//===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=// // // This file implements the 'raising' part of the LevelChange API. This is // useful because, in general, it makes the LLVM code terser and easier to // analyze. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/LevelChange.h" #include "TransformInternals.h" #include "llvm/Method.h" #include "llvm/iOther.h" #include "llvm/iMemory.h" #include "llvm/ConstantVals.h" #include "llvm/Optimizations/ConstantHandling.h" #include "llvm/Optimizations/DCE.h" #include "llvm/Optimizations/ConstantProp.h" #include "llvm/Analysis/Expressions.h" #include "Support/STLExtras.h" #include #include "llvm/Assembly/Writer.h" //#define DEBUG_PEEPHOLE_INSTS 1 #ifdef DEBUG_PEEPHOLE_INSTS #define PRINT_PEEPHOLE(ID, NUM, I) \ cerr << "Inst P/H " << ID << "[" << NUM << "] " << I; #else #define PRINT_PEEPHOLE(ID, NUM, I) #endif #define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0) #define PRINT_PEEPHOLE2(ID, I1, I2) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0) #define PRINT_PEEPHOLE3(ID, I1, I2, I3) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); } while (0) #define PRINT_PEEPHOLE4(ID, I1, I2, I3, I4) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); PRINT_PEEPHOLE(ID, 3, I4); } while (0) // isReinterpretingCast - Return true if the cast instruction specified will // cause the operand to be "reinterpreted". A value is reinterpreted if the // cast instruction would cause the underlying bits to change. // static inline bool isReinterpretingCast(const CastInst *CI) { return!CI->getOperand(0)->getType()->isLosslesslyConvertableTo(CI->getType()); } // Peephole optimize the following instructions: // %t1 = cast ? to x * // %t2 = add x * %SP, %t1 ;; Constant must be 2nd operand // // Into: %t3 = getelementptr {<...>} * %SP, // %t2 = cast * %t3 to {<...>}* // static bool HandleCastToPointer(BasicBlock::iterator BI, const PointerType *DestPTy) { CastInst *CI = cast(*BI); // Scan all of the uses, looking for any uses that are not add // instructions. If we have non-adds, do not make this transformation. // for (Value::use_iterator I = CI->use_begin(), E = CI->use_end(); I != E; ++I) { if (BinaryOperator *BO = dyn_cast(*I)) { if (BO->getOpcode() != Instruction::Add) return false; } else { return false; } } vector Indices; Value *Src = CI->getOperand(0); const Type *Result = ConvertableToGEP(DestPTy, Src, Indices, &BI); const PointerType *UsedType = DestPTy; // If we fail, check to see if we have an pointer source type that, if // converted to an unsized array type, would work. In this case, we propogate // the cast forward to the input of the add instruction. // if (Result == 0 && getPointedToComposite(DestPTy) == 0) { // Make an unsized array and try again... UsedType = PointerType::get(ArrayType::get(DestPTy->getElementType())); Result = ConvertableToGEP(UsedType, Src, Indices, &BI); } if (Result == 0) return false; // Not convertable... PRINT_PEEPHOLE2("cast-add-to-gep:in", Src, CI); // If we have a getelementptr capability... transform all of the // add instruction uses into getelementptr's. for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ++UI) { Instruction *I = cast(*UI); assert(I->getOpcode() == Instruction::Add && I->getNumOperands() == 2 && "Use is not a valid add instruction!"); // Get the value added to the cast result pointer... Value *OtherPtr = I->getOperand((I->getOperand(0) == CI) ? 1 : 0); BasicBlock *BB = I->getParent(); BasicBlock::iterator AddIt = find(BB->getInstList().begin(), BB->getInstList().end(), I); if (UsedType != DestPTy) { // Insert a cast of the incoming value to something addressable... CastInst *C = new CastInst(OtherPtr, UsedType, OtherPtr->getName()); AddIt = BB->getInstList().insert(AddIt, C)+1; OtherPtr = C; } GetElementPtrInst *GEP = new GetElementPtrInst(OtherPtr, Indices); PRINT_PEEPHOLE1("cast-add-to-gep:i", I); // Replace the old add instruction with the shiny new GEP inst ReplaceInstWithInst(BB->getInstList(), AddIt, GEP); PRINT_PEEPHOLE1("cast-add-to-gep:o", GEP); } return true; } // Peephole optimize the following instructions: // %t1 = cast ulong to {<...>} * // %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand // // or // %t1 = cast {<...>}* %SP to int* // %t5 = cast ulong to int* // %t2 = add int* %t1, %t5 ;; int is same size as field // // Into: %t3 = getelementptr {<...>} * %SP, // %t2 = cast * %t3 to {<...>}* // static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, Value *AddOp1, CastInst *AddOp2) { const CompositeType *CompTy; Value *OffsetVal = AddOp2->getOperand(0); Value *SrcPtr; // Of type pointer to struct... if ((CompTy = getPointedToComposite(AddOp1->getType()))) { SrcPtr = AddOp1; // Handle the first case... } else if (CastInst *AddOp1c = dyn_cast(AddOp1)) { SrcPtr = AddOp1c->getOperand(0); // Handle the second case... CompTy = getPointedToComposite(SrcPtr->getType()); } // Only proceed if we have detected all of our conditions successfully... if (!CompTy || !SrcPtr || !OffsetVal->getType()->isIntegral()) return false; vector Indices; if (!ConvertableToGEP(SrcPtr->getType(), OffsetVal, Indices, &BI)) return false; // Not convertable... perhaps next time if (getPointedToComposite(AddOp1->getType())) { // case 1 PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, *BI); } else { PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, *BI); } GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Indices, AddOp2->getName()); BI = BB->getInstList().insert(BI, GEP)+1; Instruction *NCI = new CastInst(GEP, AddOp1->getType()); ReplaceInstWithInst(BB->getInstList(), BI, NCI); PRINT_PEEPHOLE2("add-to-gep:out", GEP, NCI); return true; } static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { Instruction *I = *BI; if (CastInst *CI = dyn_cast(I)) { Value *Src = CI->getOperand(0); Instruction *SrcI = dyn_cast(Src); // Nonnull if instr source const Type *DestTy = CI->getType(); // Peephole optimize the following instruction: // %V2 = cast %V to // // Into: // if (DestTy == Src->getType()) { // Check for a cast to same type as src!! PRINT_PEEPHOLE1("cast-of-self-ty", CI); CI->replaceAllUsesWith(Src); if (!Src->hasName() && CI->hasName()) { string Name = CI->getName(); CI->setName(""); Src->setName(Name, BB->getParent()->getSymbolTable()); } return true; } // Peephole optimize the following instructions: // %tmp = cast %V to // %V = cast %tmp to ; Where ty & ty2 are same size // // Into: cast %V to // if (SrcI) if (CastInst *CSrc = dyn_cast(SrcI)) if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) { // We can only do c-c elimination if, at most, one cast does a // reinterpretation of the input data. // // If legal, make this cast refer the the original casts argument! // PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc); CI->setOperand(0, CSrc->getOperand(0)); PRINT_PEEPHOLE1("cast-cast:out", CI); return true; } // Check to see if it's a cast of an instruction that does not depend on the // specific type of the operands to do it's job. if (!isReinterpretingCast(CI)) { // Check to see if we can convert the source of the cast to match the // destination type of the cast... // ValueTypeCache ConvertedTypes; if (ValueConvertableToType(CI, Src->getType(), ConvertedTypes)) { PRINT_PEEPHOLE2("CAST-DEST-EXPR-CONV:in ", Src, CI); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING EXPR TYPE:\n"; #endif ValueMapCache ValueMap; ConvertValueToNewType(CI, Src, ValueMap); // This will delete CI! BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("CAST-DEST-EXPR-CONV:out", Src); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DONE CONVERTING EXPR TYPE: \n\n";// << BB->getParent(); #endif return true; } // Check to see if we can convert the users of the cast value to match the // source type of the cast... // ConvertedTypes.clear(); if (ExpressionConvertableToType(Src, DestTy, ConvertedTypes)) { PRINT_PEEPHOLE2("CAST-SRC-EXPR-CONV:in ", Src, CI); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING SRC EXPR TYPE:\n"; #endif ValueMapCache ValueMap; Value *E = ConvertExpressionToType(Src, DestTy, ValueMap); if (Constant *CPV = dyn_cast(E)) CI->replaceAllUsesWith(CPV); BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("CAST-SRC-EXPR-CONV:out", E); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DONE CONVERTING SRC EXPR TYPE: \n\n";// << BB->getParent(); #endif return true; } } // Otherwise find out it this cast is a cast to a pointer type, which is // then added to some other pointer, then loaded or stored through. If // so, convert the add into a getelementptr instruction... // if (const PointerType *DestPTy = dyn_cast(DestTy)) { if (HandleCastToPointer(BI, DestPTy)) { BI = BB->begin(); // Rescan basic block. BI might be invalidated. return true; } } // Check to see if we are casting from a structure pointer to a pointer to // the first element of the structure... to avoid munching other peepholes, // we only let this happen if there are no add uses of the cast. // // Peephole optimize the following instructions: // %t1 = cast {<...>} * %StructPtr to * // // Into: %t2 = getelementptr {<...>} * %StructPtr, <0, 0, 0, ...> // %t1 = cast * %t1 to * // #if 1 if (const CompositeType *CTy = getPointedToComposite(Src->getType())) if (const PointerType *DestPTy = dyn_cast(DestTy)) { // Loop over uses of the cast, checking for add instructions. If an add // exists, this is probably a part of a more complex GEP, so we don't // want to mess around with the cast. // bool HasAddUse = false; for (Value::use_iterator I = CI->use_begin(), E = CI->use_end(); I != E; ++I) if (isa(*I) && cast(*I)->getOpcode() == Instruction::Add) { HasAddUse = true; break; } // If it doesn't have an add use, check to see if the dest type is // losslessly convertable to one of the types in the start of the struct // type. // if (!HasAddUse) { const Type *DestPointedTy = DestPTy->getElementType(); unsigned Depth = 1; const CompositeType *CurCTy = CTy; const Type *ElTy = 0; // Build the index vector, full of all zeros vector Indices; while (CurCTy) { if (const StructType *CurSTy = dyn_cast(CurCTy)) { // Check for a zero element struct type... if we have one, bail. if (CurSTy->getElementTypes().size() == 0) break; // Grab the first element of the struct type, which must lie at // offset zero in the struct. // ElTy = CurSTy->getElementTypes()[0]; } else { ElTy = cast(CurCTy)->getElementType(); } // Insert a zero to index through this type... Indices.push_back(ConstantUInt::get(CurCTy->getIndexType(), 0)); // Did we find what we're looking for? if (ElTy->isLosslesslyConvertableTo(DestPointedTy)) break; // Nope, go a level deeper. ++Depth; CurCTy = dyn_cast(ElTy); ElTy = 0; } // Did we find what we were looking for? If so, do the transformation if (ElTy) { PRINT_PEEPHOLE1("cast-for-first:in", CI); // Insert the new T cast instruction... stealing old T's name GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices, CI->getName()); CI->setName(""); BI = BB->getInstList().insert(BI, GEP)+1; // Make the old cast instruction reference the new GEP instead of // the old src value. // CI->setOperand(0, GEP); PRINT_PEEPHOLE2("cast-for-first:out", GEP, CI); return true; } } } #endif #if 1 } else if (StoreInst *SI = dyn_cast(I)) { Value *Val = SI->getOperand(0); Value *Pointer = SI->getPointerOperand(); // Peephole optimize the following instructions: // %t1 = getelementptr {<...>} * %StructPtr, // store %v, * %t1 // // Into: store %v, {<...>} * %StructPtr, // if (GetElementPtrInst *GEP = dyn_cast(Pointer)) { // Append any indices that the store instruction has onto the end of the // ones that the GEP is carrying... // vector Indices(GEP->copyIndices()); Indices.insert(Indices.end(), SI->idx_begin(), SI->idx_end()); PRINT_PEEPHOLE2("gep-store:in", GEP, SI); ReplaceInstWithInst(BB->getInstList(), BI, SI = new StoreInst(Val, GEP->getPointerOperand(), Indices)); PRINT_PEEPHOLE1("gep-store:out", SI); return true; } // Peephole optimize the following instructions: // %t = cast * %P to * ;; If T1 is losslessly convertable to T2 // store %V, * %t // // Into: // %t = cast %V to // store %t2, * %P // if (CastInst *CI = dyn_cast(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType if (PointerType *CSPT = dyn_cast(CastSrc->getType())) // convertable types? if (Val->getType()->isLosslesslyConvertableTo(CSPT->getElementType()) && !SI->hasIndices()) { // No subscripts yet! PRINT_PEEPHOLE3("st-src-cast:in ", Pointer, Val, SI); // Insert the new T cast instruction... stealing old T's name CastInst *NCI = new CastInst(Val, CSPT->getElementType(), CI->getName()); CI->setName(""); BI = BB->getInstList().insert(BI, NCI)+1; // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, SI = new StoreInst(NCI, CastSrc)); PRINT_PEEPHOLE3("st-src-cast:out", NCI, CastSrc, SI); return true; } } else if (LoadInst *LI = dyn_cast(I)) { #if 0 Value *Pointer = LI->getPointerOperand(); // Peephole optimize the following instructions: // %t1 = getelementptr {<...>} * %StructPtr, // %V = load * %t1 // // Into: load {<...>} * %StructPtr, // if (GetElementPtrInst *GEP = dyn_cast(Pointer)) { // Append any indices that the load instruction has onto the end of the // ones that the GEP is carrying... // vector Indices(GEP->copyIndices()); Indices.insert(Indices.end(), LI->idx_begin(), LI->idx_end()); PRINT_PEEPHOLE2("gep-load:in", GEP, LI); ReplaceInstWithInst(BB->getInstList(), BI, LI = new LoadInst(GEP->getPointerOperand(), Indices)); PRINT_PEEPHOLE1("gep-load:out", LI); return true; } #endif } else if (I->getOpcode() == Instruction::Add && isa(I->getOperand(1))) { if (PeepholeOptimizeAddCast(BB, BI, I->getOperand(0), cast(I->getOperand(1)))) return true; #endif } return false; } static bool DoRaisePass(Method *M) { bool Changed = false; for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) { BasicBlock *BB = *MI; BasicBlock::InstListType &BIL = BB->getInstList(); for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { if (opt::DeadCodeElimination::dceInstruction(BIL, BI) || opt::ConstantPropogation::doConstantPropogation(BB, BI)) { Changed = true; #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DeadCode Elinated!\n"; #endif } else if (PeepholeOptimize(BB, BI)) Changed = true; else ++BI; } } return Changed; } // DoInsertArrayCast - If the argument value has a pointer type, and if the // argument value is used as an array, insert a cast before the specified // basic block iterator that casts the value to an array pointer. Return the // new cast instruction (in the CastResult var), or null if no cast is inserted. // static bool DoInsertArrayCast(Value *V, BasicBlock *BB, BasicBlock::iterator InsertBefore) { const PointerType *ThePtrType = dyn_cast(V->getType()); if (!ThePtrType) return false; const Type *ElTy = ThePtrType->getElementType(); if (isa(ElTy) || (isa(ElTy) && cast(ElTy)->isUnsized())) return false; unsigned ElementSize = TD.getTypeSize(ElTy); bool InsertCast = false; for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { Instruction *Inst = cast(*I); switch (Inst->getOpcode()) { case Instruction::Cast: // There is already a cast instruction! if (const PointerType *PT = dyn_cast(Inst->getType())) if (const ArrayType *AT = dyn_cast(PT->getElementType())) if (AT->getElementType() == ThePtrType->getElementType()) { // Cast already exists! Don't mess around with it. return false; // No changes made to program though... } break; case Instruction::Add: { // Analyze pointer arithmetic... Value *OtherOp = Inst->getOperand(Inst->getOperand(0) == V); analysis::ExprType Expr = analysis::ClassifyExpression(OtherOp); // This looks like array addressing iff: // A. The constant of the index is larger than the size of the element // type. // B. The scale factor is >= the size of the type. // if (Expr.Offset && getConstantValue(Expr.Offset) >= (int)ElementSize) // A InsertCast = true; if (Expr.Scale && getConstantValue(Expr.Scale) >= (int)ElementSize) // B InsertCast = true; break; } default: break; // Not an interesting use... } } if (!InsertCast) return false; // There is no reason to insert a cast! // Calculate the destination pointer type const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); // Check to make sure that all uses of the value can be converted over to use // the newly typed value. // ValueTypeCache ConvertedTypes; if (!ValueConvertableToType(V, DestTy, ConvertedTypes)) { cerr << "FAILED to convert types of values for " << V << " to " << DestTy << "\n"; ConvertedTypes.clear(); ValueConvertableToType(V, DestTy, ConvertedTypes); return false; } ConvertedTypes.clear(); // Insert a cast! CastInst *TheCast = new CastInst(Constant::getNullConstant(V->getType()), DestTy, V->getName()); BB->getInstList().insert(InsertBefore, TheCast); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "Inserting cast for " << V << endl; #endif // Convert users of the old value over to use the cast result... ValueMapCache VMC; ConvertValueToNewType(V, TheCast, VMC); // The cast is the only thing that is allowed to reference the value... TheCast->setOperand(0, V); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "Inserted ptr-array cast: " << TheCast; #endif return true; // Made a change! } // DoInsertArrayCasts - Loop over all "incoming" values in the specified method, // inserting a cast for pointer values that are used as arrays. For our // purposes, an incoming value is considered to be either a value that is // either a method parameter, or a pointer returned from a function call. // static bool DoInsertArrayCasts(Method *M) { assert(!M->isExternal() && "Can't handle external methods!"); // Insert casts for all arguments to the function... bool Changed = false; BasicBlock *CurBB = M->front(); for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), AE = M->getArgumentList().end(); AI != AE; ++AI) { Changed |= DoInsertArrayCast(*AI, CurBB, CurBB->begin()); } // TODO: insert casts for alloca, malloc, and function call results. Also, // look for pointers that already have casts, to add to the map. #ifdef DEBUG_PEEPHOLE_INSTS if (Changed) cerr << "Inserted casts:\n" << M; #endif return Changed; } // RaisePointerReferences::doit - Raise a method representation to a higher // level. // bool RaisePointerReferences::doit(Method *M) { if (M->isExternal()) return false; #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\n\n\nStarting to work on Method '" << M->getName() << "'\n"; #endif // Insert casts for all incoming pointer pointer values that are treated as // arrays... // bool Changed = false, LocalChange; do { #ifdef DEBUG_PEEPHOLE_INSTS cerr << "Looping: \n" << M; #endif LocalChange = DoInsertArrayCasts(M); // Iterate over the method, refining it, until it converges on a stable // state while (DoRaisePass(M)) LocalChange = true; Changed |= LocalChange; } while (LocalChange); return Changed; }