//===-- SparcInternals.h ----------------------------------------*- C++ -*-===// // // This file defines stuff that is to be private to the Sparc backend, but is // shared among different portions of the backend. // //===----------------------------------------------------------------------===// #ifndef SPARC_INTERNALS_H #define SPARC_INTERNALS_H #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineSchedInfo.h" #include "llvm/Target/MachineFrameInfo.h" #include "llvm/Target/MachineCacheInfo.h" #include "llvm/Target/MachineRegInfo.h" #include "llvm/Type.h" #include class LiveRange; class UltraSparc; class PhyRegAlloc; class Pass; Pass *createPrologEpilogCodeInserter(TargetMachine &TM); // OpCodeMask definitions for the Sparc V9 // const OpCodeMask Immed = 0x00002000; // immed or reg operand? const OpCodeMask Annul = 0x20000000; // annul delay instr? const OpCodeMask PredictTaken = 0x00080000; // predict branch taken? enum SparcInstrSchedClass { SPARC_NONE, /* Instructions with no scheduling restrictions */ SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */ SPARC_IEU0, /* Integer class IEU0 */ SPARC_IEU1, /* Integer class IEU1 */ SPARC_FPM, /* FP Multiply or Divide instructions */ SPARC_FPA, /* All other FP instructions */ SPARC_CTI, /* Control-transfer instructions */ SPARC_LD, /* Load instructions */ SPARC_ST, /* Store instructions */ SPARC_SINGLE, /* Instructions that must issue by themselves */ SPARC_INV, /* This should stay at the end for the next value */ SPARC_NUM_SCHED_CLASSES = SPARC_INV }; //--------------------------------------------------------------------------- // enum SparcMachineOpCode. // const MachineInstrDescriptor SparcMachineInstrDesc[] // // Purpose: // Description of UltraSparc machine instructions. // //--------------------------------------------------------------------------- enum SparcMachineOpCode { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ ENUM, #include "SparcInstr.def" // End-of-array marker INVALID_OPCODE, NUM_REAL_OPCODES = PHI, // number of valid opcodes NUM_TOTAL_OPCODES = INVALID_OPCODE }; // Array of machine instruction descriptions... extern const MachineInstrDescriptor SparcMachineInstrDesc[]; //--------------------------------------------------------------------------- // class UltraSparcInstrInfo // // Purpose: // Information about individual instructions. // Most information is stored in the SparcMachineInstrDesc array above. // Other information is computed on demand, and most such functions // default to member functions in base class MachineInstrInfo. //--------------------------------------------------------------------------- struct UltraSparcInstrInfo : public MachineInstrInfo { UltraSparcInstrInfo(const TargetMachine& tgt); // // All immediate constants are in position 1 except the // store instructions. // virtual int getImmedConstantPos(MachineOpCode opCode) const { bool ignore; if (this->maxImmedConstant(opCode, ignore) != 0) { assert(! this->isStore((MachineOpCode) STB - 1)); // 1st store opcode assert(! this->isStore((MachineOpCode) STXFSR+1));// last store opcode return (opCode >= STB && opCode <= STXFSR)? 2 : 1; } else return -1; } virtual bool hasResultInterlock (MachineOpCode opCode) const { // All UltraSPARC instructions have interlocks (note that delay slots // are not considered here). // However, instructions that use the result of an FCMP produce a // 9-cycle stall if they are issued less than 3 cycles after the FCMP. // Force the compiler to insert a software interlock (i.e., gap of // 2 other groups, including NOPs if necessary). return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ); } //------------------------------------------------------------------------- // Code generation support for creating individual machine instructions //------------------------------------------------------------------------- // Create an instruction sequence to put the constant `val' into // the virtual register `dest'. `val' may be a Constant or a // GlobalValue, viz., the constant address of a global variable or function. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCodeToLoadConst(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; // Create an instruction sequence to copy an integer value `val' // to a floating point value `dest' by copying to memory and back. // val must be an integral type. dest must be a Float or Double. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; // Similarly, create an instruction sequence to copy an FP value // `val' to an integer value `dest' by copying to memory and back. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; // Create instruction(s) to copy src to dest, for arbitrary types // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCopyInstructionsByType(const TargetMachine& target, Function* F, Value* src, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; // Create instruction sequence to produce a sign-extended register value // from an arbitrary sized value (sized in bits, not bytes). // The generated instructions are appended to `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateSignExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, unsigned int srcSizeInBits, Value* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; // Create instruction sequence to produce a zero-extended register value // from an arbitrary sized value (sized in bits, not bytes). // The generated instructions are appended to `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateZeroExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, unsigned int srcSizeInBits, Value* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const; }; //---------------------------------------------------------------------------- // class UltraSparcRegInfo // // This class implements the virtual class MachineRegInfo for Sparc. // //---------------------------------------------------------------------------- class UltraSparcRegInfo : public MachineRegInfo { // The actual register classes in the Sparc // enum RegClassIDs { IntRegClassID, // Integer FloatRegClassID, // Float (both single/double) IntCCRegClassID, // Int Condition Code FloatCCRegClassID // Float Condition code }; // Type of registers available in Sparc. There can be several reg types // in the same class. For instace, the float reg class has Single/Double // types // enum RegTypes { IntRegType, FPSingleRegType, FPDoubleRegType, IntCCRegType, FloatCCRegType }; // **** WARNING: If the above enum order is changed, also modify // getRegisterClassOfValue method below since it assumes this particular // order for efficiency. // reverse pointer to get info about the ultra sparc machine // const UltraSparc *const UltraSparcInfo; // Number of registers used for passing int args (usually 6: %o0 - %o5) // unsigned const NumOfIntArgRegs; // Number of registers used for passing float args (usually 32: %f0 - %f31) // unsigned const NumOfFloatArgRegs; // An out of bound register number that can be used to initialize register // numbers. Useful for error detection. // int const InvalidRegNum; // ======================== Private Methods ============================= // The following methods are used to color special live ranges (e.g. // function args and return values etc.) with specific hardware registers // as required. See SparcRegInfo.cpp for the implementation. // void suggestReg4RetAddr(MachineInstr *RetMI, LiveRangeInfo &LRI) const; void suggestReg4CallAddr(MachineInstr *CallMI, LiveRangeInfo &LRI, std::vector RCList) const; void InitializeOutgoingArg(MachineInstr* CallMI, AddedInstrns *CallAI, PhyRegAlloc &PRA, LiveRange* LR, unsigned regType, unsigned RegClassID, int UniArgReg, unsigned int argNo, std::vector& AddedInstrnsBefore) const; // The following 4 methods are used to find the RegType (see enum above) // for a reg class and a given primitive type, a LiveRange, a Value, // or a particular machine register. // The fifth function gives the reg class of the given RegType. // int getRegType(unsigned regClassID, const Type* type) const; int getRegType(const LiveRange *LR) const; int getRegType(const Value *Val) const; int getRegType(int unifiedRegNum) const; // Used to generate a copy instruction based on the register class of // value. // MachineInstr *cpValue2RegMI(Value *Val, unsigned DestReg, int RegType) const; // The following 2 methods are used to order the instructions addeed by // the register allocator in association with function calling. See // SparcRegInfo.cpp for more details // void moveInst2OrdVec(std::vector &OrdVec, MachineInstr *UnordInst, PhyRegAlloc &PRA) const; void OrderAddedInstrns(std::vector &UnordVec, std::vector &OrdVec, PhyRegAlloc &PRA) const; // Compute which register can be used for an argument, if any // int regNumForIntArg(bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned intArgNo, unsigned fpArgNo, unsigned& regClassId) const; int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned intArgNo, unsigned fpArgNo, unsigned& regClassId) const; public: UltraSparcRegInfo(const UltraSparc &tgt); // To get complete machine information structure using the machine register // information // inline const UltraSparc &getUltraSparcInfo() const { return *UltraSparcInfo; } // To find the register class used for a specified Type // unsigned getRegClassIDOfType(const Type *type, bool isCCReg = false) const; // To find the register class of a Value // inline unsigned getRegClassIDOfValue(const Value *Val, bool isCCReg = false) const { return getRegClassIDOfType(Val->getType(), isCCReg); } // To find the register class to which a specified register belongs // unsigned getRegClassIDOfReg(int unifiedRegNum) const; unsigned getRegClassIDOfRegType(int regType) const; // getZeroRegNum - returns the register that contains always zero this is the // unified register number // virtual int getZeroRegNum() const; // getCallAddressReg - returns the reg used for pushing the address when a // function is called. This can be used for other purposes between calls // unsigned getCallAddressReg() const; // Returns the register containing the return address. // It should be made sure that this register contains the return // value when a return instruction is reached. // unsigned getReturnAddressReg() const; // Number of registers used for passing int args (usually 6: %o0 - %o5) // and float args (usually 32: %f0 - %f31) // unsigned const GetNumOfIntArgRegs() const { return NumOfIntArgRegs; } unsigned const GetNumOfFloatArgRegs() const { return NumOfFloatArgRegs; } // The following methods are used to color special live ranges (e.g. // function args and return values etc.) with specific hardware registers // as required. See SparcRegInfo.cpp for the implementation for Sparc. // void suggestRegs4MethodArgs(const Function *Meth, LiveRangeInfo& LRI) const; void suggestRegs4CallArgs(MachineInstr *CallMI, LiveRangeInfo& LRI, std::vector RCL) const; void suggestReg4RetValue(MachineInstr *RetMI, LiveRangeInfo& LRI) const; void colorMethodArgs(const Function *Meth, LiveRangeInfo &LRI, AddedInstrns *FirstAI) const; void colorCallArgs(MachineInstr *CallMI, LiveRangeInfo &LRI, AddedInstrns *CallAI, PhyRegAlloc &PRA, const BasicBlock *BB) const; void colorRetValue(MachineInstr *RetI, LiveRangeInfo& LRI, AddedInstrns *RetAI) const; // method used for printing a register for debugging purposes // static void printReg(const LiveRange *LR); // Each register class has a seperate space for register IDs. To convert // a regId in a register class to a common Id, or vice versa, // we use the folloing methods. // // This method provides a unique number for each register inline int getUnifiedRegNum(unsigned regClassID, int reg) const { if (regClassID == IntRegClassID) { assert(reg < 32 && "Invalid reg. number"); return reg; } else if (regClassID == FloatRegClassID) { assert(reg < 64 && "Invalid reg. number"); return reg + 32; // we have 32 int regs } else if (regClassID == FloatCCRegClassID) { assert(reg < 4 && "Invalid reg. number"); return reg + 32 + 64; // 32 int, 64 float } else if (regClassID == IntCCRegClassID ) { assert(reg == 0 && "Invalid reg. number"); return reg + 4+ 32 + 64; // only one int CC reg } else if (reg==InvalidRegNum) { return InvalidRegNum; } else assert(0 && "Invalid register class"); return 0; } // This method converts the unified number to the number in its class, // and returns the class ID in regClassID. inline int getClassRegNum(int ureg, unsigned& regClassID) const { if (ureg < 32) { regClassID = IntRegClassID; return ureg; } else if (ureg < 32+64) { regClassID = FloatRegClassID; return ureg-32; } else if (ureg < 4 +96) { regClassID = FloatCCRegClassID; return ureg-96; } else if (ureg < 1 +100) { regClassID = IntCCRegClassID; return ureg-100;} else if (ureg == InvalidRegNum) { return InvalidRegNum; } else { assert(0 && "Invalid unified register number"); } return 0; } // Returns the assembly-language name of the specified machine register. // virtual const char * const getUnifiedRegName(int reg) const; // returns the # of bytes of stack space allocated for each register // type. For Sparc, currently we allocate 8 bytes on stack for all // register types. We can optimize this later if necessary to save stack // space (However, should make sure that stack alignment is correct) // inline int getSpilledRegSize(int RegType) const { return 8; } // To obtain the return value and the indirect call address (if any) // contained in a CALL machine instruction // const Value * getCallInstRetVal(const MachineInstr *CallMI) const; const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const; // The following methods are used to generate "copy" machine instructions // for an architecture. // // The function regTypeNeedsScratchReg() can be used to check whether a // scratch register is needed to copy a register of type `regType' to // or from memory. If so, such a scratch register can be provided by // the caller (e.g., if it knows which regsiters are free); otherwise // an arbitrary one will be chosen and spilled by the copy instructions. // bool regTypeNeedsScratchReg(int RegType, int& scratchRegClassId) const; void cpReg2RegMI(std::vector& mvec, unsigned SrcReg, unsigned DestReg, int RegType) const; void cpReg2MemMI(std::vector& mvec, unsigned SrcReg, unsigned DestPtrReg, int Offset, int RegType, int scratchReg = -1) const; void cpMem2RegMI(std::vector& mvec, unsigned SrcPtrReg, int Offset, unsigned DestReg, int RegType, int scratchReg = -1) const; void cpValue2Value(Value *Src, Value *Dest, std::vector& mvec) const; // To see whether a register is a volatile (i.e., whehter it must be // preserved acorss calls) // inline bool isRegVolatile(int RegClassID, int Reg) const { return MachineRegClassArr[RegClassID]->isRegVolatile(Reg); } virtual unsigned getFramePointer() const; virtual unsigned getStackPointer() const; virtual int getInvalidRegNum() const { return InvalidRegNum; } // This method inserts the caller saving code for call instructions // void insertCallerSavingCode(std::vector& instrnsBefore, std::vector& instrnsAfter, MachineInstr *MInst, const BasicBlock *BB, PhyRegAlloc &PRA ) const; }; //--------------------------------------------------------------------------- // class UltraSparcSchedInfo // // Purpose: // Interface to instruction scheduling information for UltraSPARC. // The parameter values above are based on UltraSPARC IIi. //--------------------------------------------------------------------------- class UltraSparcSchedInfo: public MachineSchedInfo { public: UltraSparcSchedInfo(const TargetMachine &tgt); protected: virtual void initializeResources(); }; //--------------------------------------------------------------------------- // class UltraSparcFrameInfo // // Purpose: // Interface to stack frame layout info for the UltraSPARC. // Starting offsets for each area of the stack frame are aligned at // a multiple of getStackFrameSizeAlignment(). //--------------------------------------------------------------------------- class UltraSparcFrameInfo: public MachineFrameInfo { public: UltraSparcFrameInfo(const TargetMachine &tgt) : MachineFrameInfo(tgt) {} public: int getStackFrameSizeAlignment() const { return StackFrameSizeAlignment;} int getMinStackFrameSize() const { return MinStackFrameSize; } int getNumFixedOutgoingArgs() const { return NumFixedOutgoingArgs; } int getSizeOfEachArgOnStack() const { return SizeOfEachArgOnStack; } bool argsOnStackHaveFixedSize() const { return true; } // // These methods compute offsets using the frame contents for a // particular function. The frame contents are obtained from the // MachineCodeInfoForMethod object for the given function. // int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo, bool& growUp) const { growUp = true; // arguments area grows upwards return FirstIncomingArgOffsetFromFP; } int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo, bool& growUp) const { growUp = true; // arguments area grows upwards return FirstOutgoingArgOffsetFromSP; } int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo, bool& growUp)const { growUp = true; // arguments area grows upwards return FirstOptionalOutgoingArgOffsetFromSP; } int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo, bool& growUp) const; int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo, bool& growUp) const; int getTmpAreaOffset (MachineCodeForMethod& mcInfo, bool& growUp) const; int getDynamicAreaOffset (MachineCodeForMethod& mcInfo, bool& growUp) const; // // These methods specify the base register used for each stack area // (generally FP or SP) // virtual int getIncomingArgBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getOutgoingArgBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } virtual int getOptionalOutgoingArgBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } virtual int getAutomaticVarBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getRegSpillAreaBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getDynamicAreaBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } private: // All stack addresses must be offset by 0x7ff (2047) on Sparc V9. static const int OFFSET = (int) 0x7ff; static const int StackFrameSizeAlignment = 16; static const int MinStackFrameSize = 176; static const int NumFixedOutgoingArgs = 6; static const int SizeOfEachArgOnStack = 8; static const int StaticAreaOffsetFromFP = 0 + OFFSET; static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET; static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET; static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET; static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET; }; //--------------------------------------------------------------------------- // class UltraSparcCacheInfo // // Purpose: // Interface to cache parameters for the UltraSPARC. // Just use defaults for now. //--------------------------------------------------------------------------- class UltraSparcCacheInfo: public MachineCacheInfo { public: UltraSparcCacheInfo(const TargetMachine &T) : MachineCacheInfo(T) {} }; //--------------------------------------------------------------------------- // class UltraSparcMachine // // Purpose: // Primary interface to machine description for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class TargetMachine, and creates machine-dependent subclasses // for classes such as InstrInfo, SchedInfo and RegInfo. //--------------------------------------------------------------------------- class UltraSparc : public TargetMachine { private: UltraSparcInstrInfo instrInfo; UltraSparcSchedInfo schedInfo; UltraSparcRegInfo regInfo; UltraSparcFrameInfo frameInfo; UltraSparcCacheInfo cacheInfo; public: UltraSparc(); virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; } virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; } virtual const MachineRegInfo &getRegInfo() const { return regInfo; } virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; } virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; } // // addPassesToEmitAssembly - Add passes to the specified pass manager to get // assembly langage code emited. For sparc, we have to do ... // virtual void addPassesToEmitAssembly(PassManager &PM, std::ostream &Out); private: Pass *getFunctionAsmPrinterPass(PassManager &PM, std::ostream &Out); Pass *getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out); Pass *getEmitBytecodeToAsmPass(std::ostream &Out); }; #endif