//===- SPUInstrInfo.cpp - Cell SPU Instruction Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Cell SPU implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SPURegisterNames.h" #include "SPUInstrInfo.h" #include "SPUInstrBuilder.h" #include "SPUTargetMachine.h" #include "SPUGenInstrInfo.inc" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/Streams.h" #include "llvm/Support/Debug.h" using namespace llvm; namespace { //! Predicate for an unconditional branch instruction inline bool isUncondBranch(const MachineInstr *I) { unsigned opc = I->getOpcode(); return (opc == SPU::BR || opc == SPU::BRA || opc == SPU::BI); } //! Predicate for a conditional branch instruction inline bool isCondBranch(const MachineInstr *I) { unsigned opc = I->getOpcode(); return (opc == SPU::BRNZr32 || opc == SPU::BRNZv4i32 || opc == SPU::BRZr32 || opc == SPU::BRZv4i32 || opc == SPU::BRHNZr16 || opc == SPU::BRHNZv8i16 || opc == SPU::BRHZr16 || opc == SPU::BRHZv8i16); } } SPUInstrInfo::SPUInstrInfo(SPUTargetMachine &tm) : TargetInstrInfoImpl(SPUInsts, sizeof(SPUInsts)/sizeof(SPUInsts[0])), TM(tm), RI(*TM.getSubtargetImpl(), *this) { /* NOP */ } bool SPUInstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg, unsigned& SrcSR, unsigned& DstSR) const { SrcSR = DstSR = 0; // No sub-registers. switch (MI.getOpcode()) { default: break; case SPU::ORIv4i32: case SPU::ORIr32: case SPU::ORHIv8i16: case SPU::ORHIr16: case SPU::ORHIi8i16: case SPU::ORBIv16i8: case SPU::ORBIr8: case SPU::ORIi16i32: case SPU::ORIi8i32: case SPU::AHIvec: case SPU::AHIr16: case SPU::AIv4i32: assert(MI.getNumOperands() == 3 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(2).isImm() && "invalid SPU ORI/ORHI/ORBI/AHI/AI/SFI/SFHI instruction!"); if (MI.getOperand(2).getImm() == 0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; case SPU::AIr32: assert(MI.getNumOperands() == 3 && "wrong number of operands to AIr32"); if (MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; case SPU::LRr8: case SPU::LRr16: case SPU::LRr32: case SPU::LRf32: case SPU::LRr64: case SPU::LRf64: case SPU::LRr128: case SPU::LRv16i8: case SPU::LRv8i16: case SPU::LRv4i32: case SPU::LRv4f32: case SPU::LRv2i64: case SPU::LRv2f64: case SPU::ORv16i8_i8: case SPU::ORv8i16_i16: case SPU::ORv4i32_i32: case SPU::ORv2i64_i64: case SPU::ORv4f32_f32: case SPU::ORv2f64_f64: case SPU::ORi8_v16i8: case SPU::ORi16_v8i16: case SPU::ORi32_v4i32: case SPU::ORi64_v2i64: case SPU::ORf32_v4f32: case SPU::ORf64_v2f64: /* case SPU::ORi128_r64: case SPU::ORi128_f64: case SPU::ORi128_r32: case SPU::ORi128_f32: case SPU::ORi128_r16: case SPU::ORi128_r8: */ case SPU::ORi128_vec: /* case SPU::ORr64_i128: case SPU::ORf64_i128: case SPU::ORr32_i128: case SPU::ORf32_i128: case SPU::ORr16_i128: case SPU::ORr8_i128: */ case SPU::ORvec_i128: /* case SPU::ORr16_r32: case SPU::ORr8_r32: case SPU::ORf32_r32: case SPU::ORr32_f32: case SPU::ORr32_r16: case SPU::ORr32_r8: case SPU::ORr16_r64: case SPU::ORr8_r64: case SPU::ORr64_r16: case SPU::ORr64_r8: */ case SPU::ORr64_r32: case SPU::ORr32_r64: case SPU::ORf32_r32: case SPU::ORr32_f32: case SPU::ORf64_r64: case SPU::ORr64_f64: { assert(MI.getNumOperands() == 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && "invalid SPU OR_ or LR instruction!"); if (MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; } case SPU::ORv16i8: case SPU::ORv8i16: case SPU::ORv4i32: case SPU::ORv2i64: case SPU::ORr8: case SPU::ORr16: case SPU::ORr32: case SPU::ORr64: case SPU::ORr128: case SPU::ORf32: case SPU::ORf64: assert(MI.getNumOperands() == 3 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(2).isReg() && "invalid SPU OR(vec|r32|r64|gprc) instruction!"); if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } break; } return false; } unsigned SPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::LQDv16i8: case SPU::LQDv8i16: case SPU::LQDv4i32: case SPU::LQDv4f32: case SPU::LQDv2f64: case SPU::LQDr128: case SPU::LQDr64: case SPU::LQDr32: case SPU::LQDr16: { const MachineOperand MOp1 = MI->getOperand(1); const MachineOperand MOp2 = MI->getOperand(2); if (MOp1.isImm() && MOp2.isFI()) { FrameIndex = MOp2.getIndex(); return MI->getOperand(0).getReg(); } break; } } return 0; } unsigned SPUInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::STQDv16i8: case SPU::STQDv8i16: case SPU::STQDv4i32: case SPU::STQDv4f32: case SPU::STQDv2f64: case SPU::STQDr128: case SPU::STQDr64: case SPU::STQDr32: case SPU::STQDr16: case SPU::STQDr8: { const MachineOperand MOp1 = MI->getOperand(1); const MachineOperand MOp2 = MI->getOperand(2); if (MOp1.isImm() && MOp2.isFI()) { FrameIndex = MOp2.getIndex(); return MI->getOperand(0).getReg(); } break; } } return 0; } bool SPUInstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { // We support cross register class moves for our aliases, such as R3 in any // reg class to any other reg class containing R3. This is required because // we instruction select bitconvert i64 -> f64 as a noop for example, so our // types have no specific meaning. DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); if (DestRC == SPU::R8CRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRr8), DestReg).addReg(SrcReg); } else if (DestRC == SPU::R16CRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRr16), DestReg).addReg(SrcReg); } else if (DestRC == SPU::R32CRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRr32), DestReg).addReg(SrcReg); } else if (DestRC == SPU::R32FPRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRf32), DestReg).addReg(SrcReg); } else if (DestRC == SPU::R64CRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRr64), DestReg).addReg(SrcReg); } else if (DestRC == SPU::R64FPRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRf64), DestReg).addReg(SrcReg); } else if (DestRC == SPU::GPRCRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRr128), DestReg).addReg(SrcReg); } else if (DestRC == SPU::VECREGRegisterClass) { BuildMI(MBB, MI, DL, get(SPU::LRv16i8), DestReg).addReg(SrcReg); } else { // Attempt to copy unknown/unsupported register class! return false; } return true; } void SPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC) const { unsigned opc; bool isValidFrameIdx = (FrameIdx < SPUFrameInfo::maxFrameOffset()); if (RC == SPU::GPRCRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr128 : SPU::STQXr128); } else if (RC == SPU::R64CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr64 : SPU::STQXr64); } else if (RC == SPU::R64FPRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr64 : SPU::STQXr64); } else if (RC == SPU::R32CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr32 : SPU::STQXr32); } else if (RC == SPU::R32FPRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr32 : SPU::STQXr32); } else if (RC == SPU::R16CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr16 : SPU::STQXr16); } else if (RC == SPU::R8CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr8 : SPU::STQXr8); } else if (RC == SPU::VECREGRegisterClass) { opc = (isValidFrameIdx) ? SPU::STQDv16i8 : SPU::STQXv16i8; } else { assert(0 && "Unknown regclass!"); abort(); } DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); addFrameReference(BuildMI(MBB, MI, DL, get(opc)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); } void SPUInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { cerr << "storeRegToAddr() invoked!\n"; abort(); if (Addr[0].isFI()) { /* do what storeRegToStackSlot does here */ } else { unsigned Opc = 0; if (RC == SPU::GPRCRegisterClass) { /* Opc = PPC::STW; */ } else if (RC == SPU::R16CRegisterClass) { /* Opc = PPC::STD; */ } else if (RC == SPU::R32CRegisterClass) { /* Opc = PPC::STFD; */ } else if (RC == SPU::R32FPRegisterClass) { /* Opc = PPC::STFD; */ } else if (RC == SPU::R64FPRegisterClass) { /* Opc = PPC::STFS; */ } else if (RC == SPU::VECREGRegisterClass) { /* Opc = PPC::STVX; */ } else { assert(0 && "Unknown regclass!"); abort(); } DebugLoc DL = DebugLoc::getUnknownLoc(); MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)) .addReg(SrcReg, getKillRegState(isKill)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); NewMIs.push_back(MIB); } } void SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC) const { unsigned opc; bool isValidFrameIdx = (FrameIdx < SPUFrameInfo::maxFrameOffset()); if (RC == SPU::GPRCRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr128 : SPU::LQXr128); } else if (RC == SPU::R64CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr64 : SPU::LQXr64); } else if (RC == SPU::R64FPRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr64 : SPU::LQXr64); } else if (RC == SPU::R32CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr32 : SPU::LQXr32); } else if (RC == SPU::R32FPRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr32 : SPU::LQXr32); } else if (RC == SPU::R16CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr16 : SPU::LQXr16); } else if (RC == SPU::R8CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr8 : SPU::LQXr8); } else if (RC == SPU::VECREGRegisterClass) { opc = (isValidFrameIdx) ? SPU::LQDv16i8 : SPU::LQXv16i8; } else { assert(0 && "Unknown regclass in loadRegFromStackSlot!"); abort(); } DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); addFrameReference(BuildMI(MBB, MI, DL, get(opc), DestReg), FrameIdx); } /*! \note We are really pessimistic here about what kind of a load we're doing. */ void SPUInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { cerr << "loadRegToAddr() invoked!\n"; abort(); if (Addr[0].isFI()) { /* do what loadRegFromStackSlot does here... */ } else { unsigned Opc = 0; if (RC == SPU::R8CRegisterClass) { /* do brilliance here */ } else if (RC == SPU::R16CRegisterClass) { /* Opc = PPC::LWZ; */ } else if (RC == SPU::R32CRegisterClass) { /* Opc = PPC::LD; */ } else if (RC == SPU::R32FPRegisterClass) { /* Opc = PPC::LFD; */ } else if (RC == SPU::R64FPRegisterClass) { /* Opc = PPC::LFS; */ } else if (RC == SPU::VECREGRegisterClass) { /* Opc = PPC::LVX; */ } else if (RC == SPU::GPRCRegisterClass) { /* Opc = something else! */ } else { assert(0 && "Unknown regclass!"); abort(); } DebugLoc DL = DebugLoc::getUnknownLoc(); MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); NewMIs.push_back(MIB); } } //! Return true if the specified load or store can be folded bool SPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { if (Ops.size() != 1) return false; // Make sure this is a reg-reg copy. unsigned Opc = MI->getOpcode(); switch (Opc) { case SPU::ORv16i8: case SPU::ORv8i16: case SPU::ORv4i32: case SPU::ORv2i64: case SPU::ORr8: case SPU::ORr16: case SPU::ORr32: case SPU::ORr64: case SPU::ORf32: case SPU::ORf64: if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) return true; break; } return false; } /// foldMemoryOperand - SPU, like PPC, can only fold spills into /// copy instructions, turning them into load/store instructions. MachineInstr * SPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, int FrameIndex) const { if (Ops.size() != 1) return 0; unsigned OpNum = Ops[0]; unsigned Opc = MI->getOpcode(); MachineInstr *NewMI = 0; switch (Opc) { case SPU::ORv16i8: case SPU::ORv8i16: case SPU::ORv4i32: case SPU::ORv2i64: case SPU::ORr8: case SPU::ORr16: case SPU::ORr32: case SPU::ORr64: case SPU::ORf32: case SPU::ORf64: if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); if (FrameIndex < SPUFrameInfo::maxFrameOffset()) { MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(SPU::STQDr32)); MIB.addReg(InReg, getKillRegState(isKill) | getUndefRegState(isUndef)); NewMI = addFrameReference(MIB, FrameIndex); } } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)); MIB.addReg(OutReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)); Opc = (FrameIndex < SPUFrameInfo::maxFrameOffset()) ? SPU::STQDr32 : SPU::STQXr32; NewMI = addFrameReference(MIB, FrameIndex); break; } } return NewMI; } //! Branch analysis /*! \note This code was kiped from PPC. There may be more branch analysis for CellSPU than what's currently done here. */ bool SPUInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (isUncondBranch(LastInst)) { TBB = LastInst->getOperand(0).getMBB(); return false; } else if (isCondBranch(LastInst)) { // Block ends with fall-through condbranch. TBB = LastInst->getOperand(1).getMBB(); DEBUG(cerr << "Pushing LastInst: "); DEBUG(LastInst->dump()); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with a conditional and unconditional branch, handle it. if (isCondBranch(SecondLastInst) && isUncondBranch(LastInst)) { TBB = SecondLastInst->getOperand(1).getMBB(); DEBUG(cerr << "Pushing SecondLastInst: "); DEBUG(SecondLastInst->dump()); Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed, so remove it. if (isUncondBranch(SecondLastInst) && isUncondBranch(LastInst)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } unsigned SPUInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (!isCondBranch(I) && !isUncondBranch(I)) return 0; // Remove the first branch. DEBUG(cerr << "Removing branch: "); DEBUG(I->dump()); I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (!(isCondBranch(I) || isUncondBranch(I))) return 1; // Remove the second branch. DEBUG(cerr << "Removing second branch: "); DEBUG(I->dump()); I->eraseFromParent(); return 2; } unsigned SPUInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const { // FIXME this should probably have a DebugLoc argument DebugLoc dl = DebugLoc::getUnknownLoc(); // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "SPU branch conditions have two components!"); // One-way branch. if (FBB == 0) { if (Cond.empty()) { // Unconditional branch MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(SPU::BR)); MIB.addMBB(TBB); DEBUG(cerr << "Inserted one-way uncond branch: "); DEBUG((*MIB).dump()); } else { // Conditional branch MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(Cond[0].getImm())); MIB.addReg(Cond[1].getReg()).addMBB(TBB); DEBUG(cerr << "Inserted one-way cond branch: "); DEBUG((*MIB).dump()); } return 1; } else { MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(Cond[0].getImm())); MachineInstrBuilder MIB2 = BuildMI(&MBB, dl, get(SPU::BR)); // Two-way Conditional Branch. MIB.addReg(Cond[1].getReg()).addMBB(TBB); MIB2.addMBB(FBB); DEBUG(cerr << "Inserted conditional branch: "); DEBUG((*MIB).dump()); DEBUG(cerr << "part 2: "); DEBUG((*MIB2).dump()); return 2; } } bool SPUInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { return (!MBB.empty() && isUncondBranch(&MBB.back())); } //! Reverses a branch's condition, returning false on success. bool SPUInstrInfo::ReverseBranchCondition(SmallVectorImpl &Cond) const { // Pretty brainless way of inverting the condition, but it works, considering // there are only two conditions... static struct { unsigned Opc; //! The incoming opcode unsigned RevCondOpc; //! The reversed condition opcode } revconds[] = { { SPU::BRNZr32, SPU::BRZr32 }, { SPU::BRNZv4i32, SPU::BRZv4i32 }, { SPU::BRZr32, SPU::BRNZr32 }, { SPU::BRZv4i32, SPU::BRNZv4i32 }, { SPU::BRHNZr16, SPU::BRHZr16 }, { SPU::BRHNZv8i16, SPU::BRHZv8i16 }, { SPU::BRHZr16, SPU::BRHNZr16 }, { SPU::BRHZv8i16, SPU::BRHNZv8i16 } }; unsigned Opc = unsigned(Cond[0].getImm()); // Pretty dull mapping between the two conditions that SPU can generate: for (int i = sizeof(revconds)/sizeof(revconds[0]) - 1; i >= 0; --i) { if (revconds[i].Opc == Opc) { Cond[0].setImm(revconds[i].RevCondOpc); return false; } } return true; }