//===-- ARM64AsmParser.cpp - Parse ARM64 assembly to MCInst instructions --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/ARM64AddressingModes.h" #include "MCTargetDesc/ARM64MCExpr.h" #include "Utils/ARM64BaseInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include using namespace llvm; namespace { class ARM64Operand; class ARM64AsmParser : public MCTargetAsmParser { public: typedef SmallVectorImpl OperandVector; private: StringRef Mnemonic; ///< Instruction mnemonic. MCSubtargetInfo &STI; MCAsmParser &Parser; MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } SMLoc getLoc() const { return Parser.getTok().getLoc(); } bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands); unsigned parseCondCodeString(StringRef Cond); bool parseCondCode(OperandVector &Operands, bool invertCondCode); int tryParseRegister(); int tryMatchVectorRegister(StringRef &Kind, bool expected); bool parseOptionalShift(OperandVector &Operands); bool parseOptionalExtend(OperandVector &Operands); bool parseRegister(OperandVector &Operands); bool parseMemory(OperandVector &Operands); bool parseSymbolicImmVal(const MCExpr *&ImmVal); bool parseVectorList(OperandVector &Operands); bool parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode); void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool showMatchError(SMLoc Loc, unsigned ErrCode); bool parseDirectiveWord(unsigned Size, SMLoc L); bool parseDirectiveTLSDescCall(SMLoc L); bool parseDirectiveLOH(StringRef LOH, SMLoc L); bool validateInstruction(MCInst &Inst, SmallVectorImpl &Loc); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) override; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARM64GenAsmMatcher.inc" /// } OperandMatchResultTy tryParseNoIndexMemory(OperandVector &Operands); OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands); OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands); OperandMatchResultTy tryParseSysReg(OperandVector &Operands); OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands); OperandMatchResultTy tryParsePrefetch(OperandVector &Operands); OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands); OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands); OperandMatchResultTy tryParseFPImm(OperandVector &Operands); bool tryParseVectorRegister(OperandVector &Operands); public: enum ARM64MatchResultTy { Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "ARM64GenAsmMatcher.inc" }; ARM64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(), STI(_STI), Parser(_Parser) { MCAsmParserExtension::Initialize(_Parser); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind) override; static bool classifySymbolRef(const MCExpr *Expr, ARM64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend); }; } // end anonymous namespace namespace { /// ARM64Operand - Instances of this class represent a parsed ARM64 machine /// instruction. class ARM64Operand : public MCParsedAsmOperand { public: enum MemIdxKindTy { ImmediateOffset, // pre-indexed, no writeback RegisterOffset // register offset, with optional extend }; private: enum KindTy { k_Immediate, k_Memory, k_Register, k_VectorList, k_VectorIndex, k_Token, k_SysReg, k_SysCR, k_Prefetch, k_Shifter, k_Extend, k_FPImm, k_Barrier } Kind; SMLoc StartLoc, EndLoc, OffsetLoc; struct TokOp { const char *Data; unsigned Length; bool IsSuffix; // Is the operand actually a suffix on the mnemonic. }; struct RegOp { unsigned RegNum; bool isVector; }; struct VectorListOp { unsigned RegNum; unsigned Count; unsigned NumElements; unsigned ElementKind; }; struct VectorIndexOp { unsigned Val; }; struct ImmOp { const MCExpr *Val; }; struct FPImmOp { unsigned Val; // Encoded 8-bit representation. }; struct BarrierOp { unsigned Val; // Not the enum since not all values have names. }; struct SysRegOp { const char *Data; unsigned Length; uint64_t FeatureBits; // We need to pass through information about which // core we are compiling for so that the SysReg // Mappers can appropriately conditionalize. }; struct SysCRImmOp { unsigned Val; }; struct PrefetchOp { unsigned Val; }; struct ShifterOp { unsigned Val; }; struct ExtendOp { unsigned Val; }; // This is for all forms of ARM64 address expressions struct MemOp { unsigned BaseRegNum, OffsetRegNum; ARM64_AM::ExtendType ExtType; unsigned ShiftVal; bool ExplicitShift; const MCExpr *OffsetImm; MemIdxKindTy Mode; }; union { struct TokOp Tok; struct RegOp Reg; struct VectorListOp VectorList; struct VectorIndexOp VectorIndex; struct ImmOp Imm; struct FPImmOp FPImm; struct BarrierOp Barrier; struct SysRegOp SysReg; struct SysCRImmOp SysCRImm; struct PrefetchOp Prefetch; struct ShifterOp Shifter; struct ExtendOp Extend; struct MemOp Mem; }; // Keep the MCContext around as the MCExprs may need manipulated during // the add<>Operands() calls. MCContext &Ctx; ARM64Operand(KindTy K, MCContext &_Ctx) : MCParsedAsmOperand(), Kind(K), Ctx(_Ctx) {} public: ARM64Operand(const ARM64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case k_Token: Tok = o.Tok; break; case k_Immediate: Imm = o.Imm; break; case k_FPImm: FPImm = o.FPImm; break; case k_Barrier: Barrier = o.Barrier; break; case k_Register: Reg = o.Reg; break; case k_VectorList: VectorList = o.VectorList; break; case k_VectorIndex: VectorIndex = o.VectorIndex; break; case k_SysReg: SysReg = o.SysReg; break; case k_SysCR: SysCRImm = o.SysCRImm; break; case k_Prefetch: Prefetch = o.Prefetch; break; case k_Memory: Mem = o.Mem; break; case k_Shifter: Shifter = o.Shifter; break; case k_Extend: Extend = o.Extend; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } /// getOffsetLoc - Get the location of the offset of this memory operand. SMLoc getOffsetLoc() const { return OffsetLoc; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } bool isTokenSuffix() const { assert(Kind == k_Token && "Invalid access!"); return Tok.IsSuffix; } const MCExpr *getImm() const { assert(Kind == k_Immediate && "Invalid access!"); return Imm.Val; } unsigned getFPImm() const { assert(Kind == k_FPImm && "Invalid access!"); return FPImm.Val; } unsigned getBarrier() const { assert(Kind == k_Barrier && "Invalid access!"); return Barrier.Val; } unsigned getReg() const override { assert(Kind == k_Register && "Invalid access!"); return Reg.RegNum; } unsigned getVectorListStart() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.RegNum; } unsigned getVectorListCount() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.Count; } unsigned getVectorIndex() const { assert(Kind == k_VectorIndex && "Invalid access!"); return VectorIndex.Val; } StringRef getSysReg() const { assert(Kind == k_SysReg && "Invalid access!"); return StringRef(SysReg.Data, SysReg.Length); } uint64_t getSysRegFeatureBits() const { assert(Kind == k_SysReg && "Invalid access!"); return SysReg.FeatureBits; } unsigned getSysCR() const { assert(Kind == k_SysCR && "Invalid access!"); return SysCRImm.Val; } unsigned getPrefetch() const { assert(Kind == k_Prefetch && "Invalid access!"); return Prefetch.Val; } unsigned getShifter() const { assert(Kind == k_Shifter && "Invalid access!"); return Shifter.Val; } unsigned getExtend() const { assert(Kind == k_Extend && "Invalid access!"); return Extend.Val; } bool isImm() const override { return Kind == k_Immediate; } bool isSImm9() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -256 && Val < 256); } bool isSImm7s4() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -256 && Val <= 252 && (Val & 3) == 0); } bool isSImm7s8() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -512 && Val <= 504 && (Val & 7) == 0); } bool isSImm7s16() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -1024 && Val <= 1008 && (Val & 15) == 0); } bool isImm0_7() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 8); } bool isImm1_8() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val > 0 && Val < 9); } bool isImm0_15() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 16); } bool isImm1_16() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val > 0 && Val < 17); } bool isImm0_31() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 32); } bool isImm1_31() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 32); } bool isImm1_32() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 33); } bool isImm0_63() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 64); } bool isImm1_63() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 64); } bool isImm1_64() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 65); } bool isImm0_127() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 128); } bool isImm0_255() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 256); } bool isImm0_65535() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 65536); } bool isLogicalImm32() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; return ARM64_AM::isLogicalImmediate(MCE->getValue(), 32); } bool isLogicalImm64() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; return ARM64_AM::isLogicalImmediate(MCE->getValue(), 64); } bool isSIMDImmType10() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; return ARM64_AM::isAdvSIMDModImmType10(MCE->getValue()); } bool isBranchTarget26() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x2000000 << 2) && Val <= (0x1ffffff << 2)); } bool isPCRelLabel19() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x40000 << 2) && Val <= (0x3ffff << 2)); } bool isBranchTarget14() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x2000 << 2) && Val <= (0x1fff << 2)); } bool isMovWSymbol(ArrayRef AllowedModifiers) const { if (!isImm()) return false; ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!ARM64AsmParser::classifySymbolRef(getImm(), ELFRefKind, DarwinRefKind, Addend)) { return false; } if (DarwinRefKind != MCSymbolRefExpr::VK_None) return false; for (unsigned i = 0; i != AllowedModifiers.size(); ++i) { if (ELFRefKind == AllowedModifiers[i]) return Addend == 0; } return false; } bool isMovZSymbolG3() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G3 }; return isMovWSymbol(Variants); } bool isMovZSymbolG2() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G2, ARM64MCExpr::VK_ABS_G2_S, ARM64MCExpr::VK_TPREL_G2, ARM64MCExpr::VK_DTPREL_G2 }; return isMovWSymbol(Variants); } bool isMovZSymbolG1() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G1, ARM64MCExpr::VK_ABS_G1_S, ARM64MCExpr::VK_GOTTPREL_G1, ARM64MCExpr::VK_TPREL_G1, ARM64MCExpr::VK_DTPREL_G1, }; return isMovWSymbol(Variants); } bool isMovZSymbolG0() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G0, ARM64MCExpr::VK_ABS_G0_S, ARM64MCExpr::VK_TPREL_G0, ARM64MCExpr::VK_DTPREL_G0 }; return isMovWSymbol(Variants); } bool isMovKSymbolG3() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G3 }; return isMovWSymbol(Variants); } bool isMovKSymbolG2() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G2_NC }; return isMovWSymbol(Variants); } bool isMovKSymbolG1() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G1_NC, ARM64MCExpr::VK_TPREL_G1_NC, ARM64MCExpr::VK_DTPREL_G1_NC }; return isMovWSymbol(Variants); } bool isMovKSymbolG0() const { static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G0_NC, ARM64MCExpr::VK_GOTTPREL_G0_NC, ARM64MCExpr::VK_TPREL_G0_NC, ARM64MCExpr::VK_DTPREL_G0_NC }; return isMovWSymbol(Variants); } bool isFPImm() const { return Kind == k_FPImm; } bool isBarrier() const { return Kind == k_Barrier; } bool isSysReg() const { return Kind == k_SysReg; } bool isMRSSystemRegister() const { if (!isSysReg()) return false; bool IsKnownRegister; auto Mapper = ARM64SysReg::MRSMapper(getSysRegFeatureBits()); Mapper.fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isMSRSystemRegister() const { if (!isSysReg()) return false; bool IsKnownRegister; auto Mapper = ARM64SysReg::MSRMapper(getSysRegFeatureBits()); Mapper.fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isSystemPStateField() const { if (!isSysReg()) return false; bool IsKnownRegister; ARM64PState::PStateMapper().fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isReg() const override { return Kind == k_Register && !Reg.isVector; } bool isVectorReg() const { return Kind == k_Register && Reg.isVector; } bool isVectorRegLo() const { return Kind == k_Register && Reg.isVector && ARM64MCRegisterClasses[ARM64::FPR128_loRegClassID].contains(Reg.RegNum); } /// Is this a vector list with the type implicit (presumably attached to the /// instruction itself)? template bool isImplicitlyTypedVectorList() const { return Kind == k_VectorList && VectorList.Count == NumRegs && !VectorList.ElementKind; } template bool isTypedVectorList() const { if (Kind != k_VectorList) return false; if (VectorList.Count != NumRegs) return false; if (VectorList.ElementKind != ElementKind) return false; return VectorList.NumElements == NumElements; } bool isVectorIndexB() const { return Kind == k_VectorIndex && VectorIndex.Val < 16; } bool isVectorIndexH() const { return Kind == k_VectorIndex && VectorIndex.Val < 8; } bool isVectorIndexS() const { return Kind == k_VectorIndex && VectorIndex.Val < 4; } bool isVectorIndexD() const { return Kind == k_VectorIndex && VectorIndex.Val < 2; } bool isToken() const override { return Kind == k_Token; } bool isTokenEqual(StringRef Str) const { return Kind == k_Token && getToken() == Str; } bool isMem() const override { return Kind == k_Memory; } bool isSysCR() const { return Kind == k_SysCR; } bool isPrefetch() const { return Kind == k_Prefetch; } bool isShifter() const { return Kind == k_Shifter; } bool isExtend() const { // lsl is an alias for UXTW but will be a parsed as a k_Shifter operand. if (isShifter()) { ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val); return ST == ARM64_AM::LSL; } return Kind == k_Extend; } bool isExtend64() const { if (Kind != k_Extend) return false; // UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class). ARM64_AM::ExtendType ET = ARM64_AM::getArithExtendType(Extend.Val); return ET != ARM64_AM::UXTX && ET != ARM64_AM::SXTX; } bool isExtendLSL64() const { // lsl is an alias for UXTX but will be a parsed as a k_Shifter operand. if (isShifter()) { ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val); return ST == ARM64_AM::LSL; } if (Kind != k_Extend) return false; ARM64_AM::ExtendType ET = ARM64_AM::getArithExtendType(Extend.Val); return ET == ARM64_AM::UXTX || ET == ARM64_AM::SXTX; } bool isArithmeticShifter() const { if (!isShifter()) return false; // An arithmetic shifter is LSL, LSR, or ASR. ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val); return ST == ARM64_AM::LSL || ST == ARM64_AM::LSR || ST == ARM64_AM::ASR; } bool isMovImm32Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0, 16, 32, or 48. ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val); if (ST != ARM64_AM::LSL) return false; uint64_t Val = ARM64_AM::getShiftValue(Shifter.Val); return (Val == 0 || Val == 16); } bool isMovImm64Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0 or 16. ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val); if (ST != ARM64_AM::LSL) return false; uint64_t Val = ARM64_AM::getShiftValue(Shifter.Val); return (Val == 0 || Val == 16 || Val == 32 || Val == 48); } bool isAddSubShifter() const { if (!isShifter()) return false; // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'. unsigned Val = Shifter.Val; return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL && (ARM64_AM::getShiftValue(Val) == 0 || ARM64_AM::getShiftValue(Val) == 12); } bool isLogicalVecShifter() const { if (!isShifter()) return false; // A logical vector shifter is a left shift by 0, 8, 16, or 24. unsigned Val = Shifter.Val; unsigned Shift = ARM64_AM::getShiftValue(Val); return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL && (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24); } bool isLogicalVecHalfWordShifter() const { if (!isLogicalVecShifter()) return false; // A logical vector shifter is a left shift by 0 or 8. unsigned Val = Shifter.Val; unsigned Shift = ARM64_AM::getShiftValue(Val); return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL && (Shift == 0 || Shift == 8); } bool isMoveVecShifter() const { if (!isShifter()) return false; // A logical vector shifter is a left shift by 8 or 16. unsigned Val = Shifter.Val; unsigned Shift = ARM64_AM::getShiftValue(Val); return ARM64_AM::getShiftType(Val) == ARM64_AM::MSL && (Shift == 8 || Shift == 16); } bool isMemoryRegisterOffset8() const { return isMem() && Mem.Mode == RegisterOffset && Mem.ShiftVal == 0; } bool isMemoryRegisterOffset16() const { return isMem() && Mem.Mode == RegisterOffset && (Mem.ShiftVal == 0 || Mem.ShiftVal == 1); } bool isMemoryRegisterOffset32() const { return isMem() && Mem.Mode == RegisterOffset && (Mem.ShiftVal == 0 || Mem.ShiftVal == 2); } bool isMemoryRegisterOffset64() const { return isMem() && Mem.Mode == RegisterOffset && (Mem.ShiftVal == 0 || Mem.ShiftVal == 3); } bool isMemoryRegisterOffset128() const { return isMem() && Mem.Mode == RegisterOffset && (Mem.ShiftVal == 0 || Mem.ShiftVal == 4); } bool isMemoryUnscaled() const { if (!isMem()) return false; if (Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; // Make sure the immediate value is valid. const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); if (!CE) return false; // The offset must fit in a signed 9-bit unscaled immediate. int64_t Value = CE->getValue(); return (Value >= -256 && Value < 256); } // Fallback unscaled operands are for aliases of LDR/STR that fall back // to LDUR/STUR when the offset is not legal for the former but is for // the latter. As such, in addition to checking for being a legal unscaled // address, also check that it is not a legal scaled address. This avoids // ambiguity in the matcher. bool isMemoryUnscaledFB8() const { return isMemoryUnscaled() && !isMemoryIndexed8(); } bool isMemoryUnscaledFB16() const { return isMemoryUnscaled() && !isMemoryIndexed16(); } bool isMemoryUnscaledFB32() const { return isMemoryUnscaled() && !isMemoryIndexed32(); } bool isMemoryUnscaledFB64() const { return isMemoryUnscaled() && !isMemoryIndexed64(); } bool isMemoryUnscaledFB128() const { return isMemoryUnscaled() && !isMemoryIndexed128(); } bool isMemoryIndexed(unsigned Scale) const { if (!isMem()) return false; if (Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; // Make sure the immediate value is valid. const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); if (CE) { // The offset must be a positive multiple of the scale and in range of // encoding with a 12-bit immediate. int64_t Value = CE->getValue(); return (Value >= 0 && (Value % Scale) == 0 && Value <= (4095 * Scale)); } // If it's not a constant, check for some expressions we know. const MCExpr *Expr = Mem.OffsetImm; ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!ARM64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { // If we don't understand the expression, assume the best and // let the fixup and relocation code deal with it. return true; } if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || ELFRefKind == ARM64MCExpr::VK_LO12 || ELFRefKind == ARM64MCExpr::VK_GOT_LO12 || ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12 || ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == ARM64MCExpr::VK_TPREL_LO12 || ELFRefKind == ARM64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == ARM64MCExpr::VK_GOTTPREL_LO12_NC || ELFRefKind == ARM64MCExpr::VK_TLSDESC_LO12) { // Note that we don't range-check the addend. It's adjusted modulo page // size when converted, so there is no "out of range" condition when using // @pageoff. return Addend >= 0 && (Addend % Scale) == 0; } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) { // @gotpageoff/@tlvppageoff can only be used directly, not with an addend. return Addend == 0; } return false; } bool isMemoryIndexed128() const { return isMemoryIndexed(16); } bool isMemoryIndexed64() const { return isMemoryIndexed(8); } bool isMemoryIndexed32() const { return isMemoryIndexed(4); } bool isMemoryIndexed16() const { return isMemoryIndexed(2); } bool isMemoryIndexed8() const { return isMemoryIndexed(1); } bool isMemoryNoIndex() const { if (!isMem()) return false; if (Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; // Make sure the immediate value is valid. Only zero is allowed. const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); if (!CE || CE->getValue() != 0) return false; return true; } bool isMemorySIMDNoIndex() const { if (!isMem()) return false; if (Mem.Mode != ImmediateOffset) return false; return Mem.OffsetImm == nullptr; } bool isMemoryIndexedSImm9() const { if (!isMem() || Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); assert(CE && "Non-constant pre-indexed offset!"); int64_t Value = CE->getValue(); return Value >= -256 && Value <= 255; } bool isMemoryIndexed32SImm7() const { if (!isMem() || Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); assert(CE && "Non-constant pre-indexed offset!"); int64_t Value = CE->getValue(); return ((Value % 4) == 0) && Value >= -256 && Value <= 252; } bool isMemoryIndexed64SImm7() const { if (!isMem() || Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); assert(CE && "Non-constant pre-indexed offset!"); int64_t Value = CE->getValue(); return ((Value % 8) == 0) && Value >= -512 && Value <= 504; } bool isMemoryIndexed128SImm7() const { if (!isMem() || Mem.Mode != ImmediateOffset) return false; if (!Mem.OffsetImm) return true; const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); assert(CE && "Non-constant pre-indexed offset!"); int64_t Value = CE->getValue(); return ((Value % 16) == 0) && Value >= -1024 && Value <= 1008; } bool isAdrpLabel() const { // Validation was handled during parsing, so we just sanity check that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (4096 * (1LL << (21 - 1))); int64_t Max = 4096 * ((1LL << (21 - 1)) - 1); return (Val % 4096) == 0 && Val >= Min && Val <= Max; } return true; } bool isAdrLabel() const { // Validation was handled during parsing, so we just sanity check that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (1LL << (21 - 1)); int64_t Max = ((1LL << (21 - 1)) - 1); return Val >= Min && Val <= Max; } return true; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addVectorRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addVectorRegLoOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } template void addVectorList64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); static unsigned FirstRegs[] = { ARM64::D0, ARM64::D0_D1, ARM64::D0_D1_D2, ARM64::D0_D1_D2_D3 }; unsigned FirstReg = FirstRegs[NumRegs - 1]; Inst.addOperand( MCOperand::CreateReg(FirstReg + getVectorListStart() - ARM64::Q0)); } template void addVectorList128Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); static unsigned FirstRegs[] = { ARM64::Q0, ARM64::Q0_Q1, ARM64::Q0_Q1_Q2, ARM64::Q0_Q1_Q2_Q3 }; unsigned FirstReg = FirstRegs[NumRegs - 1]; Inst.addOperand( MCOperand::CreateReg(FirstReg + getVectorListStart() - ARM64::Q0)); } void addVectorIndexBOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexHOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexSOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexDOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // If this is a pageoff symrefexpr with an addend, adjust the addend // to be only the page-offset portion. Otherwise, just add the expr // as-is. addExpr(Inst, getImm()); } void addAdrpLabelOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) addExpr(Inst, getImm()); else Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 12)); } void addAdrLabelOperands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addSImm9Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addSImm7s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 4)); } void addSImm7s8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 8)); } void addSImm7s16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 16)); } void addImm0_7Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_15Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_31Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_31Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_63Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_63Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_127Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_255Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_65535Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addLogicalImm32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid logical immediate operand!"); uint64_t encoding = ARM64_AM::encodeLogicalImmediate(MCE->getValue(), 32); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addLogicalImm64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid logical immediate operand!"); uint64_t encoding = ARM64_AM::encodeLogicalImmediate(MCE->getValue(), 64); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); assert(MCE && "Invalid immediate operand!"); uint64_t encoding = ARM64_AM::encodeAdvSIMDModImmType10(MCE->getValue()); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addBranchTarget26Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addBranchTarget14Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getFPImm())); } void addBarrierOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getBarrier())); } void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; auto Mapper = ARM64SysReg::MRSMapper(getSysRegFeatureBits()); uint32_t Bits = Mapper.fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; auto Mapper = ARM64SysReg::MSRMapper(getSysRegFeatureBits()); uint32_t Bits = Mapper.fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addSystemPStateFieldOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; uint32_t Bits = ARM64PState::PStateMapper().fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addSysCROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getSysCR())); } void addPrefetchOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getPrefetch())); } void addShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addArithmeticShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addMovImm32ShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addMovImm64ShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addAddSubShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addLogicalVecShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addLogicalVecHalfWordShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addMoveVecShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getShifter())); } void addExtendOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // lsl is an alias for UXTW but will be a parsed as a k_Shifter operand. if (isShifter()) { assert(ARM64_AM::getShiftType(getShifter()) == ARM64_AM::LSL); unsigned imm = getArithExtendImm(ARM64_AM::UXTW, ARM64_AM::getShiftValue(getShifter())); Inst.addOperand(MCOperand::CreateImm(imm)); } else Inst.addOperand(MCOperand::CreateImm(getExtend())); } void addExtend64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getExtend())); } void addExtendLSL64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // lsl is an alias for UXTX but will be a parsed as a k_Shifter operand. if (isShifter()) { assert(ARM64_AM::getShiftType(getShifter()) == ARM64_AM::LSL); unsigned imm = getArithExtendImm(ARM64_AM::UXTX, ARM64_AM::getShiftValue(getShifter())); Inst.addOperand(MCOperand::CreateImm(imm)); } else Inst.addOperand(MCOperand::CreateImm(getExtend())); } void addMemoryRegisterOffsetOperands(MCInst &Inst, unsigned N, bool DoShift) { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); Inst.addOperand(MCOperand::CreateReg(getXRegFromWReg(Mem.OffsetRegNum))); unsigned ExtendImm = ARM64_AM::getMemExtendImm(Mem.ExtType, DoShift); Inst.addOperand(MCOperand::CreateImm(ExtendImm)); } void addMemoryRegisterOffset8Operands(MCInst &Inst, unsigned N) { addMemoryRegisterOffsetOperands(Inst, N, Mem.ExplicitShift); } void addMemoryRegisterOffset16Operands(MCInst &Inst, unsigned N) { addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 1); } void addMemoryRegisterOffset32Operands(MCInst &Inst, unsigned N) { addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 2); } void addMemoryRegisterOffset64Operands(MCInst &Inst, unsigned N) { addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 3); } void addMemoryRegisterOffset128Operands(MCInst &Inst, unsigned N) { addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 4); } void addMemoryIndexedOperands(MCInst &Inst, unsigned N, unsigned Scale) const { // Add the base register operand. Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); if (!Mem.OffsetImm) { // There isn't an offset. Inst.addOperand(MCOperand::CreateImm(0)); return; } // Add the offset operand. if (const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm)) { assert(CE->getValue() % Scale == 0 && "Offset operand must be multiple of the scale!"); // The MCInst offset operand doesn't include the low bits (like the // instruction encoding). Inst.addOperand(MCOperand::CreateImm(CE->getValue() / Scale)); } // If this is a pageoff symrefexpr with an addend, the linker will // do the scaling of the addend. // // Otherwise we don't know what this is, so just add the scaling divide to // the expression and let the MC fixup evaluation code deal with it. const MCExpr *Expr = Mem.OffsetImm; ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (Scale > 1 && (!ARM64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend) || (Addend != 0 && DarwinRefKind != MCSymbolRefExpr::VK_PAGEOFF))) { Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(Scale, Ctx), Ctx); } Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addMemoryUnscaledOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryUnscaled() && "Invalid number of operands!"); // Add the base register operand. Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); // Add the offset operand. if (!Mem.OffsetImm) Inst.addOperand(MCOperand::CreateImm(0)); else { // Only constant offsets supported. const MCConstantExpr *CE = cast(Mem.OffsetImm); Inst.addOperand(MCOperand::CreateImm(CE->getValue())); } } void addMemoryIndexed128Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryIndexed128() && "Invalid number of operands!"); addMemoryIndexedOperands(Inst, N, 16); } void addMemoryIndexed64Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryIndexed64() && "Invalid number of operands!"); addMemoryIndexedOperands(Inst, N, 8); } void addMemoryIndexed32Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryIndexed32() && "Invalid number of operands!"); addMemoryIndexedOperands(Inst, N, 4); } void addMemoryIndexed16Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryIndexed16() && "Invalid number of operands!"); addMemoryIndexedOperands(Inst, N, 2); } void addMemoryIndexed8Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemoryIndexed8() && "Invalid number of operands!"); addMemoryIndexedOperands(Inst, N, 1); } void addMemoryNoIndexOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && isMemoryNoIndex() && "Invalid number of operands!"); // Add the base register operand (the offset is always zero, so ignore it). Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); } void addMemorySIMDNoIndexOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && isMemorySIMDNoIndex() && "Invalid number of operands!"); // Add the base register operand (the offset is always zero, so ignore it). Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); } void addMemoryWritebackIndexedOperands(MCInst &Inst, unsigned N, unsigned Scale) const { assert(N == 2 && "Invalid number of operands!"); // Add the base register operand. Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); // Add the offset operand. int64_t Offset = 0; if (Mem.OffsetImm) { const MCConstantExpr *CE = dyn_cast(Mem.OffsetImm); assert(CE && "Non-constant indexed offset operand!"); Offset = CE->getValue(); } if (Scale != 1) { assert(Offset % Scale == 0 && "Offset operand must be a multiple of the scale!"); Offset /= Scale; } Inst.addOperand(MCOperand::CreateImm(Offset)); } void addMemoryIndexedSImm9Operands(MCInst &Inst, unsigned N) const { addMemoryWritebackIndexedOperands(Inst, N, 1); } void addMemoryIndexed32SImm7Operands(MCInst &Inst, unsigned N) const { addMemoryWritebackIndexedOperands(Inst, N, 4); } void addMemoryIndexed64SImm7Operands(MCInst &Inst, unsigned N) const { addMemoryWritebackIndexedOperands(Inst, N, 8); } void addMemoryIndexed128SImm7Operands(MCInst &Inst, unsigned N) const { addMemoryWritebackIndexedOperands(Inst, N, 16); } void print(raw_ostream &OS) const override; static ARM64Operand *CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Token, Ctx); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->Tok.IsSuffix = IsSuffix; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARM64Operand *CreateReg(unsigned RegNum, bool isVector, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Register, Ctx); Op->Reg.RegNum = RegNum; Op->Reg.isVector = isVector; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements, char ElementKind, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_VectorList, Ctx); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.NumElements = NumElements; Op->VectorList.ElementKind = ElementKind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_VectorIndex, Ctx); Op->VectorIndex.Val = Idx; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Immediate, Ctx); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateFPImm(unsigned Val, SMLoc S, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_FPImm, Ctx); Op->FPImm.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARM64Operand *CreateBarrier(unsigned Val, SMLoc S, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Barrier, Ctx); Op->Barrier.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARM64Operand *CreateSysReg(StringRef Str, SMLoc S, uint64_t FeatureBits, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_SysReg, Ctx); Op->SysReg.Data = Str.data(); Op->SysReg.Length = Str.size(); Op->SysReg.FeatureBits = FeatureBits; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARM64Operand *CreateMem(unsigned BaseRegNum, const MCExpr *Off, SMLoc S, SMLoc E, SMLoc OffsetLoc, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Memory, Ctx); Op->Mem.BaseRegNum = BaseRegNum; Op->Mem.OffsetRegNum = 0; Op->Mem.OffsetImm = Off; Op->Mem.ExtType = ARM64_AM::UXTX; Op->Mem.ShiftVal = 0; Op->Mem.ExplicitShift = false; Op->Mem.Mode = ImmediateOffset; Op->OffsetLoc = OffsetLoc; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateRegOffsetMem(unsigned BaseReg, unsigned OffsetReg, ARM64_AM::ExtendType ExtType, unsigned ShiftVal, bool ExplicitShift, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Memory, Ctx); Op->Mem.BaseRegNum = BaseReg; Op->Mem.OffsetRegNum = OffsetReg; Op->Mem.OffsetImm = nullptr; Op->Mem.ExtType = ExtType; Op->Mem.ShiftVal = ShiftVal; Op->Mem.ExplicitShift = ExplicitShift; Op->Mem.Mode = RegisterOffset; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateSysCR(unsigned Val, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_SysCR, Ctx); Op->SysCRImm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreatePrefetch(unsigned Val, SMLoc S, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Prefetch, Ctx); Op->Prefetch.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARM64Operand *CreateShifter(ARM64_AM::ShiftType ShOp, unsigned Val, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Shifter, Ctx); Op->Shifter.Val = ARM64_AM::getShifterImm(ShOp, Val); Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARM64Operand *CreateExtend(ARM64_AM::ExtendType ExtOp, unsigned Val, SMLoc S, SMLoc E, MCContext &Ctx) { ARM64Operand *Op = new ARM64Operand(k_Extend, Ctx); Op->Extend.Val = ARM64_AM::getArithExtendImm(ExtOp, Val); Op->StartLoc = S; Op->EndLoc = E; return Op; } }; } // end anonymous namespace. void ARM64Operand::print(raw_ostream &OS) const { switch (Kind) { case k_FPImm: OS << ""; break; case k_Barrier: { bool Valid; StringRef Name = ARM64DB::DBarrierMapper().toString(getBarrier(), Valid); if (Valid) OS << ""; else OS << ""; break; } case k_Immediate: getImm()->print(OS); break; case k_Memory: OS << ""; break; case k_Register: OS << ""; break; case k_VectorList: { OS << ""; break; } case k_VectorIndex: OS << ""; break; case k_SysReg: OS << "'; break; case k_Token: OS << "'" << getToken() << "'"; break; case k_SysCR: OS << "c" << getSysCR(); break; case k_Prefetch: { bool Valid; StringRef Name = ARM64PRFM::PRFMMapper().toString(getPrefetch(), Valid); if (Valid) OS << ""; else OS << ""; break; } case k_Shifter: { unsigned Val = getShifter(); OS << "<" << ARM64_AM::getShiftName(ARM64_AM::getShiftType(Val)) << " #" << ARM64_AM::getShiftValue(Val) << ">"; break; } case k_Extend: { unsigned Val = getExtend(); OS << "<" << ARM64_AM::getExtendName(ARM64_AM::getArithExtendType(Val)) << " #" << ARM64_AM::getArithShiftValue(Val) << ">"; break; } } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } static unsigned matchVectorRegName(StringRef Name) { return StringSwitch(Name) .Case("v0", ARM64::Q0) .Case("v1", ARM64::Q1) .Case("v2", ARM64::Q2) .Case("v3", ARM64::Q3) .Case("v4", ARM64::Q4) .Case("v5", ARM64::Q5) .Case("v6", ARM64::Q6) .Case("v7", ARM64::Q7) .Case("v8", ARM64::Q8) .Case("v9", ARM64::Q9) .Case("v10", ARM64::Q10) .Case("v11", ARM64::Q11) .Case("v12", ARM64::Q12) .Case("v13", ARM64::Q13) .Case("v14", ARM64::Q14) .Case("v15", ARM64::Q15) .Case("v16", ARM64::Q16) .Case("v17", ARM64::Q17) .Case("v18", ARM64::Q18) .Case("v19", ARM64::Q19) .Case("v20", ARM64::Q20) .Case("v21", ARM64::Q21) .Case("v22", ARM64::Q22) .Case("v23", ARM64::Q23) .Case("v24", ARM64::Q24) .Case("v25", ARM64::Q25) .Case("v26", ARM64::Q26) .Case("v27", ARM64::Q27) .Case("v28", ARM64::Q28) .Case("v29", ARM64::Q29) .Case("v30", ARM64::Q30) .Case("v31", ARM64::Q31) .Default(0); } static bool isValidVectorKind(StringRef Name) { return StringSwitch(Name.lower()) .Case(".8b", true) .Case(".16b", true) .Case(".4h", true) .Case(".8h", true) .Case(".2s", true) .Case(".4s", true) .Case(".1d", true) .Case(".2d", true) .Case(".1q", true) // Accept the width neutral ones, too, for verbose syntax. If those // aren't used in the right places, the token operand won't match so // all will work out. .Case(".b", true) .Case(".h", true) .Case(".s", true) .Case(".d", true) .Default(false); } static void parseValidVectorKind(StringRef Name, unsigned &NumElements, char &ElementKind) { assert(isValidVectorKind(Name)); ElementKind = Name.lower()[Name.size() - 1]; NumElements = 0; if (Name.size() == 2) return; // Parse the lane count Name = Name.drop_front(); while (isdigit(Name.front())) { NumElements = 10 * NumElements + (Name.front() - '0'); Name = Name.drop_front(); } } bool ARM64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { StartLoc = getLoc(); RegNo = tryParseRegister(); EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1); return (RegNo == (unsigned)-1); } /// tryParseRegister - Try to parse a register name. The token must be an /// Identifier when called, and if it is a register name the token is eaten and /// the register is added to the operand list. int ARM64AsmParser::tryParseRegister() { const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); std::string lowerCase = Tok.getString().lower(); unsigned RegNum = MatchRegisterName(lowerCase); // Also handle a few aliases of registers. if (RegNum == 0) RegNum = StringSwitch(lowerCase) .Case("fp", ARM64::FP) .Case("lr", ARM64::LR) .Case("x31", ARM64::XZR) .Case("w31", ARM64::WZR) .Default(0); if (RegNum == 0) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } /// tryMatchVectorRegister - Try to parse a vector register name with optional /// kind specifier. If it is a register specifier, eat the token and return it. int ARM64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) { if (Parser.getTok().isNot(AsmToken::Identifier)) { TokError("vector register expected"); return -1; } StringRef Name = Parser.getTok().getString(); // If there is a kind specifier, it's separated from the register name by // a '.'. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); unsigned RegNum = matchVectorRegName(Head); if (RegNum) { if (Next != StringRef::npos) { Kind = Name.slice(Next, StringRef::npos); if (!isValidVectorKind(Kind)) { TokError("invalid vector kind qualifier"); return -1; } } Parser.Lex(); // Eat the register token. return RegNum; } if (expected) TokError("vector register expected"); return -1; } static int MatchSysCRName(StringRef Name) { // Use the same layout as the tablegen'erated register name matcher. Ugly, // but efficient. switch (Name.size()) { default: break; case 2: if (Name[0] != 'c' && Name[0] != 'C') return -1; switch (Name[1]) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } break; case 3: if ((Name[0] != 'c' && Name[0] != 'C') || Name[1] != '1') return -1; switch (Name[2]) { default: return -1; case '0': return 10; case '1': return 11; case '2': return 12; case '3': return 13; case '4': return 14; case '5': return 15; } break; } llvm_unreachable("Unhandled SysCR operand string!"); return -1; } /// tryParseSysCROperand - Try to parse a system instruction CR operand name. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseSysCROperand(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; int Num = MatchSysCRName(Tok.getString()); if (Num == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARM64Operand::CreateSysCR(Num, S, getLoc(), getContext())); return MatchOperand_Success; } /// tryParsePrefetch - Try to parse a prefetch operand. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParsePrefetch(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = Parser.getTok(); // Either an identifier for named values or a 5-bit immediate. bool Hash = Tok.is(AsmToken::Hash); if (Hash || Tok.is(AsmToken::Integer)) { if (Hash) Parser.Lex(); // Eat hash token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { TokError("immediate value expected for prefetch operand"); return MatchOperand_ParseFail; } unsigned prfop = MCE->getValue(); if (prfop > 31) { TokError("prefetch operand out of range, [0,31] expected"); return MatchOperand_ParseFail; } Operands.push_back(ARM64Operand::CreatePrefetch(prfop, S, getContext())); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("pre-fetch hint expected"); return MatchOperand_ParseFail; } bool Valid; unsigned prfop = ARM64PRFM::PRFMMapper().fromString(Tok.getString(), Valid); if (!Valid) { TokError("pre-fetch hint expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat identifier token. Operands.push_back(ARM64Operand::CreatePrefetch(prfop, S, getContext())); return MatchOperand_Success; } /// tryParseAdrpLabel - Parse and validate a source label for the ADRP /// instruction. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseAdrpLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat hash token. } if (parseSymbolicImmVal(Expr)) return MatchOperand_ParseFail; ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { if (DarwinRefKind == MCSymbolRefExpr::VK_None && ELFRefKind == ARM64MCExpr::VK_INVALID) { // No modifier was specified at all; this is the syntax for an ELF basic // ADRP relocation (unfortunately). Expr = ARM64MCExpr::Create(Expr, ARM64MCExpr::VK_ABS_PAGE, getContext()); } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) && Addend != 0) { Error(S, "gotpage label reference not allowed an addend"); return MatchOperand_ParseFail; } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE && DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE && DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE && ELFRefKind != ARM64MCExpr::VK_GOT_PAGE && ELFRefKind != ARM64MCExpr::VK_GOTTPREL_PAGE && ELFRefKind != ARM64MCExpr::VK_TLSDESC_PAGE) { // The operand must be an @page or @gotpage qualified symbolref. Error(S, "page or gotpage label reference expected"); return MatchOperand_ParseFail; } } // We have either a label reference possibly with addend or an immediate. The // addend is a raw value here. The linker will adjust it to only reference the // page. SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseAdrLabel - Parse and validate a source label for the ADR /// instruction. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseAdrLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat hash token. } if (getParser().parseExpression(Expr)) return MatchOperand_ParseFail; SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseFPImm - A floating point immediate expression operand. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseFPImm(OperandVector &Operands) { SMLoc S = getLoc(); bool Hash = false; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat '#' Hash = true; } // Handle negation, as that still comes through as a separate token. bool isNegative = false; if (Parser.getTok().is(AsmToken::Minus)) { isNegative = true; Parser.Lex(); } const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Real)) { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); // If we had a '-' in front, toggle the sign bit. IntVal ^= (uint64_t)isNegative << 63; int Val = ARM64_AM::getFP64Imm(APInt(64, IntVal)); Parser.Lex(); // Eat the token. // Check for out of range values. As an exception, we let Zero through, // as we handle that special case in post-processing before matching in // order to use the zero register for it. if (Val == -1 && !RealVal.isZero()) { TokError("floating point value out of range"); return MatchOperand_ParseFail; } Operands.push_back(ARM64Operand::CreateFPImm(Val, S, getContext())); return MatchOperand_Success; } if (Tok.is(AsmToken::Integer)) { int64_t Val; if (!isNegative && Tok.getString().startswith("0x")) { Val = Tok.getIntVal(); if (Val > 255 || Val < 0) { TokError("encoded floating point value out of range"); return MatchOperand_ParseFail; } } else { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); // If we had a '-' in front, toggle the sign bit. IntVal ^= (uint64_t)isNegative << 63; Val = ARM64_AM::getFP64Imm(APInt(64, IntVal)); } Parser.Lex(); // Eat the token. Operands.push_back(ARM64Operand::CreateFPImm(Val, S, getContext())); return MatchOperand_Success; } if (!Hash) return MatchOperand_NoMatch; TokError("invalid floating point immediate"); return MatchOperand_ParseFail; } /// parseCondCodeString - Parse a Condition Code string. unsigned ARM64AsmParser::parseCondCodeString(StringRef Cond) { unsigned CC = StringSwitch(Cond.lower()) .Case("eq", ARM64CC::EQ) .Case("ne", ARM64CC::NE) .Case("cs", ARM64CC::HS) .Case("hs", ARM64CC::HS) .Case("cc", ARM64CC::LO) .Case("lo", ARM64CC::LO) .Case("mi", ARM64CC::MI) .Case("pl", ARM64CC::PL) .Case("vs", ARM64CC::VS) .Case("vc", ARM64CC::VC) .Case("hi", ARM64CC::HI) .Case("ls", ARM64CC::LS) .Case("ge", ARM64CC::GE) .Case("lt", ARM64CC::LT) .Case("gt", ARM64CC::GT) .Case("le", ARM64CC::LE) .Case("al", ARM64CC::AL) .Case("nv", ARM64CC::NV) .Default(ARM64CC::Invalid); return CC; } /// parseCondCode - Parse a Condition Code operand. bool ARM64AsmParser::parseCondCode(OperandVector &Operands, bool invertCondCode) { SMLoc S = getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef Cond = Tok.getString(); unsigned CC = parseCondCodeString(Cond); if (CC == ARM64CC::Invalid) return TokError("invalid condition code"); Parser.Lex(); // Eat identifier token. if (invertCondCode) CC = ARM64CC::getInvertedCondCode(ARM64CC::CondCode(CC)); const MCExpr *CCExpr = MCConstantExpr::Create(CC, getContext()); Operands.push_back( ARM64Operand::CreateImm(CCExpr, S, getLoc(), getContext())); return false; } /// ParseOptionalShift - Some operands take an optional shift argument. Parse /// them if present. bool ARM64AsmParser::parseOptionalShift(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); ARM64_AM::ShiftType ShOp = StringSwitch(Tok.getString()) .Case("lsl", ARM64_AM::LSL) .Case("lsr", ARM64_AM::LSR) .Case("asr", ARM64_AM::ASR) .Case("ror", ARM64_AM::ROR) .Case("msl", ARM64_AM::MSL) .Case("LSL", ARM64_AM::LSL) .Case("LSR", ARM64_AM::LSR) .Case("ASR", ARM64_AM::ASR) .Case("ROR", ARM64_AM::ROR) .Case("MSL", ARM64_AM::MSL) .Default(ARM64_AM::InvalidShift); if (ShOp == ARM64_AM::InvalidShift) return true; SMLoc S = Tok.getLoc(); Parser.Lex(); // We expect a number here. bool Hash = getLexer().is(AsmToken::Hash); if (!Hash && getLexer().isNot(AsmToken::Integer)) return TokError("immediate value expected for shifter operand"); if (Hash) Parser.Lex(); // Eat the '#'. SMLoc ExprLoc = getLoc(); const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) return TokError("immediate value expected for shifter operand"); if ((MCE->getValue() & 0x3f) != MCE->getValue()) return Error(ExprLoc, "immediate value too large for shifter operand"); SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( ARM64Operand::CreateShifter(ShOp, MCE->getValue(), S, E, getContext())); return false; } /// parseOptionalExtend - Some operands take an optional extend argument. Parse /// them if present. bool ARM64AsmParser::parseOptionalExtend(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); ARM64_AM::ExtendType ExtOp = StringSwitch(Tok.getString()) .Case("uxtb", ARM64_AM::UXTB) .Case("uxth", ARM64_AM::UXTH) .Case("uxtw", ARM64_AM::UXTW) .Case("uxtx", ARM64_AM::UXTX) .Case("lsl", ARM64_AM::UXTX) // Alias for UXTX .Case("sxtb", ARM64_AM::SXTB) .Case("sxth", ARM64_AM::SXTH) .Case("sxtw", ARM64_AM::SXTW) .Case("sxtx", ARM64_AM::SXTX) .Case("UXTB", ARM64_AM::UXTB) .Case("UXTH", ARM64_AM::UXTH) .Case("UXTW", ARM64_AM::UXTW) .Case("UXTX", ARM64_AM::UXTX) .Case("LSL", ARM64_AM::UXTX) // Alias for UXTX .Case("SXTB", ARM64_AM::SXTB) .Case("SXTH", ARM64_AM::SXTH) .Case("SXTW", ARM64_AM::SXTW) .Case("SXTX", ARM64_AM::SXTX) .Default(ARM64_AM::InvalidExtend); if (ExtOp == ARM64_AM::InvalidExtend) return true; SMLoc S = Tok.getLoc(); Parser.Lex(); if (getLexer().is(AsmToken::EndOfStatement) || getLexer().is(AsmToken::Comma)) { SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( ARM64Operand::CreateExtend(ExtOp, 0, S, E, getContext())); return false; } bool Hash = getLexer().is(AsmToken::Hash); if (!Hash && getLexer().isNot(AsmToken::Integer)) { SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( ARM64Operand::CreateExtend(ExtOp, 0, S, E, getContext())); return false; } if (Hash) Parser.Lex(); // Eat the '#'. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) return TokError("immediate value expected for extend operand"); SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( ARM64Operand::CreateExtend(ExtOp, MCE->getValue(), S, E, getContext())); return false; } /// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for /// the SYS instruction. Parse them specially so that we create a SYS MCInst. bool ARM64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands) { if (Name.find('.') != StringRef::npos) return TokError("invalid operand"); Mnemonic = Name; Operands.push_back( ARM64Operand::CreateToken("sys", false, NameLoc, getContext())); const AsmToken &Tok = Parser.getTok(); StringRef Op = Tok.getString(); SMLoc S = Tok.getLoc(); const MCExpr *Expr = nullptr; #define SYS_ALIAS(op1, Cn, Cm, op2) \ do { \ Expr = MCConstantExpr::Create(op1, getContext()); \ Operands.push_back( \ ARM64Operand::CreateImm(Expr, S, getLoc(), getContext())); \ Operands.push_back( \ ARM64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); \ Operands.push_back( \ ARM64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); \ Expr = MCConstantExpr::Create(op2, getContext()); \ Operands.push_back( \ ARM64Operand::CreateImm(Expr, S, getLoc(), getContext())); \ } while (0) if (Mnemonic == "ic") { if (!Op.compare_lower("ialluis")) { // SYS #0, C7, C1, #0 SYS_ALIAS(0, 7, 1, 0); } else if (!Op.compare_lower("iallu")) { // SYS #0, C7, C5, #0 SYS_ALIAS(0, 7, 5, 0); } else if (!Op.compare_lower("ivau")) { // SYS #3, C7, C5, #1 SYS_ALIAS(3, 7, 5, 1); } else { return TokError("invalid operand for IC instruction"); } } else if (Mnemonic == "dc") { if (!Op.compare_lower("zva")) { // SYS #3, C7, C4, #1 SYS_ALIAS(3, 7, 4, 1); } else if (!Op.compare_lower("ivac")) { // SYS #3, C7, C6, #1 SYS_ALIAS(0, 7, 6, 1); } else if (!Op.compare_lower("isw")) { // SYS #0, C7, C6, #2 SYS_ALIAS(0, 7, 6, 2); } else if (!Op.compare_lower("cvac")) { // SYS #3, C7, C10, #1 SYS_ALIAS(3, 7, 10, 1); } else if (!Op.compare_lower("csw")) { // SYS #0, C7, C10, #2 SYS_ALIAS(0, 7, 10, 2); } else if (!Op.compare_lower("cvau")) { // SYS #3, C7, C11, #1 SYS_ALIAS(3, 7, 11, 1); } else if (!Op.compare_lower("civac")) { // SYS #3, C7, C14, #1 SYS_ALIAS(3, 7, 14, 1); } else if (!Op.compare_lower("cisw")) { // SYS #0, C7, C14, #2 SYS_ALIAS(0, 7, 14, 2); } else { return TokError("invalid operand for DC instruction"); } } else if (Mnemonic == "at") { if (!Op.compare_lower("s1e1r")) { // SYS #0, C7, C8, #0 SYS_ALIAS(0, 7, 8, 0); } else if (!Op.compare_lower("s1e2r")) { // SYS #4, C7, C8, #0 SYS_ALIAS(4, 7, 8, 0); } else if (!Op.compare_lower("s1e3r")) { // SYS #6, C7, C8, #0 SYS_ALIAS(6, 7, 8, 0); } else if (!Op.compare_lower("s1e1w")) { // SYS #0, C7, C8, #1 SYS_ALIAS(0, 7, 8, 1); } else if (!Op.compare_lower("s1e2w")) { // SYS #4, C7, C8, #1 SYS_ALIAS(4, 7, 8, 1); } else if (!Op.compare_lower("s1e3w")) { // SYS #6, C7, C8, #1 SYS_ALIAS(6, 7, 8, 1); } else if (!Op.compare_lower("s1e0r")) { // SYS #0, C7, C8, #3 SYS_ALIAS(0, 7, 8, 2); } else if (!Op.compare_lower("s1e0w")) { // SYS #0, C7, C8, #3 SYS_ALIAS(0, 7, 8, 3); } else if (!Op.compare_lower("s12e1r")) { // SYS #4, C7, C8, #4 SYS_ALIAS(4, 7, 8, 4); } else if (!Op.compare_lower("s12e1w")) { // SYS #4, C7, C8, #5 SYS_ALIAS(4, 7, 8, 5); } else if (!Op.compare_lower("s12e0r")) { // SYS #4, C7, C8, #6 SYS_ALIAS(4, 7, 8, 6); } else if (!Op.compare_lower("s12e0w")) { // SYS #4, C7, C8, #7 SYS_ALIAS(4, 7, 8, 7); } else { return TokError("invalid operand for AT instruction"); } } else if (Mnemonic == "tlbi") { if (!Op.compare_lower("vmalle1is")) { // SYS #0, C8, C3, #0 SYS_ALIAS(0, 8, 3, 0); } else if (!Op.compare_lower("alle2is")) { // SYS #4, C8, C3, #0 SYS_ALIAS(4, 8, 3, 0); } else if (!Op.compare_lower("alle3is")) { // SYS #6, C8, C3, #0 SYS_ALIAS(6, 8, 3, 0); } else if (!Op.compare_lower("vae1is")) { // SYS #0, C8, C3, #1 SYS_ALIAS(0, 8, 3, 1); } else if (!Op.compare_lower("vae2is")) { // SYS #4, C8, C3, #1 SYS_ALIAS(4, 8, 3, 1); } else if (!Op.compare_lower("vae3is")) { // SYS #6, C8, C3, #1 SYS_ALIAS(6, 8, 3, 1); } else if (!Op.compare_lower("aside1is")) { // SYS #0, C8, C3, #2 SYS_ALIAS(0, 8, 3, 2); } else if (!Op.compare_lower("vaae1is")) { // SYS #0, C8, C3, #3 SYS_ALIAS(0, 8, 3, 3); } else if (!Op.compare_lower("alle1is")) { // SYS #4, C8, C3, #4 SYS_ALIAS(4, 8, 3, 4); } else if (!Op.compare_lower("vale1is")) { // SYS #0, C8, C3, #5 SYS_ALIAS(0, 8, 3, 5); } else if (!Op.compare_lower("vaale1is")) { // SYS #0, C8, C3, #7 SYS_ALIAS(0, 8, 3, 7); } else if (!Op.compare_lower("vmalle1")) { // SYS #0, C8, C7, #0 SYS_ALIAS(0, 8, 7, 0); } else if (!Op.compare_lower("alle2")) { // SYS #4, C8, C7, #0 SYS_ALIAS(4, 8, 7, 0); } else if (!Op.compare_lower("vale2is")) { // SYS #4, C8, C3, #5 SYS_ALIAS(4, 8, 3, 5); } else if (!Op.compare_lower("vale3is")) { // SYS #6, C8, C3, #5 SYS_ALIAS(6, 8, 3, 5); } else if (!Op.compare_lower("alle3")) { // SYS #6, C8, C7, #0 SYS_ALIAS(6, 8, 7, 0); } else if (!Op.compare_lower("vae1")) { // SYS #0, C8, C7, #1 SYS_ALIAS(0, 8, 7, 1); } else if (!Op.compare_lower("vae2")) { // SYS #4, C8, C7, #1 SYS_ALIAS(4, 8, 7, 1); } else if (!Op.compare_lower("vae3")) { // SYS #6, C8, C7, #1 SYS_ALIAS(6, 8, 7, 1); } else if (!Op.compare_lower("aside1")) { // SYS #0, C8, C7, #2 SYS_ALIAS(0, 8, 7, 2); } else if (!Op.compare_lower("vaae1")) { // SYS #0, C8, C7, #3 SYS_ALIAS(0, 8, 7, 3); } else if (!Op.compare_lower("alle1")) { // SYS #4, C8, C7, #4 SYS_ALIAS(4, 8, 7, 4); } else if (!Op.compare_lower("vale1")) { // SYS #0, C8, C7, #5 SYS_ALIAS(0, 8, 7, 5); } else if (!Op.compare_lower("vale2")) { // SYS #4, C8, C7, #5 SYS_ALIAS(4, 8, 7, 5); } else if (!Op.compare_lower("vale3")) { // SYS #6, C8, C7, #5 SYS_ALIAS(6, 8, 7, 5); } else if (!Op.compare_lower("vaale1")) { // SYS #0, C8, C7, #7 SYS_ALIAS(0, 8, 7, 7); } else if (!Op.compare_lower("ipas2e1")) { // SYS #4, C8, C4, #1 SYS_ALIAS(4, 8, 4, 1); } else if (!Op.compare_lower("ipas2le1")) { // SYS #4, C8, C4, #5 SYS_ALIAS(4, 8, 4, 5); } else if (!Op.compare_lower("ipas2e1is")) { // SYS #4, C8, C4, #1 SYS_ALIAS(4, 8, 0, 1); } else if (!Op.compare_lower("ipas2le1is")) { // SYS #4, C8, C4, #5 SYS_ALIAS(4, 8, 0, 5); } else if (!Op.compare_lower("vmalls12e1")) { // SYS #4, C8, C7, #6 SYS_ALIAS(4, 8, 7, 6); } else if (!Op.compare_lower("vmalls12e1is")) { // SYS #4, C8, C3, #6 SYS_ALIAS(4, 8, 3, 6); } else { return TokError("invalid operand for TLBI instruction"); } } #undef SYS_ALIAS Parser.Lex(); // Eat operand. bool ExpectRegister = (Op.lower().find("all") == StringRef::npos); bool HasRegister = false; // Check for the optional register operand. if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat comma. if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands)) return TokError("expected register operand"); HasRegister = true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { Parser.eatToEndOfStatement(); return TokError("unexpected token in argument list"); } if (ExpectRegister && !HasRegister) { return TokError("specified " + Mnemonic + " op requires a register"); } else if (!ExpectRegister && HasRegister) { return TokError("specified " + Mnemonic + " op does not use a register"); } Parser.Lex(); // Consume the EndOfStatement return false; } ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseBarrierOperand(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); // Can be either a #imm style literal or an option name bool Hash = Tok.is(AsmToken::Hash); if (Hash || Tok.is(AsmToken::Integer)) { // Immediate operand. if (Hash) Parser.Lex(); // Eat the '#' const MCExpr *ImmVal; SMLoc ExprLoc = getLoc(); if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { Error(ExprLoc, "immediate value expected for barrier operand"); return MatchOperand_ParseFail; } if (MCE->getValue() < 0 || MCE->getValue() > 15) { Error(ExprLoc, "barrier operand out of range"); return MatchOperand_ParseFail; } Operands.push_back( ARM64Operand::CreateBarrier(MCE->getValue(), ExprLoc, getContext())); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } bool Valid; unsigned Opt = ARM64DB::DBarrierMapper().fromString(Tok.getString(), Valid); if (!Valid) { TokError("invalid barrier option name"); return MatchOperand_ParseFail; } // The only valid named option for ISB is 'sy' if (Mnemonic == "isb" && Opt != ARM64DB::SY) { TokError("'sy' or #imm operand expected"); return MatchOperand_ParseFail; } Operands.push_back(ARM64Operand::CreateBarrier(Opt, getLoc(), getContext())); Parser.Lex(); // Consume the option return MatchOperand_Success; } ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseSysReg(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; Operands.push_back(ARM64Operand::CreateSysReg(Tok.getString(), getLoc(), STI.getFeatureBits(), getContext())); Parser.Lex(); // Eat identifier return MatchOperand_Success; } /// tryParseVectorRegister - Parse a vector register operand. bool ARM64AsmParser::tryParseVectorRegister(OperandVector &Operands) { if (Parser.getTok().isNot(AsmToken::Identifier)) return true; SMLoc S = getLoc(); // Check for a vector register specifier first. StringRef Kind; int64_t Reg = tryMatchVectorRegister(Kind, false); if (Reg == -1) return true; Operands.push_back( ARM64Operand::CreateReg(Reg, true, S, getLoc(), getContext())); // If there was an explicit qualifier, that goes on as a literal text // operand. if (!Kind.empty()) Operands.push_back(ARM64Operand::CreateToken(Kind, false, S, getContext())); // If there is an index specifier following the register, parse that too. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return false; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { TokError("immediate value expected for vector index"); return false; } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(E, "']' expected"); return false; } Parser.Lex(); // Eat right bracket token. Operands.push_back(ARM64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } /// parseRegister - Parse a non-vector register operand. bool ARM64AsmParser::parseRegister(OperandVector &Operands) { SMLoc S = getLoc(); // Try for a vector register. if (!tryParseVectorRegister(Operands)) return false; // Try for a scalar register. int64_t Reg = tryParseRegister(); if (Reg == -1) return true; Operands.push_back( ARM64Operand::CreateReg(Reg, false, S, getLoc(), getContext())); // A small number of instructions (FMOVXDhighr, for example) have "[1]" // as a string token in the instruction itself. if (getLexer().getKind() == AsmToken::LBrac) { SMLoc LBracS = getLoc(); Parser.Lex(); const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Integer)) { SMLoc IntS = getLoc(); int64_t Val = Tok.getIntVal(); if (Val == 1) { Parser.Lex(); if (getLexer().getKind() == AsmToken::RBrac) { SMLoc RBracS = getLoc(); Parser.Lex(); Operands.push_back( ARM64Operand::CreateToken("[", false, LBracS, getContext())); Operands.push_back( ARM64Operand::CreateToken("1", false, IntS, getContext())); Operands.push_back( ARM64Operand::CreateToken("]", false, RBracS, getContext())); return false; } } } } return false; } /// tryParseNoIndexMemory - Custom parser method for memory operands that /// do not allow base regisrer writeback modes, /// or those that handle writeback separately from /// the memory operand (like the AdvSIMD ldX/stX /// instructions. ARM64AsmParser::OperandMatchResultTy ARM64AsmParser::tryParseNoIndexMemory(OperandVector &Operands) { if (Parser.getTok().isNot(AsmToken::LBrac)) return MatchOperand_NoMatch; SMLoc S = getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) { Error(BaseRegTok.getLoc(), "register expected"); return MatchOperand_ParseFail; } int64_t Reg = tryParseRegister(); if (Reg == -1) { Error(BaseRegTok.getLoc(), "register expected"); return MatchOperand_ParseFail; } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(E, "']' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat right bracket token. Operands.push_back(ARM64Operand::CreateMem(Reg, nullptr, S, E, E, getContext())); return MatchOperand_Success; } /// parseMemory - Parse a memory operand for a basic load/store instruction. bool ARM64AsmParser::parseMemory(OperandVector &Operands) { assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not a Left Bracket"); SMLoc S = getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) return Error(BaseRegTok.getLoc(), "register expected"); int64_t Reg = tryParseRegister(); if (Reg == -1) return Error(BaseRegTok.getLoc(), "register expected"); // If there is an offset expression, parse it. const MCExpr *OffsetExpr = nullptr; SMLoc OffsetLoc; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. OffsetLoc = getLoc(); // Register offset const AsmToken &OffsetRegTok = Parser.getTok(); int Reg2 = OffsetRegTok.is(AsmToken::Identifier) ? tryParseRegister() : -1; if (Reg2 != -1) { // Default shift is LSL, with an omitted shift. We use the third bit of // the extend value to indicate presence/omission of the immediate offset. ARM64_AM::ExtendType ExtOp = ARM64_AM::UXTX; int64_t ShiftVal = 0; bool ExplicitShift = false; if (Parser.getTok().is(AsmToken::Comma)) { // Embedded extend operand. Parser.Lex(); // Eat the comma SMLoc ExtLoc = getLoc(); const AsmToken &Tok = Parser.getTok(); ExtOp = StringSwitch(Tok.getString()) .Case("uxtw", ARM64_AM::UXTW) .Case("lsl", ARM64_AM::UXTX) // Alias for UXTX .Case("sxtw", ARM64_AM::SXTW) .Case("sxtx", ARM64_AM::SXTX) .Case("UXTW", ARM64_AM::UXTW) .Case("LSL", ARM64_AM::UXTX) // Alias for UXTX .Case("SXTW", ARM64_AM::SXTW) .Case("SXTX", ARM64_AM::SXTX) .Default(ARM64_AM::InvalidExtend); if (ExtOp == ARM64_AM::InvalidExtend) return Error(ExtLoc, "expected valid extend operation"); Parser.Lex(); // Eat the extend op. // A 32-bit offset register is only valid for [SU]/XTW extend // operators. if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg2)) { if (ExtOp != ARM64_AM::UXTW && ExtOp != ARM64_AM::SXTW) return Error(ExtLoc, "32-bit general purpose offset register " "requires sxtw or uxtw extend"); } else if (!ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains( Reg2)) return Error(OffsetLoc, "64-bit general purpose offset register expected"); bool Hash = getLexer().is(AsmToken::Hash); if (getLexer().is(AsmToken::RBrac)) { // No immediate operand. if (ExtOp == ARM64_AM::UXTX) return Error(ExtLoc, "LSL extend requires immediate operand"); } else if (Hash || getLexer().is(AsmToken::Integer)) { // Immediate operand. if (Hash) Parser.Lex(); // Eat the '#' const MCExpr *ImmVal; SMLoc ExprLoc = getLoc(); if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) return TokError("immediate value expected for extend operand"); ExplicitShift = true; ShiftVal = MCE->getValue(); if (ShiftVal < 0 || ShiftVal > 4) return Error(ExprLoc, "immediate operand out of range"); } else return Error(getLoc(), "expected immediate operand"); } if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(getLoc(), "']' expected"); Parser.Lex(); // Eat right bracket token. SMLoc E = getLoc(); Operands.push_back(ARM64Operand::CreateRegOffsetMem( Reg, Reg2, ExtOp, ShiftVal, ExplicitShift, S, E, getContext())); return false; // Immediate expressions. } else if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Colon) || Parser.getTok().is(AsmToken::Integer)) { if (Parser.getTok().is(AsmToken::Hash)) Parser.Lex(); // Eat hash token. if (parseSymbolicImmVal(OffsetExpr)) return true; } else { // FIXME: We really should make sure that we're dealing with a LDR/STR // instruction that can legally have a symbolic expression here. // Symbol reference. if (Parser.getTok().isNot(AsmToken::Identifier) && Parser.getTok().isNot(AsmToken::String)) return Error(getLoc(), "identifier or immediate expression expected"); if (getParser().parseExpression(OffsetExpr)) return true; // If this is a plain ref, Make sure a legal variant kind was specified. // Otherwise, it's a more complicated expression and we have to just // assume it's OK and let the relocation stuff puke if it's not. ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(OffsetExpr, ELFRefKind, DarwinRefKind, Addend) && Addend == 0) { assert(ELFRefKind == ARM64MCExpr::VK_INVALID && "ELF symbol modifiers not supported here yet"); switch (DarwinRefKind) { default: return Error(getLoc(), "expected @pageoff or @gotpageoff modifier"); case MCSymbolRefExpr::VK_GOTPAGEOFF: case MCSymbolRefExpr::VK_PAGEOFF: case MCSymbolRefExpr::VK_TLVPPAGEOFF: // These are what we're expecting. break; } } } } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(E, "']' expected"); Parser.Lex(); // Eat right bracket token. // Create the memory operand. Operands.push_back( ARM64Operand::CreateMem(Reg, OffsetExpr, S, E, OffsetLoc, getContext())); // Check for a '!', indicating pre-indexed addressing with writeback. if (Parser.getTok().is(AsmToken::Exclaim)) { // There needs to have been an immediate or wback doesn't make sense. if (!OffsetExpr) return Error(E, "missing offset for pre-indexed addressing"); // Pre-indexed with writeback must have a constant expression for the // offset. FIXME: Theoretically, we'd like to allow fixups so long // as they don't require a relocation. if (!isa(OffsetExpr)) return Error(OffsetLoc, "constant immediate expression expected"); // Create the Token operand for the '!'. Operands.push_back(ARM64Operand::CreateToken( "!", false, Parser.getTok().getLoc(), getContext())); Parser.Lex(); // Eat the '!' token. } return false; } bool ARM64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) { bool HasELFModifier = false; ARM64MCExpr::VariantKind RefKind; if (Parser.getTok().is(AsmToken::Colon)) { Parser.Lex(); // Eat ':" HasELFModifier = true; if (Parser.getTok().isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "expect relocation specifier in operand after ':'"); return true; } std::string LowerCase = Parser.getTok().getIdentifier().lower(); RefKind = StringSwitch(LowerCase) .Case("lo12", ARM64MCExpr::VK_LO12) .Case("abs_g3", ARM64MCExpr::VK_ABS_G3) .Case("abs_g2", ARM64MCExpr::VK_ABS_G2) .Case("abs_g2_s", ARM64MCExpr::VK_ABS_G2_S) .Case("abs_g2_nc", ARM64MCExpr::VK_ABS_G2_NC) .Case("abs_g1", ARM64MCExpr::VK_ABS_G1) .Case("abs_g1_s", ARM64MCExpr::VK_ABS_G1_S) .Case("abs_g1_nc", ARM64MCExpr::VK_ABS_G1_NC) .Case("abs_g0", ARM64MCExpr::VK_ABS_G0) .Case("abs_g0_s", ARM64MCExpr::VK_ABS_G0_S) .Case("abs_g0_nc", ARM64MCExpr::VK_ABS_G0_NC) .Case("dtprel_g2", ARM64MCExpr::VK_DTPREL_G2) .Case("dtprel_g1", ARM64MCExpr::VK_DTPREL_G1) .Case("dtprel_g1_nc", ARM64MCExpr::VK_DTPREL_G1_NC) .Case("dtprel_g0", ARM64MCExpr::VK_DTPREL_G0) .Case("dtprel_g0_nc", ARM64MCExpr::VK_DTPREL_G0_NC) .Case("dtprel_hi12", ARM64MCExpr::VK_DTPREL_HI12) .Case("dtprel_lo12", ARM64MCExpr::VK_DTPREL_LO12) .Case("dtprel_lo12_nc", ARM64MCExpr::VK_DTPREL_LO12_NC) .Case("tprel_g2", ARM64MCExpr::VK_TPREL_G2) .Case("tprel_g1", ARM64MCExpr::VK_TPREL_G1) .Case("tprel_g1_nc", ARM64MCExpr::VK_TPREL_G1_NC) .Case("tprel_g0", ARM64MCExpr::VK_TPREL_G0) .Case("tprel_g0_nc", ARM64MCExpr::VK_TPREL_G0_NC) .Case("tprel_hi12", ARM64MCExpr::VK_TPREL_HI12) .Case("tprel_lo12", ARM64MCExpr::VK_TPREL_LO12) .Case("tprel_lo12_nc", ARM64MCExpr::VK_TPREL_LO12_NC) .Case("tlsdesc_lo12", ARM64MCExpr::VK_TLSDESC_LO12) .Case("got", ARM64MCExpr::VK_GOT_PAGE) .Case("got_lo12", ARM64MCExpr::VK_GOT_LO12) .Case("gottprel", ARM64MCExpr::VK_GOTTPREL_PAGE) .Case("gottprel_lo12", ARM64MCExpr::VK_GOTTPREL_LO12_NC) .Case("gottprel_g1", ARM64MCExpr::VK_GOTTPREL_G1) .Case("gottprel_g0_nc", ARM64MCExpr::VK_GOTTPREL_G0_NC) .Case("tlsdesc", ARM64MCExpr::VK_TLSDESC_PAGE) .Default(ARM64MCExpr::VK_INVALID); if (RefKind == ARM64MCExpr::VK_INVALID) { Error(Parser.getTok().getLoc(), "expect relocation specifier in operand after ':'"); return true; } Parser.Lex(); // Eat identifier if (Parser.getTok().isNot(AsmToken::Colon)) { Error(Parser.getTok().getLoc(), "expect ':' after relocation specifier"); return true; } Parser.Lex(); // Eat ':' } if (getParser().parseExpression(ImmVal)) return true; if (HasELFModifier) ImmVal = ARM64MCExpr::Create(ImmVal, RefKind, getContext()); return false; } /// parseVectorList - Parse a vector list operand for AdvSIMD instructions. bool ARM64AsmParser::parseVectorList(OperandVector &Operands) { assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket"); SMLoc S = getLoc(); Parser.Lex(); // Eat left bracket token. StringRef Kind; int64_t FirstReg = tryMatchVectorRegister(Kind, true); if (FirstReg == -1) return true; int64_t PrevReg = FirstReg; unsigned Count = 1; if (Parser.getTok().is(AsmToken::Minus)) { Parser.Lex(); // Eat the minus. SMLoc Loc = getLoc(); StringRef NextKind; int64_t Reg = tryMatchVectorRegister(NextKind, true); if (Reg == -1) return true; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) return Error(Loc, "mismatched register size suffix"); unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg); if (Space == 0 || Space > 3) { return Error(Loc, "invalid number of vectors"); } Count += Space; } else { while (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma token. SMLoc Loc = getLoc(); StringRef NextKind; int64_t Reg = tryMatchVectorRegister(NextKind, true); if (Reg == -1) return true; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) return Error(Loc, "mismatched register size suffix"); // Registers must be incremental (with wraparound at 31) if (getContext().getRegisterInfo()->getEncodingValue(Reg) != (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) return Error(Loc, "registers must be sequential"); PrevReg = Reg; ++Count; } } if (Parser.getTok().is(AsmToken::EndOfStatement)) Error(getLoc(), "'}' expected"); Parser.Lex(); // Eat the '}' token. unsigned NumElements = 0; char ElementKind = 0; if (!Kind.empty()) parseValidVectorKind(Kind, NumElements, ElementKind); Operands.push_back(ARM64Operand::CreateVectorList( FirstReg, Count, NumElements, ElementKind, S, getLoc(), getContext())); // If there is an index specifier following the list, parse that too. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return false; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { TokError("immediate value expected for vector index"); return false; } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(E, "']' expected"); return false; } Parser.Lex(); // Eat right bracket token. Operands.push_back(ARM64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } /// parseOperand - Parse a arm instruction operand. For now this parses the /// operand regardless of the mnemonic. bool ARM64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; // Nothing custom, so do general case parsing. SMLoc S, E; switch (getLexer().getKind()) { default: { SMLoc S = getLoc(); const MCExpr *Expr; if (parseSymbolicImmVal(Expr)) return Error(S, "invalid operand"); SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext())); return false; } case AsmToken::LBrac: return parseMemory(Operands); case AsmToken::LCurly: return parseVectorList(Operands); case AsmToken::Identifier: { // If we're expecting a Condition Code operand, then just parse that. if (isCondCode) return parseCondCode(Operands, invertCondCode); // If it's a register name, parse it. if (!parseRegister(Operands)) return false; // This could be an optional "shift" operand. if (!parseOptionalShift(Operands)) return false; // Or maybe it could be an optional "extend" operand. if (!parseOptionalExtend(Operands)) return false; // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = getLoc(); if (getParser().parseExpression(IdVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(ARM64Operand::CreateImm(IdVal, S, E, getContext())); return false; } case AsmToken::Integer: case AsmToken::Real: case AsmToken::Hash: { // #42 -> immediate. S = getLoc(); if (getLexer().is(AsmToken::Hash)) Parser.Lex(); // The only Real that should come through here is a literal #0.0 for // the fcmp[e] r, #0.0 instructions. They expect raw token operands, // so convert the value. const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Real)) { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); if (IntVal != 0 || (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" && Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" && Mnemonic != "fcmlt")) return TokError("unexpected floating point literal"); Parser.Lex(); // Eat the token. Operands.push_back( ARM64Operand::CreateToken("#0", false, S, getContext())); Operands.push_back( ARM64Operand::CreateToken(".0", false, S, getContext())); return false; } const MCExpr *ImmVal; if (parseSymbolicImmVal(ImmVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(ARM64Operand::CreateImm(ImmVal, S, E, getContext())); return false; } } } /// ParseInstruction - Parse an ARM64 instruction mnemonic followed by its /// operands. bool ARM64AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { Name = StringSwitch(Name.lower()) .Case("beq", "b.eq") .Case("bne", "b.ne") .Case("bhs", "b.hs") .Case("bcs", "b.cs") .Case("blo", "b.lo") .Case("bcc", "b.cc") .Case("bmi", "b.mi") .Case("bpl", "b.pl") .Case("bvs", "b.vs") .Case("bvc", "b.vc") .Case("bhi", "b.hi") .Case("bls", "b.ls") .Case("bge", "b.ge") .Case("blt", "b.lt") .Case("bgt", "b.gt") .Case("ble", "b.le") .Case("bal", "b.al") .Case("bnv", "b.nv") .Default(Name); // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // IC, DC, AT, and TLBI instructions are aliases for the SYS instruction. if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi") return parseSysAlias(Head, NameLoc, Operands); Operands.push_back( ARM64Operand::CreateToken(Head, false, NameLoc, getContext())); Mnemonic = Head; // Handle condition codes for a branch mnemonic if (Head == "b" && Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start + 1, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data())); unsigned CC = parseCondCodeString(Head); if (CC == ARM64CC::Invalid) return Error(SuffixLoc, "invalid condition code"); const MCExpr *CCExpr = MCConstantExpr::Create(CC, getContext()); Operands.push_back( ARM64Operand::CreateImm(CCExpr, NameLoc, NameLoc, getContext())); } // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data()) + 1); Operands.push_back( ARM64Operand::CreateToken(Head, true, SuffixLoc, getContext())); } // Conditional compare instructions have a Condition Code operand, which needs // to be parsed and an immediate operand created. bool condCodeFourthOperand = (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" || Head == "fccmpe" || Head == "fcsel" || Head == "csel" || Head == "csinc" || Head == "csinv" || Head == "csneg"); // These instructions are aliases to some of the conditional select // instructions. However, the condition code is inverted in the aliased // instruction. // // FIXME: Is this the correct way to handle these? Or should the parser // generate the aliased instructions directly? bool condCodeSecondOperand = (Head == "cset" || Head == "csetm"); bool condCodeThirdOperand = (Head == "cinc" || Head == "cinv" || Head == "cneg"); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, false, false)) { Parser.eatToEndOfStatement(); return true; } unsigned N = 2; while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) || (N == 3 && condCodeThirdOperand) || (N == 2 && condCodeSecondOperand), condCodeSecondOperand || condCodeThirdOperand)) { Parser.eatToEndOfStatement(); return true; } ++N; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = Parser.getTok().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement return false; } // FIXME: This entire function is a giant hack to provide us with decent // operand range validation/diagnostics until TableGen/MC can be extended // to support autogeneration of this kind of validation. bool ARM64AsmParser::validateInstruction(MCInst &Inst, SmallVectorImpl &Loc) { const MCRegisterInfo *RI = getContext().getRegisterInfo(); // Check for indexed addressing modes w/ the base register being the // same as a destination/source register or pair load where // the Rt == Rt2. All of those are undefined behaviour. switch (Inst.getOpcode()) { case ARM64::LDPSWpre: case ARM64::LDPWpost: case ARM64::LDPWpre: case ARM64::LDPXpost: case ARM64::LDPXpre: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rt2 = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDP instruction, writeback base " "is also a destination"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable LDP instruction, writeback base " "is also a destination"); // FALLTHROUGH } case ARM64::LDPDpost: case ARM64::LDPDpre: case ARM64::LDPQpost: case ARM64::LDPQpre: case ARM64::LDPSpost: case ARM64::LDPSpre: case ARM64::LDPSWpost: case ARM64::LDPDi: case ARM64::LDPQi: case ARM64::LDPSi: case ARM64::LDPSWi: case ARM64::LDPWi: case ARM64::LDPXi: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rt2 = Inst.getOperand(1).getReg(); if (Rt == Rt2) return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt"); break; } case ARM64::STPDpost: case ARM64::STPDpre: case ARM64::STPQpost: case ARM64::STPQpre: case ARM64::STPSpost: case ARM64::STPSpre: case ARM64::STPWpost: case ARM64::STPWpre: case ARM64::STPXpost: case ARM64::STPXpre: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rt2 = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STP instruction, writeback base " "is also a source"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable STP instruction, writeback base " "is also a source"); break; } case ARM64::LDRBBpre: case ARM64::LDRBpre: case ARM64::LDRHHpre: case ARM64::LDRHpre: case ARM64::LDRSBWpre: case ARM64::LDRSBXpre: case ARM64::LDRSHWpre: case ARM64::LDRSHXpre: case ARM64::LDRSWpre: case ARM64::LDRWpre: case ARM64::LDRXpre: case ARM64::LDRBBpost: case ARM64::LDRBpost: case ARM64::LDRHHpost: case ARM64::LDRHpost: case ARM64::LDRSBWpost: case ARM64::LDRSBXpost: case ARM64::LDRSHWpost: case ARM64::LDRSHXpost: case ARM64::LDRSWpost: case ARM64::LDRWpost: case ARM64::LDRXpost: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rn = Inst.getOperand(1).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDR instruction, writeback base " "is also a source"); break; } case ARM64::STRBBpost: case ARM64::STRBpost: case ARM64::STRHHpost: case ARM64::STRHpost: case ARM64::STRWpost: case ARM64::STRXpost: case ARM64::STRBBpre: case ARM64::STRBpre: case ARM64::STRHHpre: case ARM64::STRHpre: case ARM64::STRWpre: case ARM64::STRXpre: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rn = Inst.getOperand(1).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STR instruction, writeback base " "is also a source"); break; } } // Now check immediate ranges. Separate from the above as there is overlap // in the instructions being checked and this keeps the nested conditionals // to a minimum. switch (Inst.getOpcode()) { case ARM64::ANDWrs: case ARM64::ANDSWrs: case ARM64::EORWrs: case ARM64::ORRWrs: { if (!Inst.getOperand(3).isImm()) return Error(Loc[3], "immediate value expected"); int64_t shifter = Inst.getOperand(3).getImm(); ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(shifter); if (ST == ARM64_AM::LSL && shifter > 31) return Error(Loc[3], "shift value out of range"); return false; } case ARM64::ADDSWri: case ARM64::ADDSXri: case ARM64::ADDWri: case ARM64::ADDXri: case ARM64::SUBSWri: case ARM64::SUBSXri: case ARM64::SUBWri: case ARM64::SUBXri: { if (!Inst.getOperand(3).isImm()) return Error(Loc[3], "immediate value expected"); int64_t shifter = Inst.getOperand(3).getImm(); if (shifter != 0 && shifter != 12) return Error(Loc[3], "shift value out of range"); // The imm12 operand can be an expression. Validate that it's legit. // FIXME: We really, really want to allow arbitrary expressions here // and resolve the value and validate the result at fixup time, but // that's hard as we have long since lost any source information we // need to generate good diagnostics by that point. if ((Inst.getOpcode() == ARM64::ADDXri || Inst.getOpcode() == ARM64::ADDWri) && Inst.getOperand(2).isExpr()) { const MCExpr *Expr = Inst.getOperand(2).getExpr(); ARM64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { return Error(Loc[2], "invalid immediate expression"); } // Note that we don't range-check the addend. It's adjusted modulo page // size when converted, so there is no "out of range" condition when using // @pageoff. Any validity checking for the value was done in the is*() // predicate function. if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) && Inst.getOpcode() == ARM64::ADDXri) return false; if (ELFRefKind == ARM64MCExpr::VK_LO12 || ELFRefKind == ARM64MCExpr::VK_DTPREL_HI12 || ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12 || ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == ARM64MCExpr::VK_TPREL_HI12 || ELFRefKind == ARM64MCExpr::VK_TPREL_LO12 || ELFRefKind == ARM64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == ARM64MCExpr::VK_TLSDESC_LO12) { return false; } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF) { // @gotpageoff can only be used directly, not with an addend. return Addend != 0; } // Otherwise, we're not sure, so don't allow it for now. return Error(Loc[2], "invalid immediate expression"); } // If it's anything but an immediate, it's not legit. if (!Inst.getOperand(2).isImm()) return Error(Loc[2], "invalid immediate expression"); int64_t imm = Inst.getOperand(2).getImm(); if (imm > 4095 || imm < 0) return Error(Loc[2], "immediate value out of range"); return false; } case ARM64::LDRBpre: case ARM64::LDRHpre: case ARM64::LDRSBWpre: case ARM64::LDRSBXpre: case ARM64::LDRSHWpre: case ARM64::LDRSHXpre: case ARM64::LDRWpre: case ARM64::LDRXpre: case ARM64::LDRSpre: case ARM64::LDRDpre: case ARM64::LDRQpre: case ARM64::STRBpre: case ARM64::STRHpre: case ARM64::STRWpre: case ARM64::STRXpre: case ARM64::STRSpre: case ARM64::STRDpre: case ARM64::STRQpre: case ARM64::LDRBpost: case ARM64::LDRHpost: case ARM64::LDRSBWpost: case ARM64::LDRSBXpost: case ARM64::LDRSHWpost: case ARM64::LDRSHXpost: case ARM64::LDRWpost: case ARM64::LDRXpost: case ARM64::LDRSpost: case ARM64::LDRDpost: case ARM64::LDRQpost: case ARM64::STRBpost: case ARM64::STRHpost: case ARM64::STRWpost: case ARM64::STRXpost: case ARM64::STRSpost: case ARM64::STRDpost: case ARM64::STRQpost: case ARM64::LDTRXi: case ARM64::LDTRWi: case ARM64::LDTRHi: case ARM64::LDTRBi: case ARM64::LDTRSHWi: case ARM64::LDTRSHXi: case ARM64::LDTRSBWi: case ARM64::LDTRSBXi: case ARM64::LDTRSWi: case ARM64::STTRWi: case ARM64::STTRXi: case ARM64::STTRHi: case ARM64::STTRBi: case ARM64::LDURWi: case ARM64::LDURXi: case ARM64::LDURSi: case ARM64::LDURDi: case ARM64::LDURQi: case ARM64::LDURHi: case ARM64::LDURBi: case ARM64::LDURSHWi: case ARM64::LDURSHXi: case ARM64::LDURSBWi: case ARM64::LDURSBXi: case ARM64::LDURSWi: case ARM64::PRFUMi: case ARM64::STURWi: case ARM64::STURXi: case ARM64::STURSi: case ARM64::STURDi: case ARM64::STURQi: case ARM64::STURHi: case ARM64::STURBi: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(2).isImm()) return Error(Loc[1], "immediate value expected"); int64_t offset = Inst.getOperand(2).getImm(); if (offset > 255 || offset < -256) return Error(Loc[1], "offset value out of range"); return false; } case ARM64::LDRSro: case ARM64::LDRWro: case ARM64::LDRSWro: case ARM64::STRWro: case ARM64::STRSro: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(3).isImm()) return Error(Loc[1], "immediate value expected"); int64_t shift = Inst.getOperand(3).getImm(); ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift); if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX && type != ARM64_AM::SXTW && type != ARM64_AM::SXTX) return Error(Loc[1], "shift type invalid"); return false; } case ARM64::LDRDro: case ARM64::LDRQro: case ARM64::LDRXro: case ARM64::PRFMro: case ARM64::STRXro: case ARM64::STRDro: case ARM64::STRQro: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(3).isImm()) return Error(Loc[1], "immediate value expected"); int64_t shift = Inst.getOperand(3).getImm(); ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift); if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX && type != ARM64_AM::SXTW && type != ARM64_AM::SXTX) return Error(Loc[1], "shift type invalid"); return false; } case ARM64::LDRHro: case ARM64::LDRHHro: case ARM64::LDRSHWro: case ARM64::LDRSHXro: case ARM64::STRHro: case ARM64::STRHHro: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(3).isImm()) return Error(Loc[1], "immediate value expected"); int64_t shift = Inst.getOperand(3).getImm(); ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift); if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX && type != ARM64_AM::SXTW && type != ARM64_AM::SXTX) return Error(Loc[1], "shift type invalid"); return false; } case ARM64::LDRBro: case ARM64::LDRBBro: case ARM64::LDRSBWro: case ARM64::LDRSBXro: case ARM64::STRBro: case ARM64::STRBBro: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(3).isImm()) return Error(Loc[1], "immediate value expected"); int64_t shift = Inst.getOperand(3).getImm(); ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift); if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX && type != ARM64_AM::SXTW && type != ARM64_AM::SXTX) return Error(Loc[1], "shift type invalid"); return false; } case ARM64::LDPWi: case ARM64::LDPXi: case ARM64::LDPSi: case ARM64::LDPDi: case ARM64::LDPQi: case ARM64::LDPSWi: case ARM64::STPWi: case ARM64::STPXi: case ARM64::STPSi: case ARM64::STPDi: case ARM64::STPQi: case ARM64::LDPWpre: case ARM64::LDPXpre: case ARM64::LDPSpre: case ARM64::LDPDpre: case ARM64::LDPQpre: case ARM64::LDPSWpre: case ARM64::STPWpre: case ARM64::STPXpre: case ARM64::STPSpre: case ARM64::STPDpre: case ARM64::STPQpre: case ARM64::LDPWpost: case ARM64::LDPXpost: case ARM64::LDPSpost: case ARM64::LDPDpost: case ARM64::LDPQpost: case ARM64::LDPSWpost: case ARM64::STPWpost: case ARM64::STPXpost: case ARM64::STPSpost: case ARM64::STPDpost: case ARM64::STPQpost: case ARM64::LDNPWi: case ARM64::LDNPXi: case ARM64::LDNPSi: case ARM64::LDNPDi: case ARM64::LDNPQi: case ARM64::STNPWi: case ARM64::STNPXi: case ARM64::STNPSi: case ARM64::STNPDi: case ARM64::STNPQi: { // FIXME: Should accept expressions and error in fixup evaluation // if out of range. if (!Inst.getOperand(3).isImm()) return Error(Loc[2], "immediate value expected"); int64_t offset = Inst.getOperand(3).getImm(); if (offset > 63 || offset < -64) return Error(Loc[2], "offset value out of range"); return false; } default: return false; } } static void rewriteMOVI(ARM64AsmParser::OperandVector &Operands, StringRef mnemonic, uint64_t imm, unsigned shift, MCContext &Context) { ARM64Operand *Op = static_cast(Operands[0]); ARM64Operand *Op2 = static_cast(Operands[2]); Operands[0] = ARM64Operand::CreateToken(mnemonic, false, Op->getStartLoc(), Context); const MCExpr *NewImm = MCConstantExpr::Create(imm >> shift, Context); Operands[2] = ARM64Operand::CreateImm(NewImm, Op2->getStartLoc(), Op2->getEndLoc(), Context); Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, shift, Op2->getStartLoc(), Op2->getEndLoc(), Context)); delete Op2; delete Op; } static void rewriteMOVRSP(ARM64AsmParser::OperandVector &Operands, MCContext &Context) { ARM64Operand *Op = static_cast(Operands[0]); ARM64Operand *Op2 = static_cast(Operands[2]); Operands[0] = ARM64Operand::CreateToken("add", false, Op->getStartLoc(), Context); const MCExpr *Imm = MCConstantExpr::Create(0, Context); Operands.push_back(ARM64Operand::CreateImm(Imm, Op2->getStartLoc(), Op2->getEndLoc(), Context)); Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, 0, Op2->getStartLoc(), Op2->getEndLoc(), Context)); delete Op; } static void rewriteMOVR(ARM64AsmParser::OperandVector &Operands, MCContext &Context) { ARM64Operand *Op = static_cast(Operands[0]); ARM64Operand *Op2 = static_cast(Operands[2]); Operands[0] = ARM64Operand::CreateToken("orr", false, Op->getStartLoc(), Context); // Operands[2] becomes Operands[3]. Operands.push_back(Operands[2]); // And Operands[2] becomes ZR. unsigned ZeroReg = ARM64::XZR; if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains( Operands[2]->getReg())) ZeroReg = ARM64::WZR; Operands[2] = ARM64Operand::CreateReg(ZeroReg, false, Op2->getStartLoc(), Op2->getEndLoc(), Context); delete Op; } bool ARM64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) { switch (ErrCode) { case Match_MissingFeature: return Error(Loc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: return Error(Loc, "invalid operand for instruction"); case Match_InvalidSuffix: return Error(Loc, "invalid type suffix for instruction"); case Match_InvalidMemoryIndexedSImm9: return Error(Loc, "index must be an integer in range [-256,255]."); case Match_InvalidMemoryIndexed32SImm7: return Error(Loc, "index must be a multiple of 4 in range [-256,252]."); case Match_InvalidMemoryIndexed64SImm7: return Error(Loc, "index must be a multiple of 8 in range [-512,504]."); case Match_InvalidMemoryIndexed128SImm7: return Error(Loc, "index must be a multiple of 16 in range [-1024,1008]."); case Match_InvalidMemoryIndexed8: return Error(Loc, "index must be an integer in range [0,4095]."); case Match_InvalidMemoryIndexed16: return Error(Loc, "index must be a multiple of 2 in range [0,8190]."); case Match_InvalidMemoryIndexed32: return Error(Loc, "index must be a multiple of 4 in range [0,16380]."); case Match_InvalidMemoryIndexed64: return Error(Loc, "index must be a multiple of 8 in range [0,32760]."); case Match_InvalidMemoryIndexed128: return Error(Loc, "index must be a multiple of 16 in range [0,65520]."); case Match_InvalidImm1_8: return Error(Loc, "immediate must be an integer in range [1,8]."); case Match_InvalidImm1_16: return Error(Loc, "immediate must be an integer in range [1,16]."); case Match_InvalidImm1_32: return Error(Loc, "immediate must be an integer in range [1,32]."); case Match_InvalidImm1_64: return Error(Loc, "immediate must be an integer in range [1,64]."); case Match_InvalidLabel: return Error(Loc, "expected label or encodable integer pc offset"); case Match_MRS: return Error(Loc, "expected readable system register"); case Match_MSR: return Error(Loc, "expected writable system register or pstate"); case Match_MnemonicFail: return Error(Loc, "unrecognized instruction mnemonic"); default: assert(0 && "unexpected error code!"); return Error(Loc, "invalid instruction format"); } } static const char *getSubtargetFeatureName(unsigned Val); bool ARM64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) { assert(!Operands.empty() && "Unexpect empty operand list!"); ARM64Operand *Op = static_cast(Operands[0]); assert(Op->isToken() && "Leading operand should always be a mnemonic!"); StringRef Tok = Op->getToken(); // Translate CMN/CMP pseudos to ADDS/SUBS with zero register destination. // This needs to be done before the special handling of ADD/SUB immediates. if (Tok == "cmp" || Tok == "cmn") { // Replace the opcode with either ADDS or SUBS. const char *Repl = StringSwitch(Tok) .Case("cmp", "subs") .Case("cmn", "adds") .Default(nullptr); assert(Repl && "Unknown compare instruction"); delete Operands[0]; Operands[0] = ARM64Operand::CreateToken(Repl, false, IDLoc, getContext()); // Insert WZR or XZR as destination operand. ARM64Operand *RegOp = static_cast(Operands[1]); unsigned ZeroReg; if (RegOp->isReg() && ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains( RegOp->getReg())) ZeroReg = ARM64::WZR; else ZeroReg = ARM64::XZR; Operands.insert( Operands.begin() + 1, ARM64Operand::CreateReg(ZeroReg, false, IDLoc, IDLoc, getContext())); // Update since we modified it above. ARM64Operand *Op = static_cast(Operands[0]); Tok = Op->getToken(); } unsigned NumOperands = Operands.size(); if (Tok == "mov" && NumOperands == 3) { // The MOV mnemomic is aliased to movn/movz, depending on the value of // the immediate being instantiated. // FIXME: Catching this here is a total hack, and we should use tblgen // support to implement this instead as soon as it is available. ARM64Operand *Op1 = static_cast(Operands[1]); ARM64Operand *Op2 = static_cast(Operands[2]); if (Op2->isImm()) { if (const MCConstantExpr *CE = dyn_cast(Op2->getImm())) { uint64_t Val = CE->getValue(); uint64_t NVal = ~Val; // If this is a 32-bit register and the value has none of the upper // set, clear the complemented upper 32-bits so the logic below works // for 32-bit registers too. ARM64Operand *Op1 = static_cast(Operands[1]); if (Op1->isReg() && ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains( Op1->getReg()) && (Val & 0xFFFFFFFFULL) == Val) NVal &= 0x00000000FFFFFFFFULL; // MOVK Rd, imm << 0 if ((Val & 0xFFFF) == Val) rewriteMOVI(Operands, "movz", Val, 0, getContext()); // MOVK Rd, imm << 16 else if ((Val & 0xFFFF0000ULL) == Val) rewriteMOVI(Operands, "movz", Val, 16, getContext()); // MOVK Rd, imm << 32 else if ((Val & 0xFFFF00000000ULL) == Val) rewriteMOVI(Operands, "movz", Val, 32, getContext()); // MOVK Rd, imm << 48 else if ((Val & 0xFFFF000000000000ULL) == Val) rewriteMOVI(Operands, "movz", Val, 48, getContext()); // MOVN Rd, (~imm << 0) else if ((NVal & 0xFFFFULL) == NVal) rewriteMOVI(Operands, "movn", NVal, 0, getContext()); // MOVN Rd, ~(imm << 16) else if ((NVal & 0xFFFF0000ULL) == NVal) rewriteMOVI(Operands, "movn", NVal, 16, getContext()); // MOVN Rd, ~(imm << 32) else if ((NVal & 0xFFFF00000000ULL) == NVal) rewriteMOVI(Operands, "movn", NVal, 32, getContext()); // MOVN Rd, ~(imm << 48) else if ((NVal & 0xFFFF000000000000ULL) == NVal) rewriteMOVI(Operands, "movn", NVal, 48, getContext()); } } else if (Op1->isReg() && Op2->isReg()) { // reg->reg move. unsigned Reg1 = Op1->getReg(); unsigned Reg2 = Op2->getReg(); if ((Reg1 == ARM64::SP && ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(Reg2)) || (Reg2 == ARM64::SP && ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(Reg1)) || (Reg1 == ARM64::WSP && ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg2)) || (Reg2 == ARM64::WSP && ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg1))) rewriteMOVRSP(Operands, getContext()); else rewriteMOVR(Operands, getContext()); } } else if (NumOperands == 4) { if (Tok == "add" || Tok == "adds" || Tok == "sub" || Tok == "subs") { // Handle the uimm24 immediate form, where the shift is not specified. ARM64Operand *Op3 = static_cast(Operands[3]); if (Op3->isImm()) { if (const MCConstantExpr *CE = dyn_cast(Op3->getImm())) { uint64_t Val = CE->getValue(); if (Val >= (1 << 24)) { Error(IDLoc, "immediate value is too large"); return true; } if (Val < (1 << 12)) { Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext())); } else if ((Val & 0xfff) == 0) { delete Operands[3]; CE = MCConstantExpr::Create(Val >> 12, getContext()); Operands[3] = ARM64Operand::CreateImm(CE, IDLoc, IDLoc, getContext()); Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, 12, IDLoc, IDLoc, getContext())); } else { Error(IDLoc, "immediate value is too large"); return true; } } else { Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext())); } } // FIXME: Horible hack to handle the LSL -> UBFM alias. } else if (NumOperands == 4 && Tok == "lsl") { ARM64Operand *Op2 = static_cast(Operands[2]); ARM64Operand *Op3 = static_cast(Operands[3]); if (Op2->isReg() && Op3->isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3->getImm()); if (Op3CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t NewOp3Val = 0; uint64_t NewOp4Val = 0; if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains( Op2->getReg())) { NewOp3Val = (32 - Op3Val) & 0x1f; NewOp4Val = 31 - Op3Val; } else { NewOp3Val = (64 - Op3Val) & 0x3f; NewOp4Val = 63 - Op3Val; } const MCExpr *NewOp3 = MCConstantExpr::Create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[0] = ARM64Operand::CreateToken( "ubfm", false, Op->getStartLoc(), getContext()); Operands[3] = ARM64Operand::CreateImm(NewOp3, Op3->getStartLoc(), Op3->getEndLoc(), getContext()); Operands.push_back(ARM64Operand::CreateImm( NewOp4, Op3->getStartLoc(), Op3->getEndLoc(), getContext())); delete Op3; delete Op; } } // FIXME: Horrible hack to handle the optional LSL shift for vector // instructions. } else if (NumOperands == 4 && (Tok == "bic" || Tok == "orr")) { ARM64Operand *Op1 = static_cast(Operands[1]); ARM64Operand *Op2 = static_cast(Operands[2]); ARM64Operand *Op3 = static_cast(Operands[3]); if ((Op1->isToken() && Op2->isVectorReg() && Op3->isImm()) || (Op1->isVectorReg() && Op2->isToken() && Op3->isImm())) Operands.push_back(ARM64Operand::CreateShifter(ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext())); } else if (NumOperands == 4 && (Tok == "movi" || Tok == "mvni")) { ARM64Operand *Op1 = static_cast(Operands[1]); ARM64Operand *Op2 = static_cast(Operands[2]); ARM64Operand *Op3 = static_cast(Operands[3]); if ((Op1->isToken() && Op2->isVectorReg() && Op3->isImm()) || (Op1->isVectorReg() && Op2->isToken() && Op3->isImm())) { StringRef Suffix = Op1->isToken() ? Op1->getToken() : Op2->getToken(); // Canonicalize on lower-case for ease of comparison. std::string CanonicalSuffix = Suffix.lower(); if (Tok != "movi" || (CanonicalSuffix != ".1d" && CanonicalSuffix != ".2d" && CanonicalSuffix != ".8b" && CanonicalSuffix != ".16b")) Operands.push_back(ARM64Operand::CreateShifter( ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext())); } } } else if (NumOperands == 5) { // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and // UBFIZ -> UBFM aliases. if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") { ARM64Operand *Op1 = static_cast(Operands[1]); ARM64Operand *Op3 = static_cast(Operands[3]); ARM64Operand *Op4 = static_cast(Operands[4]); if (Op1->isReg() && Op3->isImm() && Op4->isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3->getImm()); const MCConstantExpr *Op4CE = dyn_cast(Op4->getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t NewOp3Val = 0; if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains( Op1->getReg())) NewOp3Val = (32 - Op3Val) & 0x1f; else NewOp3Val = (64 - Op3Val) & 0x3f; uint64_t NewOp4Val = Op4Val - 1; const MCExpr *NewOp3 = MCConstantExpr::Create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[3] = ARM64Operand::CreateImm(NewOp3, Op3->getStartLoc(), Op3->getEndLoc(), getContext()); Operands[4] = ARM64Operand::CreateImm(NewOp4, Op4->getStartLoc(), Op4->getEndLoc(), getContext()); if (Tok == "bfi") Operands[0] = ARM64Operand::CreateToken( "bfm", false, Op->getStartLoc(), getContext()); else if (Tok == "sbfiz") Operands[0] = ARM64Operand::CreateToken( "sbfm", false, Op->getStartLoc(), getContext()); else if (Tok == "ubfiz") Operands[0] = ARM64Operand::CreateToken( "ubfm", false, Op->getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); delete Op; delete Op3; delete Op4; } } // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and // UBFX -> UBFM aliases. } else if (NumOperands == 5 && (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) { ARM64Operand *Op1 = static_cast(Operands[1]); ARM64Operand *Op3 = static_cast(Operands[3]); ARM64Operand *Op4 = static_cast(Operands[4]); if (Op1->isReg() && Op3->isImm() && Op4->isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3->getImm()); const MCConstantExpr *Op4CE = dyn_cast(Op4->getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t NewOp4Val = Op3Val + Op4Val - 1; if (NewOp4Val >= Op3Val) { const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[4] = ARM64Operand::CreateImm( NewOp4, Op4->getStartLoc(), Op4->getEndLoc(), getContext()); if (Tok == "bfxil") Operands[0] = ARM64Operand::CreateToken( "bfm", false, Op->getStartLoc(), getContext()); else if (Tok == "sbfx") Operands[0] = ARM64Operand::CreateToken( "sbfm", false, Op->getStartLoc(), getContext()); else if (Tok == "ubfx") Operands[0] = ARM64Operand::CreateToken( "ubfm", false, Op->getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); delete Op; delete Op4; } } } } } // FIXME: Horrible hack for tbz and tbnz with Wn register operand. // InstAlias can't quite handle this since the reg classes aren't // subclasses. if (NumOperands == 4 && (Tok == "tbz" || Tok == "tbnz")) { ARM64Operand *Op = static_cast(Operands[2]); if (Op->isImm()) { if (const MCConstantExpr *OpCE = dyn_cast(Op->getImm())) { if (OpCE->getValue() < 32) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. ARM64Operand *Op = static_cast(Operands[1]); if (Op->isReg()) { unsigned Reg = getXRegFromWReg(Op->getReg()); Operands[1] = ARM64Operand::CreateReg( Reg, false, Op->getStartLoc(), Op->getEndLoc(), getContext()); delete Op; } } } } } // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands. // InstAlias can't quite handle this since the reg classes aren't // subclasses. if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. ARM64Operand *Op = static_cast(Operands[2]); if (Op->isReg()) { unsigned Reg = getXRegFromWReg(Op->getReg()); Operands[2] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(), Op->getEndLoc(), getContext()); delete Op; } } // FIXME: Likewise for sxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) { ARM64Operand *Op = static_cast(Operands[1]); if (Op->isReg() && ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains( Op->getReg())) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. ARM64Operand *Op = static_cast(Operands[2]); if (Op->isReg()) { unsigned Reg = getXRegFromWReg(Op->getReg()); Operands[2] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(), Op->getEndLoc(), getContext()); delete Op; } } } // FIXME: Likewise for uxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) { ARM64Operand *Op = static_cast(Operands[1]); if (Op->isReg() && ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains( Op->getReg())) { // The source register can be Wn here, but the matcher expects a // GPR32. Twiddle it here if necessary. ARM64Operand *Op = static_cast(Operands[1]); if (Op->isReg()) { unsigned Reg = getWRegFromXReg(Op->getReg()); Operands[1] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(), Op->getEndLoc(), getContext()); delete Op; } } } // Yet another horrible hack to handle FMOV Rd, #0.0 using [WX]ZR. if (NumOperands == 3 && Tok == "fmov") { ARM64Operand *RegOp = static_cast(Operands[1]); ARM64Operand *ImmOp = static_cast(Operands[2]); if (RegOp->isReg() && ImmOp->isFPImm() && ImmOp->getFPImm() == (unsigned)-1) { unsigned zreg = ARM64MCRegisterClasses[ARM64::FPR32RegClassID].contains( RegOp->getReg()) ? ARM64::WZR : ARM64::XZR; Operands[2] = ARM64Operand::CreateReg(zreg, false, Op->getStartLoc(), Op->getEndLoc(), getContext()); delete ImmOp; } } // FIXME: Horrible hack to handle the literal .d[1] vector index on // FMOV instructions. The index isn't an actual instruction operand // but rather syntactic sugar. It really should be part of the mnemonic, // not the operand, but whatever. if ((NumOperands == 5) && Tok == "fmov") { // If the last operand is a vectorindex of '1', then replace it with // a '[' '1' ']' token sequence, which is what the matcher // (annoyingly) expects for a literal vector index operand. ARM64Operand *Op = static_cast(Operands[NumOperands - 1]); if (Op->isVectorIndexD() && Op->getVectorIndex() == 1) { SMLoc Loc = Op->getStartLoc(); Operands.pop_back(); delete Op; Operands.push_back( ARM64Operand::CreateToken("[", false, Loc, getContext())); Operands.push_back( ARM64Operand::CreateToken("1", false, Loc, getContext())); Operands.push_back( ARM64Operand::CreateToken("]", false, Loc, getContext())); } else if (Op->isReg()) { // Similarly, check the destination operand for the GPR->High-lane // variant. unsigned OpNo = NumOperands - 2; ARM64Operand *Op = static_cast(Operands[OpNo]); if (Op->isVectorIndexD() && Op->getVectorIndex() == 1) { SMLoc Loc = Op->getStartLoc(); Operands[OpNo] = ARM64Operand::CreateToken("[", false, Loc, getContext()); Operands.insert( Operands.begin() + OpNo + 1, ARM64Operand::CreateToken("1", false, Loc, getContext())); Operands.insert( Operands.begin() + OpNo + 2, ARM64Operand::CreateToken("]", false, Loc, getContext())); delete Op; } } } MCInst Inst; // First try to match against the secondary set of tables containing the // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2"). unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1); // If that fails, try against the alternate table containing long-form NEON: // "fadd v0.2s, v1.2s, v2.2s" if (MatchResult != Match_Success) MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0); switch (MatchResult) { case Match_Success: { // Perform range checking and other semantic validations SmallVector OperandLocs; NumOperands = Operands.size(); for (unsigned i = 1; i < NumOperands; ++i) OperandLocs.push_back(Operands[i]->getStartLoc()); if (validateInstruction(Inst, OperandLocs)) return true; Inst.setLoc(IDLoc); Out.EmitInstruction(Inst, STI); return false; } case Match_MissingFeature: { assert(ErrorInfo && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing (neon, e.g.). std::string Msg = "instruction requires:"; unsigned Mask = 1; for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { if (ErrorInfo & Mask) { Msg += " "; Msg += getSubtargetFeatureName(ErrorInfo & Mask); } Mask <<= 1; } return Error(IDLoc, Msg); } case Match_MnemonicFail: return showMatchError(IDLoc, MatchResult); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } // If the match failed on a suffix token operand, tweak the diagnostic // accordingly. if (((ARM64Operand *)Operands[ErrorInfo])->isToken() && ((ARM64Operand *)Operands[ErrorInfo])->isTokenSuffix()) MatchResult = Match_InvalidSuffix; return showMatchError(ErrorLoc, MatchResult); } case Match_InvalidMemoryIndexedSImm9: { // If there is not a '!' after the memory operand that failed, we really // want the diagnostic for the non-pre-indexed instruction variant instead. // Be careful to check for the post-indexed variant as well, which also // uses this match diagnostic. Also exclude the explicitly unscaled // mnemonics, as they want the unscaled diagnostic as well. if (Operands.size() == ErrorInfo + 1 && !((ARM64Operand *)Operands[ErrorInfo])->isImm() && !Tok.startswith("stur") && !Tok.startswith("ldur")) { // whether we want an Indexed64 or Indexed32 diagnostic depends on // the register class of the previous operand. Default to 64 in case // we see something unexpected. MatchResult = Match_InvalidMemoryIndexed64; if (ErrorInfo) { ARM64Operand *PrevOp = (ARM64Operand *)Operands[ErrorInfo - 1]; if (PrevOp->isReg() && ARM64MCRegisterClasses[ARM64::GPR32RegClassID].contains( PrevOp->getReg())) MatchResult = Match_InvalidMemoryIndexed32; } } SMLoc ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return showMatchError(ErrorLoc, MatchResult); } case Match_InvalidMemoryIndexed32: case Match_InvalidMemoryIndexed64: case Match_InvalidMemoryIndexed128: // If there is a '!' after the memory operand that failed, we really // want the diagnostic for the pre-indexed instruction variant instead. if (Operands.size() > ErrorInfo + 1 && ((ARM64Operand *)Operands[ErrorInfo + 1])->isTokenEqual("!")) MatchResult = Match_InvalidMemoryIndexedSImm9; // FALL THROUGH case Match_InvalidMemoryIndexed8: case Match_InvalidMemoryIndexed16: case Match_InvalidMemoryIndexed32SImm7: case Match_InvalidMemoryIndexed64SImm7: case Match_InvalidMemoryIndexed128SImm7: case Match_InvalidImm1_8: case Match_InvalidImm1_16: case Match_InvalidImm1_32: case Match_InvalidImm1_64: case Match_InvalidLabel: case Match_MSR: case Match_MRS: { // Any time we get here, there's nothing fancy to do. Just get the // operand SMLoc and display the diagnostic. SMLoc ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc(); // If it's a memory operand, the error is with the offset immediate, // so get that location instead. if (((ARM64Operand *)Operands[ErrorInfo])->isMem()) ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getOffsetLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return showMatchError(ErrorLoc, MatchResult); } } llvm_unreachable("Implement any new match types added!"); return true; } /// ParseDirective parses the arm specific directives bool ARM64AsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); SMLoc Loc = DirectiveID.getLoc(); if (IDVal == ".hword") return parseDirectiveWord(2, Loc); if (IDVal == ".word") return parseDirectiveWord(4, Loc); if (IDVal == ".xword") return parseDirectiveWord(8, Loc); if (IDVal == ".tlsdesccall") return parseDirectiveTLSDescCall(Loc); return parseDirectiveLOH(IDVal, Loc); } /// parseDirectiveWord /// ::= .word [ expression (, expression)* ] bool ARM64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } // parseDirectiveTLSDescCall: // ::= .tlsdesccall symbol bool ARM64AsmParser::parseDirectiveTLSDescCall(SMLoc L) { StringRef Name; if (getParser().parseIdentifier(Name)) return Error(L, "expected symbol after directive"); MCSymbol *Sym = getContext().GetOrCreateSymbol(Name); const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, getContext()); Expr = ARM64MCExpr::Create(Expr, ARM64MCExpr::VK_TLSDESC, getContext()); MCInst Inst; Inst.setOpcode(ARM64::TLSDESCCALL); Inst.addOperand(MCOperand::CreateExpr(Expr)); getParser().getStreamer().EmitInstruction(Inst, STI); return false; } /// ::= .loh label1, ..., labelN /// The number of arguments depends on the loh identifier. bool ARM64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) { if (IDVal != MCLOHDirectiveName()) return true; MCLOHType Kind; if (getParser().getTok().isNot(AsmToken::Identifier)) { if (getParser().getTok().isNot(AsmToken::Integer)) return TokError("expected an identifier or a number in directive"); // We successfully get a numeric value for the identifier. // Check if it is valid. int64_t Id = getParser().getTok().getIntVal(); Kind = (MCLOHType)Id; // Check that Id does not overflow MCLOHType. if (!isValidMCLOHType(Kind) || Id != Kind) return TokError("invalid numeric identifier in directive"); } else { StringRef Name = getTok().getIdentifier(); // We successfully parse an identifier. // Check if it is a recognized one. int Id = MCLOHNameToId(Name); if (Id == -1) return TokError("invalid identifier in directive"); Kind = (MCLOHType)Id; } // Consume the identifier. Lex(); // Get the number of arguments of this LOH. int NbArgs = MCLOHIdToNbArgs(Kind); assert(NbArgs != -1 && "Invalid number of arguments"); SmallVector Args; for (int Idx = 0; Idx < NbArgs; ++Idx) { StringRef Name; if (getParser().parseIdentifier(Name)) return TokError("expected identifier in directive"); Args.push_back(getContext().GetOrCreateSymbol(Name)); if (Idx + 1 == NbArgs) break; if (getLexer().isNot(AsmToken::Comma)) return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); Lex(); } if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); getStreamer().EmitLOHDirective((MCLOHType)Kind, Args); return false; } bool ARM64AsmParser::classifySymbolRef(const MCExpr *Expr, ARM64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend) { ELFRefKind = ARM64MCExpr::VK_INVALID; DarwinRefKind = MCSymbolRefExpr::VK_None; Addend = 0; if (const ARM64MCExpr *AE = dyn_cast(Expr)) { ELFRefKind = AE->getKind(); Expr = AE->getSubExpr(); } const MCSymbolRefExpr *SE = dyn_cast(Expr); if (SE) { // It's a simple symbol reference with no addend. DarwinRefKind = SE->getKind(); return true; } const MCBinaryExpr *BE = dyn_cast(Expr); if (!BE) return false; SE = dyn_cast(BE->getLHS()); if (!SE) return false; DarwinRefKind = SE->getKind(); if (BE->getOpcode() != MCBinaryExpr::Add && BE->getOpcode() != MCBinaryExpr::Sub) return false; // See if the addend is is a constant, otherwise there's more going // on here than we can deal with. auto AddendExpr = dyn_cast(BE->getRHS()); if (!AddendExpr) return false; Addend = AddendExpr->getValue(); if (BE->getOpcode() == MCBinaryExpr::Sub) Addend = -Addend; // It's some symbol reference + a constant addend, but really // shouldn't use both Darwin and ELF syntax. return ELFRefKind == ARM64MCExpr::VK_INVALID || DarwinRefKind == MCSymbolRefExpr::VK_None; } /// Force static initialization. extern "C" void LLVMInitializeARM64AsmParser() { RegisterMCAsmParser X(TheARM64leTarget); RegisterMCAsmParser Y(TheARM64beTarget); } #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #include "ARM64GenAsmMatcher.inc" // Define this matcher function after the auto-generated include so we // have the match class enum definitions. unsigned ARM64AsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp, unsigned Kind) { ARM64Operand *Op = static_cast(AsmOp); // If the kind is a token for a literal immediate, check if our asm // operand matches. This is for InstAliases which have a fixed-value // immediate in the syntax. int64_t ExpectedVal; switch (Kind) { default: return Match_InvalidOperand; case MCK__35_0: ExpectedVal = 0; break; case MCK__35_1: ExpectedVal = 1; break; case MCK__35_12: ExpectedVal = 12; break; case MCK__35_16: ExpectedVal = 16; break; case MCK__35_2: ExpectedVal = 2; break; case MCK__35_24: ExpectedVal = 24; break; case MCK__35_3: ExpectedVal = 3; break; case MCK__35_32: ExpectedVal = 32; break; case MCK__35_4: ExpectedVal = 4; break; case MCK__35_48: ExpectedVal = 48; break; case MCK__35_6: ExpectedVal = 6; break; case MCK__35_64: ExpectedVal = 64; break; case MCK__35_8: ExpectedVal = 8; break; } if (!Op->isImm()) return Match_InvalidOperand; const MCConstantExpr *CE = dyn_cast(Op->getImm()); if (!CE) return Match_InvalidOperand; if (CE->getValue() == ExpectedVal) return Match_Success; return Match_InvalidOperand; }