//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler. // It contains code to translate the data produced by the decoder into // MCInsts. // Documentation for the disassembler can be found in X86Disassembler.h. // //===----------------------------------------------------------------------===// #include "X86Disassembler.h" #include "X86DisassemblerDecoder.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #define GET_REGINFO_ENUM #include "X86GenRegisterInfo.inc" #define GET_INSTRINFO_ENUM #include "X86GenInstrInfo.inc" using namespace llvm; using namespace llvm::X86Disassembler; void x86DisassemblerDebug(const char *file, unsigned line, const char *s) { dbgs() << file << ":" << line << ": " << s; } const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii) { const MCInstrInfo *MII = static_cast(mii); return MII->getName(Opcode); } #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s)); namespace llvm { // Fill-ins to make the compiler happy. These constants are never actually // assigned; they are just filler to make an automatically-generated switch // statement work. namespace X86 { enum { BX_SI = 500, BX_DI = 501, BP_SI = 502, BP_DI = 503, sib = 504, sib64 = 505 }; } extern Target TheX86_32Target, TheX86_64Target; } static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis); X86GenericDisassembler::X86GenericDisassembler(const MCSubtargetInfo &STI, DisassemblerMode mode, const MCInstrInfo *MII) : MCDisassembler(STI), MII(MII), fMode(mode) {} X86GenericDisassembler::~X86GenericDisassembler() { delete MII; } /// regionReader - a callback function that wraps the readByte method from /// MemoryObject. /// /// @param arg - The generic callback parameter. In this case, this should /// be a pointer to a MemoryObject. /// @param byte - A pointer to the byte to be read. /// @param address - The address to be read. static int regionReader(const void* arg, uint8_t* byte, uint64_t address) { const MemoryObject* region = static_cast(arg); return region->readByte(address, byte); } /// logger - a callback function that wraps the operator<< method from /// raw_ostream. /// /// @param arg - The generic callback parameter. This should be a pointe /// to a raw_ostream. /// @param log - A string to be logged. logger() adds a newline. static void logger(void* arg, const char* log) { if (!arg) return; raw_ostream &vStream = *(static_cast(arg)); vStream << log << "\n"; } // // Public interface for the disassembler // MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(MCInst &instr, uint64_t &size, const MemoryObject ®ion, uint64_t address, raw_ostream &vStream, raw_ostream &cStream) const { CommentStream = &cStream; InternalInstruction internalInstr; dlog_t loggerFn = logger; if (&vStream == &nulls()) loggerFn = 0; // Disable logging completely if it's going to nulls(). int ret = decodeInstruction(&internalInstr, regionReader, (const void*)®ion, loggerFn, (void*)&vStream, (const void*)MII, address, fMode); if (ret) { size = internalInstr.readerCursor - address; return Fail; } else { size = internalInstr.length; return (!translateInstruction(instr, internalInstr, this)) ? Success : Fail; } } // // Private code that translates from struct InternalInstructions to MCInsts. // /// translateRegister - Translates an internal register to the appropriate LLVM /// register, and appends it as an operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param reg - The Reg to append. static void translateRegister(MCInst &mcInst, Reg reg) { #define ENTRY(x) X86::x, uint8_t llvmRegnums[] = { ALL_REGS 0 }; #undef ENTRY uint8_t llvmRegnum = llvmRegnums[reg]; mcInst.addOperand(MCOperand::CreateReg(llvmRegnum)); } /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the /// immediate Value in the MCInst. /// /// @param Value - The immediate Value, has had any PC adjustment made by /// the caller. /// @param isBranch - If the instruction is a branch instruction /// @param Address - The starting address of the instruction /// @param Offset - The byte offset to this immediate in the instruction /// @param Width - The byte width of this immediate in the instruction /// /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was /// called then that function is called to get any symbolic information for the /// immediate in the instruction using the Address, Offset and Width. If that /// returns non-zero then the symbolic information it returns is used to create /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() /// returns zero and isBranch is true then a symbol look up for immediate Value /// is done and if a symbol is found an MCExpr is created with that, else /// an MCExpr with the immediate Value is created. This function returns true /// if it adds an operand to the MCInst and false otherwise. static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, uint64_t Address, uint64_t Offset, uint64_t Width, MCInst &MI, const MCDisassembler *Dis) { LLVMOpInfoCallback getOpInfo = Dis->getLLVMOpInfoCallback(); struct LLVMOpInfo1 SymbolicOp; memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1)); SymbolicOp.Value = Value; void *DisInfo = Dis->getDisInfoBlock(); if (!getOpInfo || !getOpInfo(DisInfo, Address, Offset, Width, 1, &SymbolicOp)) { // Clear SymbolicOp.Value from above and also all other fields. memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1)); LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback(); if (!SymbolLookUp) return false; uint64_t ReferenceType; if (isBranch) ReferenceType = LLVMDisassembler_ReferenceType_In_Branch; else ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; const char *ReferenceName; const char *Name = SymbolLookUp(DisInfo, Value, &ReferenceType, Address, &ReferenceName); if (Name) { SymbolicOp.AddSymbol.Name = Name; SymbolicOp.AddSymbol.Present = true; } // For branches always create an MCExpr so it gets printed as hex address. else if (isBranch) { SymbolicOp.Value = Value; } if(ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub) (*Dis->CommentStream) << "symbol stub for: " << ReferenceName; if (!Name && !isBranch) return false; } MCContext *Ctx = Dis->getMCContext(); const MCExpr *Add = NULL; if (SymbolicOp.AddSymbol.Present) { if (SymbolicOp.AddSymbol.Name) { StringRef Name(SymbolicOp.AddSymbol.Name); MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name); Add = MCSymbolRefExpr::Create(Sym, *Ctx); } else { Add = MCConstantExpr::Create((int)SymbolicOp.AddSymbol.Value, *Ctx); } } const MCExpr *Sub = NULL; if (SymbolicOp.SubtractSymbol.Present) { if (SymbolicOp.SubtractSymbol.Name) { StringRef Name(SymbolicOp.SubtractSymbol.Name); MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name); Sub = MCSymbolRefExpr::Create(Sym, *Ctx); } else { Sub = MCConstantExpr::Create((int)SymbolicOp.SubtractSymbol.Value, *Ctx); } } const MCExpr *Off = NULL; if (SymbolicOp.Value != 0) Off = MCConstantExpr::Create(SymbolicOp.Value, *Ctx); const MCExpr *Expr; if (Sub) { const MCExpr *LHS; if (Add) LHS = MCBinaryExpr::CreateSub(Add, Sub, *Ctx); else LHS = MCUnaryExpr::CreateMinus(Sub, *Ctx); if (Off != 0) Expr = MCBinaryExpr::CreateAdd(LHS, Off, *Ctx); else Expr = LHS; } else if (Add) { if (Off != 0) Expr = MCBinaryExpr::CreateAdd(Add, Off, *Ctx); else Expr = Add; } else { if (Off != 0) Expr = Off; else Expr = MCConstantExpr::Create(0, *Ctx); } MI.addOperand(MCOperand::CreateExpr(Expr)); return true; } /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being /// referenced by a load instruction with the base register that is the rip. /// These can often be addresses in a literal pool. The Address of the /// instruction and its immediate Value are used to determine the address /// being referenced in the literal pool entry. The SymbolLookUp call back will /// return a pointer to a literal 'C' string if the referenced address is an /// address into a section with 'C' string literals. static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, const void *Decoder) { const MCDisassembler *Dis = static_cast(Decoder); LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback(); if (SymbolLookUp) { void *DisInfo = Dis->getDisInfoBlock(); uint64_t ReferenceType = LLVMDisassembler_ReferenceType_In_PCrel_Load; const char *ReferenceName; (void)SymbolLookUp(DisInfo, Value, &ReferenceType, Address, &ReferenceName); if(ReferenceType == LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr) (*Dis->CommentStream) << "literal pool for: " << ReferenceName; } } /// translateImmediate - Appends an immediate operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param immediate - The immediate value to append. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. static void translateImmediate(MCInst &mcInst, uint64_t immediate, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { // Sign-extend the immediate if necessary. OperandType type = (OperandType)operand.type; bool isBranch = false; uint64_t pcrel = 0; if (type == TYPE_RELv) { isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; switch (insn.displacementSize) { default: break; case 1: type = TYPE_MOFFS8; break; case 2: type = TYPE_MOFFS16; break; case 4: type = TYPE_MOFFS32; break; case 8: type = TYPE_MOFFS64; break; } } // By default sign-extend all X86 immediates based on their encoding. else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 || type == TYPE_IMM64) { uint32_t Opcode = mcInst.getOpcode(); switch (operand.encoding) { default: break; case ENCODING_IB: // Special case those X86 instructions that use the imm8 as a set of // bits, bit count, etc. and are not sign-extend. if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri && Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri && Opcode != X86::DPPSrri && Opcode != X86::DPPDrri && Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri && Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri && Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri && Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri && Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri && Opcode != X86::VINSERTPSrr) type = TYPE_MOFFS8; break; case ENCODING_IW: type = TYPE_MOFFS16; break; case ENCODING_ID: type = TYPE_MOFFS32; break; case ENCODING_IO: type = TYPE_MOFFS64; break; } } switch (type) { case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4))); return; case TYPE_XMM256: mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4))); return; case TYPE_REL8: isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; // fall through to sign extend the immediate if needed. case TYPE_MOFFS8: if(immediate & 0x80) immediate |= ~(0xffull); break; case TYPE_MOFFS16: if(immediate & 0x8000) immediate |= ~(0xffffull); break; case TYPE_REL32: case TYPE_REL64: isBranch = true; pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; // fall through to sign extend the immediate if needed. case TYPE_MOFFS32: if(immediate & 0x80000000) immediate |= ~(0xffffffffull); break; case TYPE_MOFFS64: default: // operand is 64 bits wide. Do nothing. break; } if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, insn.immediateOffset, insn.immediateSize, mcInst, Dis)) mcInst.addOperand(MCOperand::CreateImm(immediate)); } /// translateRMRegister - Translates a register stored in the R/M field of the /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. /// @param mcInst - The MCInst to append to. /// @param insn - The internal instruction to extract the R/M field /// from. /// @return - 0 on success; -1 otherwise static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn) { if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { debug("A R/M register operand may not have a SIB byte"); return true; } switch (insn.eaBase) { default: debug("Unexpected EA base register"); return true; case EA_BASE_NONE: debug("EA_BASE_NONE for ModR/M base"); return true; #define ENTRY(x) case EA_BASE_##x: ALL_EA_BASES #undef ENTRY debug("A R/M register operand may not have a base; " "the operand must be a register."); return true; #define ENTRY(x) \ case EA_REG_##x: \ mcInst.addOperand(MCOperand::CreateReg(X86::x)); break; ALL_REGS #undef ENTRY } return false; } /// translateRMMemory - Translates a memory operand stored in the Mod and R/M /// fields of an internal instruction (and possibly its SIB byte) to a memory /// operand in LLVM's format, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis) { // Addresses in an MCInst are represented as five operands: // 1. basereg (register) The R/M base, or (if there is a SIB) the // SIB base // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified // scale amount // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) // the index (which is multiplied by the // scale amount) // 4. displacement (immediate) 0, or the displacement if there is one // 5. segmentreg (register) x86_registerNONE for now, but could be set // if we have segment overrides MCOperand baseReg; MCOperand scaleAmount; MCOperand indexReg; MCOperand displacement; MCOperand segmentReg; uint64_t pcrel = 0; if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { if (insn.sibBase != SIB_BASE_NONE) { switch (insn.sibBase) { default: debug("Unexpected sibBase"); return true; #define ENTRY(x) \ case SIB_BASE_##x: \ baseReg = MCOperand::CreateReg(X86::x); break; ALL_SIB_BASES #undef ENTRY } } else { baseReg = MCOperand::CreateReg(0); } // Check whether we are handling VSIB addressing mode for GATHER. // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and // we should use SIB_INDEX_XMM4|YMM4 for VSIB. // I don't see a way to get the correct IndexReg in readSIB: // We can tell whether it is VSIB or SIB after instruction ID is decoded, // but instruction ID may not be decoded yet when calling readSIB. uint32_t Opcode = mcInst.getOpcode(); bool IndexIs128 = (Opcode == X86::VGATHERDPDrm || Opcode == X86::VGATHERDPDYrm || Opcode == X86::VGATHERQPDrm || Opcode == X86::VGATHERDPSrm || Opcode == X86::VGATHERQPSrm || Opcode == X86::VPGATHERDQrm || Opcode == X86::VPGATHERDQYrm || Opcode == X86::VPGATHERQQrm || Opcode == X86::VPGATHERDDrm || Opcode == X86::VPGATHERQDrm); bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm || Opcode == X86::VGATHERDPSYrm || Opcode == X86::VGATHERQPSYrm || Opcode == X86::VPGATHERQQYrm || Opcode == X86::VPGATHERDDYrm || Opcode == X86::VPGATHERQDYrm); if (IndexIs128 || IndexIs256) { unsigned IndexOffset = insn.sibIndex - (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX); SIBIndex IndexBase = IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0; insn.sibIndex = (SIBIndex)(IndexBase + (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset)); } if (insn.sibIndex != SIB_INDEX_NONE) { switch (insn.sibIndex) { default: debug("Unexpected sibIndex"); return true; #define ENTRY(x) \ case SIB_INDEX_##x: \ indexReg = MCOperand::CreateReg(X86::x); break; EA_BASES_32BIT EA_BASES_64BIT REGS_XMM REGS_YMM #undef ENTRY } } else { indexReg = MCOperand::CreateReg(0); } scaleAmount = MCOperand::CreateImm(insn.sibScale); } else { switch (insn.eaBase) { case EA_BASE_NONE: if (insn.eaDisplacement == EA_DISP_NONE) { debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); return true; } if (insn.mode == MODE_64BIT){ pcrel = insn.startLocation + insn.displacementOffset + insn.displacementSize; tryAddingPcLoadReferenceComment(insn.startLocation + insn.displacementOffset, insn.displacement + pcrel, Dis); baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6 } else baseReg = MCOperand::CreateReg(0); indexReg = MCOperand::CreateReg(0); break; case EA_BASE_BX_SI: baseReg = MCOperand::CreateReg(X86::BX); indexReg = MCOperand::CreateReg(X86::SI); break; case EA_BASE_BX_DI: baseReg = MCOperand::CreateReg(X86::BX); indexReg = MCOperand::CreateReg(X86::DI); break; case EA_BASE_BP_SI: baseReg = MCOperand::CreateReg(X86::BP); indexReg = MCOperand::CreateReg(X86::SI); break; case EA_BASE_BP_DI: baseReg = MCOperand::CreateReg(X86::BP); indexReg = MCOperand::CreateReg(X86::DI); break; default: indexReg = MCOperand::CreateReg(0); switch (insn.eaBase) { default: debug("Unexpected eaBase"); return true; // Here, we will use the fill-ins defined above. However, // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and // sib and sib64 were handled in the top-level if, so they're only // placeholders to keep the compiler happy. #define ENTRY(x) \ case EA_BASE_##x: \ baseReg = MCOperand::CreateReg(X86::x); break; ALL_EA_BASES #undef ENTRY #define ENTRY(x) case EA_REG_##x: ALL_REGS #undef ENTRY debug("A R/M memory operand may not be a register; " "the base field must be a base."); return true; } } scaleAmount = MCOperand::CreateImm(1); } displacement = MCOperand::CreateImm(insn.displacement); static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 0, // SEG_OVERRIDE_NONE X86::CS, X86::SS, X86::DS, X86::ES, X86::FS, X86::GS }; segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]); mcInst.addOperand(baseReg); mcInst.addOperand(scaleAmount); mcInst.addOperand(indexReg); if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, insn.startLocation, insn.displacementOffset, insn.displacementSize, mcInst, Dis)) mcInst.addOperand(displacement); mcInst.addOperand(segmentReg); return false; } /// translateRM - Translates an operand stored in the R/M (and possibly SIB) /// byte of an instruction to LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { switch (operand.type) { default: debug("Unexpected type for a R/M operand"); return true; case TYPE_R8: case TYPE_R16: case TYPE_R32: case TYPE_R64: case TYPE_Rv: case TYPE_MM: case TYPE_MM32: case TYPE_MM64: case TYPE_XMM: case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: case TYPE_XMM256: case TYPE_DEBUGREG: case TYPE_CONTROLREG: return translateRMRegister(mcInst, insn); case TYPE_M: case TYPE_M8: case TYPE_M16: case TYPE_M32: case TYPE_M64: case TYPE_M128: case TYPE_M256: case TYPE_M512: case TYPE_Mv: case TYPE_M32FP: case TYPE_M64FP: case TYPE_M80FP: case TYPE_M16INT: case TYPE_M32INT: case TYPE_M64INT: case TYPE_M1616: case TYPE_M1632: case TYPE_M1664: case TYPE_LEA: return translateRMMemory(mcInst, insn, Dis); } } /// translateFPRegister - Translates a stack position on the FPU stack to its /// LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param stackPos - The stack position to translate. /// @return - 0 on success; nonzero otherwise. static bool translateFPRegister(MCInst &mcInst, uint8_t stackPos) { if (stackPos >= 8) { debug("Invalid FP stack position"); return true; } mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos)); return false; } /// translateOperand - Translates an operand stored in an internal instruction /// to LLVM's format and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis) { switch (operand.encoding) { default: debug("Unhandled operand encoding during translation"); return true; case ENCODING_REG: translateRegister(mcInst, insn.reg); return false; case ENCODING_RM: return translateRM(mcInst, operand, insn, Dis); case ENCODING_CB: case ENCODING_CW: case ENCODING_CD: case ENCODING_CP: case ENCODING_CO: case ENCODING_CT: debug("Translation of code offsets isn't supported."); return true; case ENCODING_IB: case ENCODING_IW: case ENCODING_ID: case ENCODING_IO: case ENCODING_Iv: case ENCODING_Ia: translateImmediate(mcInst, insn.immediates[insn.numImmediatesTranslated++], operand, insn, Dis); return false; case ENCODING_RB: case ENCODING_RW: case ENCODING_RD: case ENCODING_RO: translateRegister(mcInst, insn.opcodeRegister); return false; case ENCODING_I: return translateFPRegister(mcInst, insn.opcodeModifier); case ENCODING_Rv: translateRegister(mcInst, insn.opcodeRegister); return false; case ENCODING_VVVV: translateRegister(mcInst, insn.vvvv); return false; case ENCODING_DUP: return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], insn, Dis); } } /// translateInstruction - Translates an internal instruction and all its /// operands to an MCInst. /// /// @param mcInst - The MCInst to populate with the instruction's data. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateInstruction(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis) { if (!insn.spec) { debug("Instruction has no specification"); return true; } mcInst.setOpcode(insn.instructionID); int index; insn.numImmediatesTranslated = 0; for (index = 0; index < X86_MAX_OPERANDS; ++index) { if (insn.operands[index].encoding != ENCODING_NONE) { if (translateOperand(mcInst, insn.operands[index], insn, Dis)) { return true; } } } return false; } static MCDisassembler *createX86_32Disassembler(const Target &T, const MCSubtargetInfo &STI) { return new X86Disassembler::X86GenericDisassembler(STI, MODE_32BIT, T.createMCInstrInfo()); } static MCDisassembler *createX86_64Disassembler(const Target &T, const MCSubtargetInfo &STI) { return new X86Disassembler::X86GenericDisassembler(STI, MODE_64BIT, T.createMCInstrInfo()); } extern "C" void LLVMInitializeX86Disassembler() { // Register the disassembler. TargetRegistry::RegisterMCDisassembler(TheX86_32Target, createX86_32Disassembler); TargetRegistry::RegisterMCDisassembler(TheX86_64Target, createX86_64Disassembler); }