//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --------=// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asmprinter" #include "PPC.h" #include "PPCTargetMachine.h" #include "PPCSubtarget.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineDebugInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); struct VISIBILITY_HIDDEN PPCAsmPrinter : public AsmPrinter { std::set FnStubs, GVStubs; PPCAsmPrinter(std::ostream &O, TargetMachine &TM, const TargetAsmInfo *T) : AsmPrinter(O, TM, T) {} virtual const char *getPassName() const { return "PowerPC Assembly Printer"; } PPCTargetMachine &getTM() { return static_cast(TM); } unsigned enumRegToMachineReg(unsigned enumReg) { switch (enumReg) { default: assert(0 && "Unhandled register!"); break; case PPC::CR0: return 0; case PPC::CR1: return 1; case PPC::CR2: return 2; case PPC::CR3: return 3; case PPC::CR4: return 4; case PPC::CR5: return 5; case PPC::CR6: return 6; case PPC::CR7: return 7; } abort(); } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO); void printOperand(const MachineInstr *MI, unsigned OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isRegister()) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physreg??"); O << TM.getRegisterInfo()->get(MO.getReg()).Name; } else if (MO.isImmediate()) { O << MO.getImmedValue(); } else { printOp(MO); } } bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode); bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode); void printS5ImmOperand(const MachineInstr *MI, unsigned OpNo) { char value = MI->getOperand(OpNo).getImmedValue(); value = (value << (32-5)) >> (32-5); O << (int)value; } void printU5ImmOperand(const MachineInstr *MI, unsigned OpNo) { unsigned char value = MI->getOperand(OpNo).getImmedValue(); assert(value <= 31 && "Invalid u5imm argument!"); O << (unsigned int)value; } void printU6ImmOperand(const MachineInstr *MI, unsigned OpNo) { unsigned char value = MI->getOperand(OpNo).getImmedValue(); assert(value <= 63 && "Invalid u6imm argument!"); O << (unsigned int)value; } void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (short)MI->getOperand(OpNo).getImmedValue(); } void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (unsigned short)MI->getOperand(OpNo).getImmedValue(); } void printS16X4ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (short)(MI->getOperand(OpNo).getImmedValue()*4); } void printBranchOperand(const MachineInstr *MI, unsigned OpNo) { // Branches can take an immediate operand. This is used by the branch // selection pass to print $+8, an eight byte displacement from the PC. if (MI->getOperand(OpNo).isImmediate()) { O << "$+" << MI->getOperand(OpNo).getImmedValue()*4; } else { printOp(MI->getOperand(OpNo)); } } void printCallOperand(const MachineInstr *MI, unsigned OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); if (TM.getRelocationModel() != Reloc::Static) { if (MO.getType() == MachineOperand::MO_GlobalAddress) { GlobalValue *GV = MO.getGlobal(); if (((GV->isExternal() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()))) { // Dynamically-resolved functions need a stub for the function. std::string Name = Mang->getValueName(GV); FnStubs.insert(Name); O << "L" << Name << "$stub"; return; } } if (MO.getType() == MachineOperand::MO_ExternalSymbol) { std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); FnStubs.insert(Name); O << "L" << Name << "$stub"; return; } } printOp(MI->getOperand(OpNo)); } void printAbsAddrOperand(const MachineInstr *MI, unsigned OpNo) { O << (int)MI->getOperand(OpNo).getImmedValue()*4; } void printPICLabel(const MachineInstr *MI, unsigned OpNo) { O << "\"L" << getFunctionNumber() << "$pb\"\n"; O << "\"L" << getFunctionNumber() << "$pb\":"; } void printSymbolHi(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) { printS16ImmOperand(MI, OpNo); } else { O << "ha16("; printOp(MI->getOperand(OpNo)); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\")"; else O << ')'; } } void printSymbolLo(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) { printS16ImmOperand(MI, OpNo); } else { O << "lo16("; printOp(MI->getOperand(OpNo)); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\")"; else O << ')'; } } void printcrbitm(const MachineInstr *MI, unsigned OpNo) { unsigned CCReg = MI->getOperand(OpNo).getReg(); unsigned RegNo = enumRegToMachineReg(CCReg); O << (0x80 >> RegNo); } // The new addressing mode printers. void printMemRegImm(const MachineInstr *MI, unsigned OpNo) { printSymbolLo(MI, OpNo); O << '('; if (MI->getOperand(OpNo+1).isRegister() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1); O << ')'; } void printMemRegImmShifted(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) printS16X4ImmOperand(MI, OpNo); else printSymbolLo(MI, OpNo); O << '('; if (MI->getOperand(OpNo+1).isRegister() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1); O << ')'; } void printMemRegReg(const MachineInstr *MI, unsigned OpNo) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getReg() == PPC::R0) O << '0'; else O << TM.getRegisterInfo()->get(MO.getReg()).Name; O << ", "; printOperand(MI, OpNo+1); } virtual bool runOnMachineFunction(MachineFunction &F) = 0; virtual bool doFinalization(Module &M) = 0; }; /// DarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac OS /// X struct VISIBILITY_HIDDEN DarwinAsmPrinter : public PPCAsmPrinter { DwarfWriter DW; DarwinAsmPrinter(std::ostream &O, PPCTargetMachine &TM, const TargetAsmInfo *T) : PPCAsmPrinter(O, TM, T), DW(O, this, T) { bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); } virtual const char *getPassName() const { return "Darwin PPC Assembly Printer"; } bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); PPCAsmPrinter::getAnalysisUsage(AU); } }; } // end of anonymous namespace /// createDarwinCodePrinterPass - Returns a pass that prints the PPC assembly /// code for a MachineFunction to the given output stream, in a format that the /// Darwin assembler can deal with. /// FunctionPass *llvm::createDarwinCodePrinterPass(std::ostream &o, PPCTargetMachine &tm) { return new DarwinAsmPrinter(o, tm, tm.getTargetAsmInfo()); } // Include the auto-generated portion of the assembly writer #include "PPCGenAsmWriter.inc" void PPCAsmPrinter::printOp(const MachineOperand &MO) { switch (MO.getType()) { case MachineOperand::MO_Immediate: std::cerr << "printOp() does not handle immediate values\n"; abort(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMachineBasicBlock()); return; case MachineOperand::MO_JumpTableIndex: O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getJumpTableIndex(); // FIXME: PIC relocation model return; case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getConstantPoolIndex(); return; case MachineOperand::MO_ExternalSymbol: // Computing the address of an external symbol, not calling it. if (TM.getRelocationModel() != Reloc::Static) { std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; return; } O << TAI->getGlobalPrefix() << MO.getSymbolName(); return; case MachineOperand::MO_GlobalAddress: { // Computing the address of a global symbol, not calling it. GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); int offset = MO.getOffset(); // External or weakly linked global variables need non-lazily-resolved stubs if (TM.getRelocationModel() != Reloc::Static) { if (((GV->isExternal() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()))) { GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; return; } } O << Name; return; } default: O << ""; return; } } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'L': // Write second word of DImode reference. // Verify that this operand has two consecutive registers. if (!MI->getOperand(OpNo).isRegister() || OpNo+1 == MI->getNumOperands() || !MI->getOperand(OpNo+1).isRegister()) return true; ++OpNo; // Return the high-part. break; } } printOperand(MI, OpNo); return false; } bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. printMemRegReg(MI, OpNo); return false; } /// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to /// the current output stream. /// void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Check for slwi/srwi mnemonics. if (MI->getOpcode() == PPC::RLWINM) { bool FoundMnemonic = false; unsigned char SH = MI->getOperand(2).getImmedValue(); unsigned char MB = MI->getOperand(3).getImmedValue(); unsigned char ME = MI->getOperand(4).getImmedValue(); if (SH <= 31 && MB == 0 && ME == (31-SH)) { O << "slwi "; FoundMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { O << "srwi "; FoundMnemonic = true; SH = 32-SH; } if (FoundMnemonic) { printOperand(MI, 0); O << ", "; printOperand(MI, 1); O << ", " << (unsigned int)SH << "\n"; return; } } else if (MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) { if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { O << "mr "; printOperand(MI, 0); O << ", "; printOperand(MI, 1); O << "\n"; return; } } if (printInstruction(MI)) return; // Printer was automatically generated assert(0 && "Unhandled instruction in asm writer!"); abort(); return; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool DarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) { DW.SetDebugInfo(&getAnalysis()); SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out jump tables referenced by the function EmitJumpTableInfo(MF.getJumpTableInfo()); // Print out labels for the function. const Function *F = MF.getFunction(); switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. SwitchToTextSection("\t.text", F); break; case Function::ExternalLinkage: SwitchToTextSection("\t.text", F); O << "\t.globl\t" << CurrentFnName << "\n"; break; case Function::WeakLinkage: case Function::LinkOnceLinkage: SwitchToTextSection( ".section __TEXT,__textcoal_nt,coalesced,pure_instructions", F); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.weak_definition\t" << CurrentFnName << "\n"; break; } EmitAlignment(4, F); O << CurrentFnName << ":\n"; // Emit pre-function debug information. DW.BeginFunction(&MF); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // Emit post-function debug information. DW.EndFunction(); // We didn't modify anything. return false; } bool DarwinAsmPrinter::doInitialization(Module &M) { if (TM.getSubtarget().isGigaProcessor()) O << "\t.machine ppc970\n"; AsmPrinter::doInitialization(M); // Darwin wants symbols to be quoted if they have complex names. Mang->setUseQuotes(true); // Emit initial debug information. DW.BeginModule(&M); return false; } bool DarwinAsmPrinter::doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->hasInitializer()) continue; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(I)) continue; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD->getTypeSize(C->getType()); unsigned Align = getPreferredAlignmentLog(I); if (C->isNullValue() && /* FIXME: Verify correct */ (I->hasInternalLinkage() || I->hasWeakLinkage() || I->hasLinkOnceLinkage() || (I->hasExternalLinkage() && !I->hasSection()))) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (I->hasExternalLinkage()) { O << "\t.globl " << name << '\n'; O << "\t.zerofill __DATA, __common, " << name << ", " << Size << ", " << Align; } else if (I->hasInternalLinkage()) { SwitchToDataSection("\t.data", I); O << TAI->getLCOMMDirective() << name << "," << Size << "," << Align; } else { SwitchToDataSection("\t.data", I); O << ".comm " << name << "," << Size; } O << "\t\t; '" << I->getName() << "'\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: O << "\t.globl " << name << '\n' << "\t.weak_definition " << name << '\n'; SwitchToDataSection(".section __DATA,__datacoal_nt,coalesced", I); break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: SwitchToDataSection("\t.data", I); break; default: std::cerr << "Unknown linkage type!"; abort(); } EmitAlignment(Align, I); O << name << ":\t\t\t\t; '" << I->getName() << "'\n"; EmitGlobalConstant(C); O << '\n'; } } bool isPPC64 = TD->getPointerSizeInBits() == 64; // Output stubs for dynamically-linked functions if (TM.getRelocationModel() == Reloc::PIC_) { for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { SwitchToTextSection(".section __TEXT,__picsymbolstub1,symbol_stubs," "pure_instructions,32", 0); EmitAlignment(4); O << "L" << *i << "$stub:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\tmflr r0\n"; O << "\tbcl 20,31,L0$" << *i << "\n"; O << "L0$" << *i << ":\n"; O << "\tmflr r11\n"; O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n"; O << "\tmtlr r0\n"; if (isPPC64) O << "\tldu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n"; else O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; SwitchToDataSection(".lazy_symbol_pointer", 0); O << "L" << *i << "$lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; if (isPPC64) O << "\t.quad dyld_stub_binding_helper\n"; else O << "\t.long dyld_stub_binding_helper\n"; } } else { for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { SwitchToTextSection(".section __TEXT,__symbol_stub1,symbol_stubs," "pure_instructions,16", 0); EmitAlignment(4); O << "L" << *i << "$stub:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\tlis r11,ha16(L" << *i << "$lazy_ptr)\n"; if (isPPC64) O << "\tldu r12,lo16(L" << *i << "$lazy_ptr)(r11)\n"; else O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr)(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; SwitchToDataSection(".lazy_symbol_pointer", 0); O << "L" << *i << "$lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; if (isPPC64) O << "\t.quad dyld_stub_binding_helper\n"; else O << "\t.long dyld_stub_binding_helper\n"; } } O << "\n"; // Output stubs for external and common global variables. if (GVStubs.begin() != GVStubs.end()) { SwitchToDataSection(".non_lazy_symbol_pointer", 0); for (std::set::iterator I = GVStubs.begin(), E = GVStubs.end(); I != E; ++I) { O << "L" << *I << "$non_lazy_ptr:\n"; O << "\t.indirect_symbol " << *I << "\n"; if (isPPC64) O << "\t.quad\t0\n"; else O << "\t.long\t0\n"; } } // Emit initial debug information. DW.EndModule(); // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never generates // code that does this, it is always safe to set. O << "\t.subsections_via_symbols\n"; AsmPrinter::doFinalization(M); return false; // success }