariant == 2) writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) else writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) } } } else if (RelType == ELF::R_PPC64_TOC16 || RelType == ELF::R_PPC64_TOC16_DS || RelType == ELF::R_PPC64_TOC16_LO || RelType == ELF::R_PPC64_TOC16_LO_DS || RelType == ELF::R_PPC64_TOC16_HI || RelType == ELF::R_PPC64_TOC16_HA) { // These relocations are supposed to subtract the TOC address from // the final value. This does not fit cleanly into the RuntimeDyld // scheme, since there may be *two* sections involved in determining // the relocation value (the section of the symbol refered to by the // relocation, and the TOC section associated with the current module). // // Fortunately, these relocations are currently only ever generated // refering to symbols that themselves reside in the TOC, which means // that the two sections are actually the same. Thus they cancel out // and we can immediately resolve the relocation right now. switch (RelType) { case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; default: llvm_unreachable("Wrong relocation type."); } RelocationValueRef TOCValue; findPPC64TOCSection(Obj, ObjSectionToID, TOCValue); if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) llvm_unreachable("Unsupported TOC relocation."); Value.Addend -= TOCValue.Addend; resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); } else { // There are two ways to refer to the TOC address directly: either // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are // ignored), or via any relocation that refers to the magic ".TOC." // symbols (in which case the addend is respected). if (RelType == ELF::R_PPC64_TOC) { RelType = ELF::R_PPC64_ADDR64; findPPC64TOCSection(Obj, ObjSectionToID, Value); } else if (TargetName == ".TOC.") { findPPC64TOCSection(Obj, ObjSectionToID, Value); Value.Addend += Addend; } RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } } else if (Arch == Triple::systemz && (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { // Create function stubs for both PLT and GOT references, regardless of // whether the GOT reference is to data or code. The stub contains the // full address of the symbol, as needed by GOT references, and the // executable part only adds an overhead of 8 bytes. // // We could try to conserve space by allocating the code and data // parts of the stub separately. However, as things stand, we allocate // a stub for every relocation, so using a GOT in JIT code should be // no less space efficient than using an explicit constant pool. DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); SectionEntry &Section = Sections[SectionID]; // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); uintptr_t StubAddress; if (i != Stubs.end()) { StubAddress = uintptr_t(Section.Address) + i->second; DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); uintptr_t BaseAddress = uintptr_t(Section.Address); uintptr_t StubAlignment = getStubAlignment(); StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & -StubAlignment; unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, Value.Offset); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); Section.StubOffset = StubOffset + getMaxStubSize(); } if (RelType == ELF::R_390_GOTENT) resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, Addend); else resolveRelocation(Section, Offset, StubAddress, RelType, Addend); } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) { // The way the PLT relocations normally work is that the linker allocates // the // PLT and this relocation makes a PC-relative call into the PLT. The PLT // entry will then jump to an address provided by the GOT. On first call, // the // GOT address will point back into PLT code that resolves the symbol. After // the first call, the GOT entry points to the actual function. // // For local functions we're ignoring all of that here and just replacing // the PLT32 relocation type with PC32, which will translate the relocation // into a PC-relative call directly to the function. For external symbols we // can't be sure the function will be within 2^32 bytes of the call site, so // we need to create a stub, which calls into the GOT. This case is // equivalent to the usual PLT implementation except that we use the stub // mechanism in RuntimeDyld (which puts stubs at the end of the section) // rather than allocating a PLT section. if (Value.SymbolName) { // This is a call to an external function. // Look for an existing stub. SectionEntry &Section = Sections[SectionID]; StubMap::const_iterator i = Stubs.find(Value); uintptr_t StubAddress; if (i != Stubs.end()) { StubAddress = uintptr_t(Section.Address) + i->second; DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function (equivalent to a PLT entry). DEBUG(dbgs() << " Create a new stub function\n"); uintptr_t BaseAddress = uintptr_t(Section.Address); uintptr_t StubAlignment = getStubAlignment(); StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & -StubAlignment; unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); // Create a GOT entry for the external function. GOTEntries.push_back(Value); // Make our stub function a relative call to the GOT entry. RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL, -4); addRelocationForSymbol(RE, Value.SymbolName); // Bump our stub offset counter Section.StubOffset = StubOffset + getMaxStubSize(); } // Make the target call a call into the stub table. resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, Addend); } else { RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, Value.Offset); addRelocationForSection(RE, Value.SectionID); } } else { if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) { GOTEntries.push_back(Value); } RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } return ++RelI; } void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) { SmallVectorImpl>::iterator it; SmallVectorImpl>::iterator end = GOTs.end(); for (it = GOTs.begin(); it != end; ++it) { GOTRelocations &GOTEntries = it->second; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { if (GOTEntries[i].SymbolName != nullptr && GOTEntries[i].SymbolName == Name) { GOTEntries[i].Offset = Addr; } } } } size_t RuntimeDyldELF::getGOTEntrySize() { // We don't use the GOT in all of these cases, but it's essentially free // to put them all here. size_t Result = 0; switch (Arch) { case Triple::x86_64: case Triple::aarch64: case Triple::aarch64_be: case Triple::ppc64: case Triple::ppc64le: case Triple::systemz: Result = sizeof(uint64_t); break; case Triple::x86: case Triple::arm: case Triple::thumb: case Triple::mips: case Triple::mipsel: Result = sizeof(uint32_t); break; default: llvm_unreachable("Unsupported CPU type!"); } return Result; } uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) { const size_t GOTEntrySize = getGOTEntrySize(); SmallVectorImpl>::const_iterator it; SmallVectorImpl>::const_iterator end = GOTs.end(); int GOTIndex = -1; for (it = GOTs.begin(); it != end; ++it) { SID GOTSectionID = it->first; const GOTRelocations &GOTEntries = it->second; // Find the matching entry in our vector. uint64_t SymbolOffset = 0; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { if (!GOTEntries[i].SymbolName) { if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress && GOTEntries[i].Offset == Offset) { GOTIndex = i; SymbolOffset = GOTEntries[i].Offset; break; } } else { // GOT entries for external symbols use the addend as the address when // the external symbol has been resolved. if (GOTEntries[i].Offset == LoadAddress) { GOTIndex = i; // Don't use the Addend here. The relocation handler will use it. break; } } } if (GOTIndex != -1) { if (GOTEntrySize == sizeof(uint64_t)) { uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID); // Fill in this entry with the address of the symbol being referenced. LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset; } else { uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID); // Fill in this entry with the address of the symbol being referenced. LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset); } // Calculate the load address of this entry return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize); } } assert(GOTIndex != -1 && "Unable to find requested GOT entry."); return 0; } void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) { // If necessary, allocate the global offset table if (MemMgr) { // Allocate the GOT if necessary size_t numGOTEntries = GOTEntries.size(); if (numGOTEntries != 0) { // Allocate memory for the section unsigned SectionID = Sections.size(); size_t TotalSize = numGOTEntries * getGOTEntrySize(); uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(), SectionID, ".got", false); if (!Addr) report_fatal_error("Unable to allocate memory for GOT!"); GOTs.push_back(std::make_pair(SectionID, GOTEntries)); Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0)); // For now, initialize all GOT entries to zero. We'll fill them in as // needed when GOT-based relocations are applied. memset(Addr, 0, TotalSize); } } else { report_fatal_error("Unable to allocate memory for GOT!"); } // Look for and record the EH frame section. ObjSectionToIDMap::iterator i, e; for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { const SectionRef &Section = i->first; StringRef Name; Section.getName(Name); if (Name == ".eh_frame") { UnregisteredEHFrameSections.push_back(i->second); break; } } } bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const { if (Buffer->getBufferSize() < strlen(ELF::ElfMagic)) return false; return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; } bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const { return Obj->isELF(); } } // namespace llvm