//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This register allocator allocates registers to a basic block at a time, // attempting to keep values in registers and reusing registers as appropriate. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/BasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; static cl::opt VerifyFastRegalloc("verify-fast-regalloc", cl::Hidden, cl::desc("Verify machine code before fast regalloc")); STATISTIC(NumStores, "Number of stores added"); STATISTIC(NumLoads , "Number of loads added"); STATISTIC(NumCopies, "Number of copies coalesced"); static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); namespace { class RAFast : public MachineFunctionPass { public: static char ID; RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1), atEndOfBlock(false) {} private: const TargetMachine *TM; MachineFunction *MF; MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; // Basic block currently being allocated. MachineBasicBlock *MBB; // StackSlotForVirtReg - Maps virtual regs to the frame index where these // values are spilled. IndexedMap StackSlotForVirtReg; // Everything we know about a live virtual register. struct LiveReg { MachineInstr *LastUse; // Last instr to use reg. unsigned PhysReg; // Currently held here. unsigned short LastOpNum; // OpNum on LastUse. bool Dirty; // Register needs spill. LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0), Dirty(false) { assert(p && "Don't create LiveRegs without a PhysReg"); } }; typedef DenseMap LiveRegMap; // LiveVirtRegs - This map contains entries for each virtual register // that is currently available in a physical register. LiveRegMap LiveVirtRegs; // RegState - Track the state of a physical register. enum RegState { // A disabled register is not available for allocation, but an alias may // be in use. A register can only be moved out of the disabled state if // all aliases are disabled. regDisabled, // A free register is not currently in use and can be allocated // immediately without checking aliases. regFree, // A reserved register has been assigned expolicitly (e.g., setting up a // call parameter), and it remains reserved until it is used. regReserved // A register state may also be a virtual register number, indication that // the physical register is currently allocated to a virtual register. In // that case, LiveVirtRegs contains the inverse mapping. }; // PhysRegState - One of the RegState enums, or a virtreg. std::vector PhysRegState; // UsedInInstr - BitVector of physregs that are used in the current // instruction, and so cannot be allocated. BitVector UsedInInstr; // Allocatable - vector of allocatable physical registers. BitVector Allocatable; // atEndOfBlock - This flag is set after allocating all instructions in a // block, before emitting final spills. When it is set, LiveRegMap is no // longer updated properly sonce it will be cleared anyway. bool atEndOfBlock; public: virtual const char *getPassName() const { return "Fast Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); MachineFunctionPass::getAnalysisUsage(AU); } private: bool runOnMachineFunction(MachineFunction &Fn); void AllocateBasicBlock(); int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); bool isLastUseOfLocalReg(MachineOperand&); void addKillFlag(LiveRegMap::iterator i); void killVirtReg(LiveRegMap::iterator i); void killVirtReg(unsigned VirtReg); void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator i, bool isKill); void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg, bool isKill); void usePhysReg(MachineOperand&); void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); LiveRegMap::iterator assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); LiveRegMap::iterator allocVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned Hint); unsigned defineVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); unsigned reloadVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); void spillAll(MachineInstr *MI); void setPhysReg(MachineOperand &MO, unsigned PhysReg); }; char RAFast::ID = 0; } /// getStackSpaceFor - This allocates space for the specified virtual register /// to be held on the stack. int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location Reg would belong... int SS = StackSlotForVirtReg[VirtReg]; if (SS != -1) return SS; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); // Assign the slot. StackSlotForVirtReg[VirtReg] = FrameIdx; return FrameIdx; } /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to /// its virtual register, and it is guaranteed to be a block-local register. /// bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { // Check for non-debug uses or defs following MO. // This is the most likely way to fail - fast path it. MachineOperand *i = &MO; while ((i = i->getNextOperandForReg())) if (!i->isDebug()) return false; // If the register has ever been spilled or reloaded, we conservatively assume // it is a global register used in multiple blocks. if (StackSlotForVirtReg[MO.getReg()] != -1) return false; // Check that the use/def chain has exactly one operand - MO. return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO; } /// addKillFlag - Set kill flags on last use of a virtual register. void RAFast::addKillFlag(LiveRegMap::iterator lri) { assert(lri != LiveVirtRegs.end() && "Killing unmapped virtual register"); const LiveReg &LR = lri->second; if (LR.LastUse) { MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); if (MO.isDef()) MO.setIsDead(); else if (!LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) MO.setIsKill(); } } /// killVirtReg - Mark virtreg as no longer available. void RAFast::killVirtReg(LiveRegMap::iterator lri) { addKillFlag(lri); const LiveReg &LR = lri->second; assert(PhysRegState[LR.PhysReg] == lri->first && "Broken RegState mapping"); PhysRegState[LR.PhysReg] = regFree; // Erase from LiveVirtRegs unless we're at the end of the block when // everything will be bulk erased. if (!atEndOfBlock) LiveVirtRegs.erase(lri); } /// killVirtReg - Mark virtreg as no longer available. void RAFast::killVirtReg(unsigned VirtReg) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "killVirtReg needs a virtual register"); LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg); if (lri != LiveVirtRegs.end()) killVirtReg(lri); } /// spillVirtReg - This method spills the value specified by VirtReg into the /// corresponding stack slot if needed. If isKill is set, the register is also /// killed. void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg, bool isKill) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Spilling a physical register is illegal!"); LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg); assert(lri != LiveVirtRegs.end() && "Spilling unmapped virtual register"); spillVirtReg(MI, lri, isKill); } /// spillVirtReg - Do the actual work of spilling. void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator lri, bool isKill) { LiveReg &LR = lri->second; assert(PhysRegState[LR.PhysReg] == lri->first && "Broken RegState mapping"); // If this physreg is used by the instruction, we want to kill it on the // instruction, not on the spill. bool spillKill = isKill && LR.LastUse != MI; if (LR.Dirty) { LR.Dirty = false; DEBUG(dbgs() << "Spilling %reg" << lri->first << " in " << TRI->getName(LR.PhysReg)); const TargetRegisterClass *RC = MRI->getRegClass(lri->first); int FI = getStackSpaceFor(lri->first, RC); DEBUG(dbgs() << " to stack slot #" << FI << "\n"); TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, spillKill, FI, RC, TRI); ++NumStores; // Update statistics if (spillKill) LR.LastUse = 0; // Don't kill register again else if (!isKill) { MachineInstr *Spill = llvm::prior(MI); LR.LastUse = Spill; LR.LastOpNum = Spill->findRegisterUseOperandIdx(LR.PhysReg); } } if (isKill) killVirtReg(lri); } /// spillAll - Spill all dirty virtregs without killing them. void RAFast::spillAll(MachineInstr *MI) { SmallVector Dirty; for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) if (i->second.Dirty) Dirty.push_back(i->first); for (unsigned i = 0, e = Dirty.size(); i != e; ++i) spillVirtReg(MI, Dirty[i], false); } /// usePhysReg - Handle the direct use of a physical register. /// Check that the register is not used by a virtreg. /// Kill the physreg, marking it free. /// This may add implicit kills to MO->getParent() and invalidate MO. void RAFast::usePhysReg(MachineOperand &MO) { unsigned PhysReg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); switch (PhysRegState[PhysReg]) { case regDisabled: break; case regReserved: PhysRegState[PhysReg] = regFree; // Fall through case regFree: UsedInInstr.set(PhysReg); MO.setIsKill(); return; default: // The physreg was allocated to a virtual register. That means to value we // wanted has been clobbered. llvm_unreachable("Instruction uses an allocated register"); } // Maybe a superregister is reserved? for (const unsigned *AS = TRI->getAliasSet(PhysReg); unsigned Alias = *AS; ++AS) { switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: assert(TRI->isSuperRegister(PhysReg, Alias) && "Instruction is not using a subregister of a reserved register"); // Leave the superregister in the working set. PhysRegState[Alias] = regFree; UsedInInstr.set(Alias); MO.getParent()->addRegisterKilled(Alias, TRI, true); return; case regFree: if (TRI->isSuperRegister(PhysReg, Alias)) { // Leave the superregister in the working set. UsedInInstr.set(Alias); MO.getParent()->addRegisterKilled(Alias, TRI, true); return; } // Some other alias was in the working set - clear it. PhysRegState[Alias] = regDisabled; break; default: llvm_unreachable("Instruction uses an alias of an allocated register"); } } // All aliases are disabled, bring register into working set. PhysRegState[PhysReg] = regFree; UsedInInstr.set(PhysReg); MO.setIsKill(); } /// definePhysReg - Mark PhysReg as reserved or free after spilling any /// virtregs. This is very similar to defineVirtReg except the physreg is /// reserved instead of allocated. void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState) { UsedInInstr.set(PhysReg); switch (unsigned VirtReg = PhysRegState[PhysReg]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg, true); // Fall through. case regFree: case regReserved: PhysRegState[PhysReg] = NewState; return; } // This is a disabled register, disable all aliases. PhysRegState[PhysReg] = NewState; for (const unsigned *AS = TRI->getAliasSet(PhysReg); unsigned Alias = *AS; ++AS) { UsedInInstr.set(Alias); switch (unsigned VirtReg = PhysRegState[Alias]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg, true); // Fall through. case regFree: case regReserved: PhysRegState[Alias] = regDisabled; if (TRI->isSuperRegister(PhysReg, Alias)) return; break; } } } /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// RAFast::LiveRegMap::iterator RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "Assigning %reg" << VirtReg << " to " << TRI->getName(PhysReg) << "\n"); PhysRegState[PhysReg] = VirtReg; return LiveVirtRegs.insert(std::make_pair(VirtReg, PhysReg)).first; } /// allocVirtReg - Allocate a physical register for VirtReg. RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned Hint) { const unsigned spillCost = 100; assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Can only allocate virtual registers"); const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF); // Ignore invalid hints. if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || !RC->contains(Hint) || UsedInInstr.test(Hint) || !Allocatable.test(Hint))) Hint = 0; // If there is no hint, peek at the first use of this register. if (!Hint && !MRI->use_nodbg_empty(VirtReg)) { MachineInstr &MI = *MRI->use_nodbg_begin(VirtReg); unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; // Copy to physreg -> use physreg as hint. if (TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg) && SrcReg == VirtReg && TargetRegisterInfo::isPhysicalRegister(DstReg) && RC->contains(DstReg) && !UsedInInstr.test(DstReg) && Allocatable.test(DstReg)) { Hint = DstReg; DEBUG(dbgs() << "%reg" << VirtReg << " gets hint from " << MI); } } // Take hint when possible. if (Hint) { assert(RC->contains(Hint) && !UsedInInstr.test(Hint) && Allocatable.test(Hint) && "Invalid hint should have been cleared"); switch(PhysRegState[Hint]) { case regDisabled: case regReserved: break; default: spillVirtReg(MI, PhysRegState[Hint], true); // Fall through. case regFree: return assignVirtToPhysReg(VirtReg, Hint); } } // First try to find a completely free register. unsigned BestCost = 0, BestReg = 0; bool hasDisabled = false; for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { unsigned PhysReg = *I; switch(PhysRegState[PhysReg]) { case regDisabled: hasDisabled = true; case regReserved: continue; case regFree: if (!UsedInInstr.test(PhysReg)) return assignVirtToPhysReg(VirtReg, PhysReg); continue; default: // Grab the first spillable register we meet. if (!BestReg && !UsedInInstr.test(PhysReg)) BestReg = PhysReg, BestCost = spillCost; continue; } } DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName() << " candidate=" << TRI->getName(BestReg) << "\n"); // Try to extend the working set for RC if there were any disabled registers. if (hasDisabled && (!BestReg || BestCost >= spillCost)) { for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { unsigned PhysReg = *I; if (PhysRegState[PhysReg] != regDisabled || UsedInInstr.test(PhysReg)) continue; // Calculate the cost of bringing PhysReg into the working set. unsigned Cost=0; bool Impossible = false; for (const unsigned *AS = TRI->getAliasSet(PhysReg); unsigned Alias = *AS; ++AS) { if (UsedInInstr.test(Alias)) { Impossible = true; break; } switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: Impossible = true; break; case regFree: Cost++; break; default: Cost += spillCost; break; } } if (Impossible) continue; DEBUG(dbgs() << "- candidate " << TRI->getName(PhysReg) << " cost=" << Cost << "\n"); if (!BestReg || Cost < BestCost) { BestReg = PhysReg; BestCost = Cost; if (Cost < spillCost) break; } } } if (BestReg) { // BestCost is 0 when all aliases are already disabled. if (BestCost) { if (PhysRegState[BestReg] != regDisabled) spillVirtReg(MI, PhysRegState[BestReg], true); else { // Make sure all aliases are disabled. for (const unsigned *AS = TRI->getAliasSet(BestReg); unsigned Alias = *AS; ++AS) { switch (PhysRegState[Alias]) { case regDisabled: continue; case regFree: PhysRegState[Alias] = regDisabled; break; default: spillVirtReg(MI, PhysRegState[Alias], true); PhysRegState[Alias] = regDisabled; break; } } } } return assignVirtToPhysReg(VirtReg, BestReg); } // Nothing we can do. std::string msg; raw_string_ostream Msg(msg); Msg << "Ran out of registers during register allocation!"; if (MI->isInlineAsm()) { Msg << "\nPlease check your inline asm statement for " << "invalid constraints:\n"; MI->print(Msg, TM); } report_fatal_error(Msg.str()); return LiveVirtRegs.end(); } /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. unsigned RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg); if (lri == LiveVirtRegs.end()) lri = allocVirtReg(MI, VirtReg, Hint); else addKillFlag(lri); // Kill before redefine. LiveReg &LR = lri->second; LR.LastUse = MI; LR.LastOpNum = OpNum; LR.Dirty = true; UsedInInstr.set(LR.PhysReg); return LR.PhysReg; } /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. unsigned RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg); if (lri == LiveVirtRegs.end()) { lri = allocVirtReg(MI, VirtReg, Hint); const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RC); DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into " << TRI->getName(lri->second.PhysReg) << "\n"); TII->loadRegFromStackSlot(*MBB, MI, lri->second.PhysReg, FrameIndex, RC, TRI); ++NumLoads; } else if (lri->second.Dirty) { MachineOperand &MO = MI->getOperand(OpNum); if (isLastUseOfLocalReg(MO)) { DEBUG(dbgs() << "Killing last use: " << MO << "\n"); MO.setIsKill(); } else if (MO.isKill()) { DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); MO.setIsKill(false); } } LiveReg &LR = lri->second; LR.LastUse = MI; LR.LastOpNum = OpNum; UsedInInstr.set(LR.PhysReg); return LR.PhysReg; } // setPhysReg - Change MO the refer the PhysReg, considering subregs. void RAFast::setPhysReg(MachineOperand &MO, unsigned PhysReg) { if (unsigned Idx = MO.getSubReg()) { MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, Idx) : 0); MO.setSubReg(0); } else MO.setReg(PhysReg); } void RAFast::AllocateBasicBlock() { DEBUG(dbgs() << "\nAllocating " << *MBB); atEndOfBlock = false; PhysRegState.assign(TRI->getNumRegs(), regDisabled); assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?"); MachineBasicBlock::iterator MII = MBB->begin(); // Add live-in registers as live. for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) definePhysReg(MII, *I, regReserved); SmallVector VirtKills, PhysDefs; SmallVector Coalesced; // Otherwise, sequentially allocate each instruction in the MBB. while (MII != MBB->end()) { MachineInstr *MI = MII++; const TargetInstrDesc &TID = MI->getDesc(); DEBUG({ dbgs() << "\n>> " << *MI << "Regs:"; for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { if (PhysRegState[Reg] == regDisabled) continue; dbgs() << " " << TRI->getName(Reg); switch(PhysRegState[Reg]) { case regFree: break; case regReserved: dbgs() << "*"; break; default: dbgs() << "=%reg" << PhysRegState[Reg]; if (LiveVirtRegs[PhysRegState[Reg]].Dirty) dbgs() << "*"; assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg && "Bad inverse map"); break; } } dbgs() << '\n'; // Check that LiveVirtRegs is the inverse. for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) { assert(TargetRegisterInfo::isVirtualRegister(i->first) && "Bad map key"); assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) && "Bad map value"); assert(PhysRegState[i->second.PhysReg] == i->first && "Bad inverse map"); } }); // Debug values are not allowed to change codegen in any way. if (MI->isDebugValue()) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; LiveRegMap::iterator lri = LiveVirtRegs.find(Reg); if (lri != LiveVirtRegs.end()) setPhysReg(MO, lri->second.PhysReg); else MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry! } // Next instruction. continue; } // If this is a copy, we may be able to coalesce. unsigned CopySrc, CopyDst, CopySrcSub, CopyDstSub; if (!TII->isMoveInstr(*MI, CopySrc, CopyDst, CopySrcSub, CopyDstSub)) CopySrc = CopyDst = 0; // Track registers used by instruction. UsedInInstr.reset(); PhysDefs.clear(); // First scan. // Mark physreg uses and early clobbers as used. // Find the end of the virtreg operands unsigned VirtOpEnd = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) { VirtOpEnd = i+1; continue; } if (!Allocatable.test(Reg)) continue; if (MO.isUse()) { usePhysReg(MO); } else if (MO.isEarlyClobber()) { definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); PhysDefs.push_back(Reg); } } // Second scan. // Allocate virtreg uses and early clobbers. // Collect VirtKills for (unsigned i = 0; i != VirtOpEnd; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (MO.isUse()) { unsigned PhysReg = reloadVirtReg(MI, i, Reg, CopyDst); CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; setPhysReg(MO, PhysReg); if (MO.isKill()) VirtKills.push_back(Reg); } else if (MO.isEarlyClobber()) { unsigned PhysReg = defineVirtReg(MI, i, Reg, 0); setPhysReg(MO, PhysReg); PhysDefs.push_back(PhysReg); } } // Process virtreg kills for (unsigned i = 0, e = VirtKills.size(); i != e; ++i) killVirtReg(VirtKills[i]); VirtKills.clear(); MRI->addPhysRegsUsed(UsedInInstr); // Track registers defined by instruction - early clobbers at this point. UsedInInstr.reset(); for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { unsigned PhysReg = PhysDefs[i]; UsedInInstr.set(PhysReg); for (const unsigned *AS = TRI->getAliasSet(PhysReg); unsigned Alias = *AS; ++AS) UsedInInstr.set(Alias); } // Third scan. // Allocate defs and collect dead defs. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef() || !MO.getReg()) continue; unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (!Allocatable.test(Reg)) continue; definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); continue; } unsigned PhysReg = defineVirtReg(MI, i, Reg, CopySrc); if (MO.isDead()) { VirtKills.push_back(Reg); CopyDst = 0; // cancel coalescing; } else CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; setPhysReg(MO, PhysReg); } // Spill all dirty virtregs before a call, in case of an exception. if (TID.isCall()) { DEBUG(dbgs() << " Spilling remaining registers before call.\n"); spillAll(MI); } // Process virtreg deads. for (unsigned i = 0, e = VirtKills.size(); i != e; ++i) killVirtReg(VirtKills[i]); VirtKills.clear(); MRI->addPhysRegsUsed(UsedInInstr); if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { DEBUG(dbgs() << "-- coalescing: " << *MI); Coalesced.push_back(MI); } else { DEBUG(dbgs() << "<< " << *MI); } } // Spill all physical registers holding virtual registers now. atEndOfBlock = true; MachineBasicBlock::iterator MI = MBB->getFirstTerminator(); if (MI != MBB->end() && MI->getDesc().isReturn()) { // This is a return block, kill all virtual registers. DEBUG(dbgs() << "Killing live registers at end of return block.\n"); for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) killVirtReg(i); } else { // This is a normal block, spill any dirty virtregs. DEBUG(dbgs() << "Spilling live registers at end of block.\n"); for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) spillVirtReg(MI, i, true); } LiveVirtRegs.clear(); // Erase all the coalesced copies. We are delaying it until now because // LiveVirtsRegs might refer to the instrs. for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) MBB->erase(Coalesced[i]); NumCopies += Coalesced.size(); DEBUG(MBB->dump()); } /// runOnMachineFunction - Register allocate the whole function /// bool RAFast::runOnMachineFunction(MachineFunction &Fn) { DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)Fn.getFunction())->getName() << '\n'); if (VerifyFastRegalloc) Fn.verify(this, true); MF = &Fn; MRI = &MF->getRegInfo(); TM = &Fn.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); UsedInInstr.resize(TRI->getNumRegs()); Allocatable = TRI->getAllocatableSet(*MF); // initialize the virtual->physical register map to have a 'null' // mapping for all virtual registers unsigned LastVirtReg = MRI->getLastVirtReg(); StackSlotForVirtReg.grow(LastVirtReg); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); MBBi != MBBe; ++MBBi) { MBB = &*MBBi; AllocateBasicBlock(); } // Make sure the set of used physregs is closed under subreg operations. MRI->closePhysRegsUsed(*TRI); StackSlotForVirtReg.clear(); return true; } FunctionPass *llvm::createFastRegisterAllocator() { return new RAFast(); }