//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register coalescing pass that attempts to // aggressively coalesce every register copy that it can. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regcoalescing" #include "SimpleRegisterCoalescing.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); STATISTIC(numAborts , "Number of times interval joining aborted"); char SimpleRegisterCoalescing::ID = 0; namespace { static cl::opt EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true)); static cl::opt NewHeuristic("new-coalescer-heuristic", cl::desc("Use new coalescer heuristic"), cl::init(false)); static cl::opt ReMatSpillWeight("tweak-remat-spill-weight", cl::desc("Tweak spill weight of re-materializable intervals"), cl::init(true)); RegisterPass X("simple-register-coalescing", "Simple Register Coalescing"); // Declare that we implement the RegisterCoalescer interface RegisterAnalysisGroup V(X); } const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo(); void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); AU.addPreservedID(PHIEliminationID); AU.addPreservedID(TwoAddressInstructionPassID); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->reg) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A0 in the example. LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1); VNInfo *AValNo = AValLR->valno; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. unsigned SrcReg = AValNo->reg; if (!SrcReg) return false; // Not defined by a copy. // If the value number is not defined by a copy instruction, ignore it. // If the source register comes from an interval other than IntB, we can't // handle this. if (rep(SrcReg) != IntB.reg) return false; // Get the LiveRange in IntB that this value number starts with. LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1); // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (MRegisterInfo::isPhysicalRegister(IntB.reg) && *mri_->getSubRegisters(IntB.reg)) { for (const unsigned* SR = mri_->getSubRegisters(IntB.reg); *SR; ++SR) if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); return false; } } DOUT << "\nExtending: "; IntB.print(DOUT, mri_); unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the the valnum with the new defining // instruction #. BValNo->def = FillerStart; BValNo->reg = 0; // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has aliases, if (MRegisterInfo::isPhysicalRegister(IntB.reg)) { // Update the liveintervals of sub-registers. for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) { LiveInterval &AliasLI = li_->getInterval(*AS); AliasLI.addRange(LiveRange(FillerStart, FillerEnd, AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator()))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->valno) IntB.MergeValueNumberInto(BValNo, ValLR->valno); DOUT << " result = "; IntB.print(DOUT, mri_); DOUT << "\n"; // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) ValLREndInst->getOperand(UIdx).setIsKill(false); ++numPeep; return true; } /// AddSubRegIdxPairs - Recursively mark all the registers represented by the /// specified register as sub-registers. The recursion level is expected to be /// shallow. void SimpleRegisterCoalescing::AddSubRegIdxPairs(unsigned Reg, unsigned SubIdx) { std::vector &JoinedRegs = r2rRevMap_[Reg]; for (unsigned i = 0, e = JoinedRegs.size(); i != e; ++i) { SubRegIdxes.push_back(std::make_pair(JoinedRegs[i], SubIdx)); AddSubRegIdxPairs(JoinedRegs[i], SubIdx); } } /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy. /// bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI, unsigned DstReg) { MachineBasicBlock *MBB = CopyMI->getParent(); const MachineLoop *L = loopInfo->getLoopFor(MBB); if (!L) return false; if (MBB != L->getLoopLatch()) return false; DstReg = rep(DstReg); LiveInterval &LI = li_->getInterval(DstReg); unsigned DefIdx = li_->getInstructionIndex(CopyMI); LiveInterval::const_iterator DstLR = LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx)); if (DstLR == LI.end()) return false; unsigned KillIdx = li_->getInstructionIndex(&MBB->back()) + InstrSlots::NUM-1; if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0] == KillIdx) return true; return false; } /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool SimpleRegisterCoalescing::JoinCopy(CopyRec TheCopy, bool &Again) { MachineInstr *CopyMI = TheCopy.MI; Again = false; if (JoinedCopies.count(CopyMI)) return false; // Already done. DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI; // Get representative registers. unsigned SrcReg = TheCopy.SrcReg; unsigned DstReg = TheCopy.DstReg; unsigned repSrcReg = rep(SrcReg); unsigned repDstReg = rep(DstReg); // If they are already joined we continue. if (repSrcReg == repDstReg) { DOUT << "\tCopy already coalesced.\n"; return false; // Not coalescable. } bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg); bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg); // If they are both physical registers, we cannot join them. if (SrcIsPhys && DstIsPhys) { DOUT << "\tCan not coalesce physregs.\n"; return false; // Not coalescable. } // We only join virtual registers with allocatable physical registers. if (SrcIsPhys && !allocatableRegs_[repSrcReg]) { DOUT << "\tSrc reg is unallocatable physreg.\n"; return false; // Not coalescable. } if (DstIsPhys && !allocatableRegs_[repDstReg]) { DOUT << "\tDst reg is unallocatable physreg.\n"; return false; // Not coalescable. } bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG; unsigned RealDstReg = 0; if (isExtSubReg) { unsigned SubIdx = CopyMI->getOperand(2).getImm(); if (SrcIsPhys) // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be // coalesced with AX. repSrcReg = mri_->getSubReg(repSrcReg, SubIdx); else if (DstIsPhys) { // If this is a extract_subreg where dst is a physical register, e.g. // cl = EXTRACT_SUBREG reg1024, 1 // then create and update the actual physical register allocated to RHS. const TargetRegisterClass *RC=mf_->getRegInfo().getRegClass(repSrcReg); for (const unsigned *SRs = mri_->getSuperRegisters(repDstReg); unsigned SR = *SRs; ++SRs) { if (repDstReg == mri_->getSubReg(SR, SubIdx) && RC->contains(SR)) { RealDstReg = SR; break; } } assert(RealDstReg && "Invalid extra_subreg instruction!"); // For this type of EXTRACT_SUBREG, conservatively // check if the live interval of the source register interfere with the // actual super physical register we are trying to coalesce with. LiveInterval &RHS = li_->getInterval(repSrcReg); if (li_->hasInterval(RealDstReg) && RHS.overlaps(li_->getInterval(RealDstReg))) { DOUT << "Interfere with register "; DEBUG(li_->getInterval(RealDstReg).print(DOUT, mri_)); return false; // Not coalescable } for (const unsigned* SR = mri_->getSubRegisters(RealDstReg); *SR; ++SR) if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); return false; // Not coalescable } } else { unsigned SrcSize= li_->getInterval(repSrcReg).getSize() / InstrSlots::NUM; unsigned DstSize= li_->getInterval(repDstReg).getSize() / InstrSlots::NUM; const TargetRegisterClass *RC=mf_->getRegInfo().getRegClass(repDstReg); unsigned Threshold = allocatableRCRegs_[RC].count(); // Be conservative. If both sides are virtual registers, do not coalesce // if this will cause a high use density interval to target a smaller set // of registers. if (DstSize > Threshold || SrcSize > Threshold) { LiveVariables::VarInfo &svi = lv_->getVarInfo(repSrcReg); LiveVariables::VarInfo &dvi = lv_->getVarInfo(repDstReg); if ((float)dvi.NumUses / DstSize < (float)svi.NumUses / SrcSize) { Again = true; // May be possible to coalesce later. return false; } } } } else if (differingRegisterClasses(repSrcReg, repDstReg)) { // If they are not of the same register class, we cannot join them. DOUT << "\tSrc/Dest are different register classes.\n"; // Allow the coalescer to try again in case either side gets coalesced to // a physical register that's compatible with the other side. e.g. // r1024 = MOV32to32_ r1025 // but later r1024 is assigned EAX then r1025 may be coalesced with EAX. Again = true; // May be possible to coalesce later. return false; } LiveInterval &SrcInt = li_->getInterval(repSrcReg); LiveInterval &DstInt = li_->getInterval(repDstReg); assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg && "Register mapping is horribly broken!"); DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_); DOUT << " and "; DstInt.print(DOUT, mri_); DOUT << ": "; // Check if it is necessary to propagate "isDead" property before intervals // are joined. MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg); bool isDead = mopd->isDead(); bool isShorten = false; unsigned SrcStart = 0, RemoveStart = 0; unsigned SrcEnd = 0, RemoveEnd = 0; if (isDead) { unsigned CopyIdx = li_->getInstructionIndex(CopyMI); LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx)); RemoveStart = SrcStart = SrcLR->start; RemoveEnd = SrcEnd = SrcLR->end; // The instruction which defines the src is only truly dead if there are // no intermediate uses and there isn't a use beyond the copy. // FIXME: find the last use, mark is kill and shorten the live range. if (SrcEnd > li_->getDefIndex(CopyIdx)) { isDead = false; } else { MachineOperand *MOU; MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU); if (LastUse) { // Shorten the liveinterval to the end of last use. MOU->setIsKill(); isDead = false; isShorten = true; RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse)); RemoveEnd = SrcEnd; } else { MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); if (SrcMI) { MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); if (mops) // A dead def should have a single cycle interval. ++RemoveStart; } } } } // We need to be careful about coalescing a source physical register with a // virtual register. Once the coalescing is done, it cannot be broken and // these are not spillable! If the destination interval uses are far away, // think twice about coalescing them! if (!mopd->isDead() && (SrcIsPhys || DstIsPhys) && !isExtSubReg) { LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg; unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg; const TargetRegisterClass *RC = mf_->getRegInfo().getRegClass(JoinVReg); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; if (TheCopy.isBackEdge) Threshold *= 2; // Favors back edge copies. // If the virtual register live interval is long but it has low use desity, // do not join them, instead mark the physical register as its allocation // preference. unsigned Length = JoinVInt.getSize() / InstrSlots::NUM; LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg); if (Length > Threshold && (((float)vi.NumUses / Length) < (1.0 / Threshold))) { JoinVInt.preference = JoinPReg; ++numAborts; DOUT << "\tMay tie down a physical register, abort!\n"; Again = true; // May be possible to coalesce later. return false; } } // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. bool Swapped = false; if (JoinIntervals(DstInt, SrcInt, Swapped)) { if (isDead) { // Result of the copy is dead. Propagate this property. if (SrcStart == 0) { assert(MRegisterInfo::isPhysicalRegister(repSrcReg) && "Live-in must be a physical register!"); // Live-in to the function but dead. Remove it from entry live-in set. // JoinIntervals may end up swapping the two intervals. mf_->begin()->removeLiveIn(repSrcReg); } else { MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); if (SrcMI) { MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); if (mops) mops->setIsDead(); } } } if (isShorten || isDead) { // Shorten the destination live interval. if (Swapped) SrcInt.removeRange(RemoveStart, RemoveEnd); } } else { // Coalescing failed. // If we can eliminate the copy without merging the live ranges, do so now. if (!isExtSubReg && AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI)) { JoinedCopies.insert(CopyMI); return true; } // Otherwise, we are unable to join the intervals. DOUT << "Interference!\n"; Again = true; // May be possible to coalesce later. return false; } LiveInterval *ResSrcInt = &SrcInt; LiveInterval *ResDstInt = &DstInt; if (Swapped) { std::swap(repSrcReg, repDstReg); std::swap(ResSrcInt, ResDstInt); } assert(MRegisterInfo::isVirtualRegister(repSrcReg) && "LiveInterval::join didn't work right!"); // If we're about to merge live ranges into a physical register live range, // we have to update any aliased register's live ranges to indicate that they // have clobbered values for this range. if (MRegisterInfo::isPhysicalRegister(repDstReg)) { // Unset unnecessary kills. if (!ResDstInt->containsOneValue()) { for (LiveInterval::Ranges::const_iterator I = ResSrcInt->begin(), E = ResSrcInt->end(); I != E; ++I) unsetRegisterKills(I->start, I->end, repDstReg); } // If this is a extract_subreg where dst is a physical register, e.g. // cl = EXTRACT_SUBREG reg1024, 1 // then create and update the actual physical register allocated to RHS. if (RealDstReg) { LiveInterval &RealDstInt = li_->getOrCreateInterval(RealDstReg); SmallSet CopiedValNos; for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(), E = ResSrcInt->ranges.end(); I != E; ++I) { LiveInterval::const_iterator DstLR = ResDstInt->FindLiveRangeContaining(I->start); assert(DstLR != ResDstInt->end() && "Invalid joined interval!"); const VNInfo *DstValNo = DstLR->valno; if (CopiedValNos.insert(DstValNo)) { VNInfo *ValNo = RealDstInt.getNextValue(DstValNo->def, DstValNo->reg, li_->getVNInfoAllocator()); ValNo->hasPHIKill = DstValNo->hasPHIKill; RealDstInt.addKills(ValNo, DstValNo->kills); RealDstInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo); } } repDstReg = RealDstReg; } // Update the liveintervals of sub-registers. for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS) li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt, li_->getVNInfoAllocator()); } else { // Merge use info if the destination is a virtual register. LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg); LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg); dVI.NumUses += sVI.NumUses; } // Remember these liveintervals have been joined. JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister); if (MRegisterInfo::isVirtualRegister(repDstReg)) JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister); if (isExtSubReg && !SrcIsPhys && !DstIsPhys) { if (!Swapped) { // Make sure we allocate the larger super-register. ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator()); std::swap(repSrcReg, repDstReg); std::swap(ResSrcInt, ResDstInt); } unsigned SubIdx = CopyMI->getOperand(2).getImm(); SubRegIdxes.push_back(std::make_pair(repSrcReg, SubIdx)); AddSubRegIdxPairs(repSrcReg, SubIdx); } if (NewHeuristic) { for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(), e = ResSrcInt->vni_end(); i != e; ++i) { const VNInfo *vni = *i; if (vni->def && vni->def != ~1U && vni->def != ~0U) { MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); unsigned SrcReg, DstReg; if (CopyMI && tii_->isMoveInstr(*CopyMI, SrcReg, DstReg) && JoinedCopies.count(CopyMI) == 0) { unsigned LoopDepth = loopInfo->getLoopDepth(CopyMI->getParent()); JoinQueue->push(CopyRec(CopyMI, SrcReg, DstReg, LoopDepth, isBackEdgeCopy(CopyMI, DstReg))); } } } } DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, mri_); DOUT << "\n"; // repSrcReg is guarateed to be the register whose live interval that is // being merged. li_->removeInterval(repSrcReg); r2rMap_[repSrcReg] = repDstReg; r2rRevMap_[repDstReg].push_back(repSrcReg); // Finally, delete the copy instruction. JoinedCopies.insert(CopyMI); ++numPeep; ++numJoins; return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(VNInfo *VNI, SmallVector &NewVNInfo, DenseMap &ThisFromOther, DenseMap &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments) { unsigned VN = VNI->id; // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. DenseMap::iterator I = ThisFromOther.find(VNI); if (I == ThisFromOther.end()) { NewVNInfo.push_back(VNI); return ThisValNoAssignments[VN] = NewVNInfo.size()-1; } VNInfo *OtherValNo = I->second; // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo->id] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments); return ThisValNoAssignments[VN] = UltimateVN; } static bool InVector(VNInfo *Val, const SmallVector &V) { return std::find(V.begin(), V.end(), Val) != V.end(); } /// SimpleJoin - Attempt to joint the specified interval into this one. The /// caller of this method must guarantee that the RHS only contains a single /// value number and that the RHS is not defined by a copy from this /// interval. This returns false if the intervals are not joinable, or it /// joins them and returns true. bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){ assert(RHS.containsOneValue()); // Some number (potentially more than one) value numbers in the current // interval may be defined as copies from the RHS. Scan the overlapping // portions of the LHS and RHS, keeping track of this and looking for // overlapping live ranges that are NOT defined as copies. If these exist, we // cannot coalesce. LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); if (LHSIt->start < RHSIt->start) { LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); if (LHSIt != LHS.begin()) --LHSIt; } else if (RHSIt->start < LHSIt->start) { RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); if (RHSIt != RHS.begin()) --RHSIt; } SmallVector EliminatedLHSVals; while (1) { // Determine if these live intervals overlap. bool Overlaps = false; if (LHSIt->start <= RHSIt->start) Overlaps = LHSIt->end > RHSIt->start; else Overlaps = RHSIt->end > LHSIt->start; // If the live intervals overlap, there are two interesting cases: if the // LHS interval is defined by a copy from the RHS, it's ok and we record // that the LHS value # is the same as the RHS. If it's not, then we cannot // coalesce these live ranges and we bail out. if (Overlaps) { // If we haven't already recorded that this value # is safe, check it. if (!InVector(LHSIt->valno, EliminatedLHSVals)) { // Copy from the RHS? unsigned SrcReg = LHSIt->valno->reg; if (rep(SrcReg) != RHS.reg) return false; // Nope, bail out. EliminatedLHSVals.push_back(LHSIt->valno); } // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; continue; } if (LHSIt->end < RHSIt->end) { if (++LHSIt == LHSEnd) break; } else { // One interesting case to check here. It's possible that we have // something like "X3 = Y" which defines a new value number in the LHS, // and is the last use of this liverange of the RHS. In this case, we // want to notice this copy (so that it gets coalesced away) even though // the live ranges don't actually overlap. if (LHSIt->start == RHSIt->end) { if (InVector(LHSIt->valno, EliminatedLHSVals)) { // We already know that this value number is going to be merged in // if coalescing succeeds. Just skip the liverange. if (++LHSIt == LHSEnd) break; } else { // Otherwise, if this is a copy from the RHS, mark it as being merged // in. if (rep(LHSIt->valno->reg) == RHS.reg) { EliminatedLHSVals.push_back(LHSIt->valno); // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; } } } if (++RHSIt == RHSEnd) break; } } // If we got here, we know that the coalescing will be successful and that // the value numbers in EliminatedLHSVals will all be merged together. Since // the most common case is that EliminatedLHSVals has a single number, we // optimize for it: if there is more than one value, we merge them all into // the lowest numbered one, then handle the interval as if we were merging // with one value number. VNInfo *LHSValNo; if (EliminatedLHSVals.size() > 1) { // Loop through all the equal value numbers merging them into the smallest // one. VNInfo *Smallest = EliminatedLHSVals[0]; for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { if (EliminatedLHSVals[i]->id < Smallest->id) { // Merge the current notion of the smallest into the smaller one. LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); Smallest = EliminatedLHSVals[i]; } else { // Merge into the smallest. LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); } } LHSValNo = Smallest; } else { assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); LHSValNo = EliminatedLHSVals[0]; } // Okay, now that there is a single LHS value number that we're merging the // RHS into, update the value number info for the LHS to indicate that the // value number is defined where the RHS value number was. const VNInfo *VNI = RHS.getValNumInfo(0); LHSValNo->def = VNI->def; LHSValNo->reg = VNI->reg; // Okay, the final step is to loop over the RHS live intervals, adding them to // the LHS. LHSValNo->hasPHIKill |= VNI->hasPHIKill; LHS.addKills(LHSValNo, VNI->kills); LHS.MergeRangesInAsValue(RHS, LHSValNo); LHS.weight += RHS.weight; if (RHS.preference && !LHS.preference) LHS.preference = RHS.preference; return true; } /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. Otherwise, if one of the intervals being joined is a /// physreg, this method always canonicalizes LHS to be it. The output /// "RHS" will not have been modified, so we can use this information /// below to update aliases. bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS, bool &Swapped) { // Compute the final value assignment, assuming that the live ranges can be // coalesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; DenseMap LHSValsDefinedFromRHS; DenseMap RHSValsDefinedFromLHS; SmallVector NewVNInfo; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (MRegisterInfo::isPhysicalRegister(LHS.reg) && *mri_->getSubRegisters(LHS.reg)) { for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); return false; } } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) && *mri_->getSubRegisters(RHS.reg)) { for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); return false; } } // Compute ultimate value numbers for the LHS and RHS values. if (RHS.containsOneValue()) { // Copies from a liveinterval with a single value are simple to handle and // very common, handle the special case here. This is important, because // often RHS is small and LHS is large (e.g. a physreg). // Find out if the RHS is defined as a copy from some value in the LHS. int RHSVal0DefinedFromLHS = -1; int RHSValID = -1; VNInfo *RHSValNoInfo = NULL; VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0); unsigned RHSSrcReg = RHSValNoInfo0->reg; if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) { // If RHS is not defined as a copy from the LHS, we can use simpler and // faster checks to see if the live ranges are coalescable. This joiner // can't swap the LHS/RHS intervals though. if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) { return SimpleJoin(LHS, RHS); } else { RHSValNoInfo = RHSValNoInfo0; } } else { // It was defined as a copy from the LHS, find out what value # it is. RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno; RHSValID = RHSValNoInfo->id; RHSVal0DefinedFromLHS = RHSValID; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.resize(LHS.getNumValNums(), NULL); // Okay, *all* of the values in LHS that are defined as a copy from RHS // should now get updated. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (unsigned LHSSrcReg = VNI->reg) { if (rep(LHSSrcReg) != RHS.reg) { // If this is not a copy from the RHS, its value number will be // unmodified by the coalescing. NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } else if (RHSValID == -1) { // Otherwise, it is a copy from the RHS, and we don't already have a // value# for it. Keep the current value number, but remember it. LHSValNoAssignments[VN] = RHSValID = VN; NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } else { // Otherwise, use the specified value #. LHSValNoAssignments[VN] = RHSValID; if (VN == (unsigned)RHSValID) { // Else this val# is dead. NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } } } else { NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } } assert(RHSValID != -1 && "Didn't find value #?"); RHSValNoAssignments[0] = RHSValID; if (RHSVal0DefinedFromLHS != -1) { // This path doesn't go through ComputeUltimateVN so just set // it to anything. RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1; } } else { // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned ValSrcReg = VNI->reg; if (VNI->def == ~1U ||ValSrcReg == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (rep(ValSrcReg) != RHS.reg) continue; // Figure out the value # from the RHS. LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned ValSrcReg = VNI->reg; if (VNI->def == ~1U || ValSrcReg == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (rep(ValSrcReg) != LHS.reg) continue; // Figure out the value # from the LHS. RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) continue; ComputeUltimateVN(VNI, NewVNInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments); } for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { NewVNInfo.push_back(VNI); RHSValNoAssignments[VN] = NewVNInfo.size()-1; continue; } ComputeUltimateVN(VNI, NewVNInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments); } } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coalescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } while (1) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coalesce them. If not, we can't. if (LHSValNoAssignments[I->valno->id] != RHSValNoAssignments[J->valno->id]) return false; } if (I->end < J->end) { ++I; if (I == IE) break; } else { ++J; if (J == JE) break; } } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = LHSValsDefinedFromRHS.begin(), E = LHSValsDefinedFromRHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned LHSValID = LHSValNoAssignments[VNI->id]; LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def); NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill; RHS.addKills(NewVNInfo[LHSValID], VNI->kills); } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = RHSValsDefinedFromLHS.begin(), E = RHSValsDefinedFromLHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned RHSValID = RHSValNoAssignments[VNI->id]; LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def); NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill; LHS.addKills(NewVNInfo[RHSValID], VNI->kills); } // If we get here, we know that we can coalesce the live ranges. Ask the // intervals to coalesce themselves now. if ((RHS.ranges.size() > LHS.ranges.size() && MRegisterInfo::isVirtualRegister(LHS.reg)) || MRegisterInfo::isPhysicalRegister(RHS.reg)) { RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo); Swapped = true; } else { LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo); Swapped = false; } return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { if (LHS.first > RHS.first) return true; // Deeper loops first return LHS.first == RHS.first && LHS.second->getNumber() < RHS.second->getNumber(); } }; } /// getRepIntervalSize - Returns the size of the interval that represents the /// specified register. template unsigned JoinPriorityQueue::getRepIntervalSize(unsigned Reg) { return Rc->getRepIntervalSize(Reg); } /// CopyRecSort::operator - Join priority queue sorting function. /// bool CopyRecSort::operator()(CopyRec left, CopyRec right) const { // Inner loops first. if (left.LoopDepth > right.LoopDepth) return false; else if (left.LoopDepth == right.LoopDepth) { if (left.isBackEdge && !right.isBackEdge) return false; else if (left.isBackEdge == right.isBackEdge) { // Join virtuals to physical registers first. bool LDstIsPhys = MRegisterInfo::isPhysicalRegister(left.DstReg); bool LSrcIsPhys = MRegisterInfo::isPhysicalRegister(left.SrcReg); bool LIsPhys = LDstIsPhys || LSrcIsPhys; bool RDstIsPhys = MRegisterInfo::isPhysicalRegister(right.DstReg); bool RSrcIsPhys = MRegisterInfo::isPhysicalRegister(right.SrcReg); bool RIsPhys = RDstIsPhys || RSrcIsPhys; if (LIsPhys && !RIsPhys) return false; else if (LIsPhys == RIsPhys) { // Join shorter intervals first. unsigned LSize = 0; unsigned RSize = 0; if (LIsPhys) { LSize = LDstIsPhys ? 0 : JPQ->getRepIntervalSize(left.DstReg); LSize += LSrcIsPhys ? 0 : JPQ->getRepIntervalSize(left.SrcReg); RSize = RDstIsPhys ? 0 : JPQ->getRepIntervalSize(right.DstReg); RSize += RSrcIsPhys ? 0 : JPQ->getRepIntervalSize(right.SrcReg); } else { LSize = std::min(JPQ->getRepIntervalSize(left.DstReg), JPQ->getRepIntervalSize(left.SrcReg)); RSize = std::min(JPQ->getRepIntervalSize(right.DstReg), JPQ->getRepIntervalSize(right.SrcReg)); } if (LSize < RSize) return false; } } } return true; } void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; std::vector VirtCopies; std::vector PhysCopies; unsigned LoopDepth = loopInfo->getLoopDepth(MBB); for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E;) { MachineInstr *Inst = MII++; // If this isn't a copy nor a extract_subreg, we can't join intervals. unsigned SrcReg, DstReg; if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(1).getReg(); } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; unsigned repSrcReg = rep(SrcReg); unsigned repDstReg = rep(DstReg); bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg); bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg); if (NewHeuristic) { JoinQueue->push(CopyRec(Inst, SrcReg, DstReg, LoopDepth, isBackEdgeCopy(Inst, DstReg))); } else { if (SrcIsPhys || DstIsPhys) PhysCopies.push_back(CopyRec(Inst, SrcReg, DstReg, 0, false)); else VirtCopies.push_back(CopyRec(Inst, SrcReg, DstReg, 0, false)); } } if (NewHeuristic) return; // Try coalescing physical register + virtual register first. for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) { CopyRec &TheCopy = PhysCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) { CopyRec &TheCopy = VirtCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } } void SimpleRegisterCoalescing::joinIntervals() { DOUT << "********** JOINING INTERVALS ***********\n"; if (NewHeuristic) JoinQueue = new JoinPriorityQueue(this); JoinedLIs.resize(li_->getNumIntervals()); JoinedLIs.reset(); std::vector TryAgainList; if (loopInfo->begin() == loopInfo->end()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) CopyCoalesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. // Join intervals in the function prolog first. We want to join physical // registers with virtual registers before the intervals got too long. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){ MachineBasicBlock *MBB = I; MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I)); } // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) CopyCoalesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. if (NewHeuristic) { SmallVector TryAgain; bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; while (!JoinQueue->empty()) { CopyRec R = JoinQueue->pop(); bool Again = false; bool Success = JoinCopy(R, Again); if (Success) ProgressMade = true; else if (Again) TryAgain.push_back(R); } if (ProgressMade) { while (!TryAgain.empty()) { JoinQueue->push(TryAgain.back()); TryAgain.pop_back(); } } } } else { bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { CopyRec &TheCopy = TryAgainList[i]; if (TheCopy.MI) { bool Again = false; bool Success = JoinCopy(TheCopy, Again); if (Success || !Again) { TheCopy.MI = 0; // Mark this one as done. ProgressMade = true; } } } } } // Some live range has been lengthened due to colaescing, eliminate the // unnecessary kills. int RegNum = JoinedLIs.find_first(); while (RegNum != -1) { unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister; unsigned repReg = rep(Reg); LiveInterval &LI = li_->getInterval(repReg); LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg); for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) { MachineInstr *Kill = svi.Kills[i]; // Suppose vr1 = op vr2, x // and vr1 and vr2 are coalesced. vr2 should still be marked kill // unless it is a two-address operand. if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg)) continue; if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM)) unsetRegisterKill(Kill, repReg); } RegNum = JoinedLIs.find_next(RegNum); } if (NewHeuristic) delete JoinQueue; DOUT << "*** Register mapping ***\n"; for (unsigned i = 0, e = r2rMap_.size(); i != e; ++i) if (r2rMap_[i]) { DOUT << " reg " << i << " -> "; DEBUG(printRegName(r2rMap_[i])); DOUT << "\n"; } } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (MRegisterInfo::isPhysicalRegister(RegA)) { assert(MRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mf_->getRegInfo().getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClass = mf_->getRegInfo().getRegClass(RegA); if (MRegisterInfo::isVirtualRegister(RegB)) return RegClass != mf_->getRegInfo().getRegClass(RegB); else return !RegClass->contains(RegB); } /// lastRegisterUse - Returns the last use of the specific register between /// cycles Start and End. It also returns the use operand by reference. It /// returns NULL if there are no uses. MachineInstr * SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg, MachineOperand *&MOU) { int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; int s = Start; while (e >= s) { // Skip deleted instructions MachineInstr *MI = li_->getInstructionFromIndex(e); while ((e - InstrSlots::NUM) >= s && !MI) { e -= InstrSlots::NUM; MI = li_->getInstructionFromIndex(e); } if (e < s || MI == NULL) return NULL; for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isUse() && MO.getReg() && mri_->regsOverlap(rep(MO.getReg()), Reg)) { MOU = &MO; return MI; } } e -= InstrSlots::NUM; } return NULL; } /// findDefOperand - Returns the MachineOperand that is a def of the specific /// register. It returns NULL if the def is not found. MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && mri_->regsOverlap(rep(MO.getReg()), Reg)) return &MO; } return NULL; } /// unsetRegisterKill - Unset IsKill property of all uses of specific register /// of the specific instruction. void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isKill() && MO.getReg() && mri_->regsOverlap(rep(MO.getReg()), Reg)) MO.setIsKill(false); } } /// unsetRegisterKills - Unset IsKill property of all uses of specific register /// between cycles Start and End. void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End, unsigned Reg) { int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; int s = Start; while (e >= s) { // Skip deleted instructions MachineInstr *MI = li_->getInstructionFromIndex(e); while ((e - InstrSlots::NUM) >= s && !MI) { e -= InstrSlots::NUM; MI = li_->getInstructionFromIndex(e); } if (e < s || MI == NULL) return; for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isKill() && MO.getReg() && mri_->regsOverlap(rep(MO.getReg()), Reg)) { MO.setIsKill(false); } } e -= InstrSlots::NUM; } } /// hasRegisterDef - True if the instruction defines the specific register. /// bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && mri_->regsOverlap(rep(MO.getReg()), Reg)) return true; } return false; } void SimpleRegisterCoalescing::printRegName(unsigned reg) const { if (MRegisterInfo::isPhysicalRegister(reg)) cerr << mri_->getName(reg); else cerr << "%reg" << reg; } void SimpleRegisterCoalescing::releaseMemory() { for (unsigned i = 0, e = r2rMap_.size(); i != e; ++i) r2rRevMap_[i].clear(); r2rRevMap_.clear(); r2rMap_.clear(); JoinedLIs.clear(); SubRegIdxes.clear(); JoinedCopies.clear(); } static bool isZeroLengthInterval(LiveInterval *li) { for (LiveInterval::Ranges::const_iterator i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) if (i->end - i->start > LiveIntervals::InstrSlots::NUM) return false; return true; } bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); li_ = &getAnalysis(); lv_ = &getAnalysis(); loopInfo = &getAnalysis(); DOUT << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'; allocatableRegs_ = mri_->getAllocatableSet(fn); for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(), E = mri_->regclass_end(); I != E; ++I) allocatableRCRegs_.insert(std::make_pair(*I, mri_->getAllocatableSet(fn, *I))); MachineRegisterInfo &RegInfo = mf_->getRegInfo(); r2rMap_.grow(RegInfo.getLastVirtReg()); r2rRevMap_.grow(RegInfo.getLastVirtReg()); // Join (coalesce) intervals if requested. IndexedMap RegSubIdxMap; if (EnableJoining) { joinIntervals(); DOUT << "********** INTERVALS POST JOINING **********\n"; for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){ I->second.print(DOUT, mri_); DOUT << "\n"; } // Delete all coalesced copies. for (SmallPtrSet::iterator I = JoinedCopies.begin(), E = JoinedCopies.end(); I != E; ++I) { li_->RemoveMachineInstrFromMaps(*I); (*I)->eraseFromParent(); } // Transfer sub-registers info to MachineRegisterInfo now that coalescing // information is complete. RegSubIdxMap.grow(RegInfo.getLastVirtReg()+1); while (!SubRegIdxes.empty()) { std::pair RI = SubRegIdxes.back(); SubRegIdxes.pop_back(); RegSubIdxMap[RI.first] = RI.second; } } // perform a final pass over the instructions and compute spill // weights, coalesce virtual registers and remove identity moves. for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; unsigned loopDepth = loopInfo->getLoopDepth(mbb); for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { // if the move will be an identity move delete it unsigned srcReg, dstReg, RegRep; if (tii_->isMoveInstr(*mii, srcReg, dstReg) && (RegRep = rep(srcReg)) == rep(dstReg)) { // remove from def list LiveInterval &RegInt = li_->getOrCreateInterval(RegRep); MachineOperand *MO = mii->findRegisterDefOperand(dstReg); // If def of this move instruction is dead, remove its live range from // the dstination register's live interval. if (MO->isDead()) { unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii)); LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx); RegInt.removeRange(MLR->start, MoveIdx+1); if (RegInt.empty()) li_->removeInterval(RegRep); } li_->RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); ++numPeep; } else { SmallSet UniqueUses; for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { const MachineOperand &mop = mii->getOperand(i); if (mop.isRegister() && mop.getReg() && MRegisterInfo::isVirtualRegister(mop.getReg())) { // replace register with representative register unsigned OrigReg = mop.getReg(); unsigned reg = rep(OrigReg); unsigned SubIdx = RegSubIdxMap[OrigReg]; if (SubIdx && MRegisterInfo::isPhysicalRegister(reg)) mii->getOperand(i).setReg(mri_->getSubReg(reg, SubIdx)); else { mii->getOperand(i).setReg(reg); mii->getOperand(i).setSubReg(SubIdx); } // Multiple uses of reg by the same instruction. It should not // contribute to spill weight again. if (UniqueUses.count(reg) != 0) continue; LiveInterval &RegInt = li_->getInterval(reg); RegInt.weight += li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth); UniqueUses.insert(reg); } } ++mii; } } } for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { LiveInterval &LI = I->second; if (MRegisterInfo::isVirtualRegister(LI.reg)) { // If the live interval length is essentially zero, i.e. in every live // range the use follows def immediately, it doesn't make sense to spill // it and hope it will be easier to allocate for this li. if (isZeroLengthInterval(&LI)) LI.weight = HUGE_VALF; else { bool isLoad = false; if (ReMatSpillWeight && li_->isReMaterializable(LI, isLoad)) { // If all of the definitions of the interval are re-materializable, // it is a preferred candidate for spilling. If non of the defs are // loads, then it's potentially very cheap to re-materialize. // FIXME: this gets much more complicated once we support non-trivial // re-materialization. if (isLoad) LI.weight *= 0.9F; else LI.weight *= 0.5F; } } // Slightly prefer live interval that has been assigned a preferred reg. if (LI.preference) LI.weight *= 1.01F; // Divide the weight of the interval by its size. This encourages // spilling of intervals that are large and have few uses, and // discourages spilling of small intervals with many uses. LI.weight /= LI.getSize(); } } DEBUG(dump()); return true; } /// print - Implement the dump method. void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const { li_->print(O, m); } RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { return new SimpleRegisterCoalescing(); } // Make sure that anything that uses RegisterCoalescer pulls in this file... DEFINING_FILE_FOR(SimpleRegisterCoalescing)