//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a basic-block vectorization pass. The algorithm was // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral, // et al. It works by looking for chains of pairable operations and then // pairing them. // //===----------------------------------------------------------------------===// #define BBV_NAME "bb-vectorize" #define DEBUG_TYPE BBV_NAME #include "llvm/Transforms/Vectorize.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; static cl::opt IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false), cl::Hidden, cl::desc("Ignore target information")); static cl::opt ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, cl::desc("The required chain depth for vectorization")); static cl::opt UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false), cl::Hidden, cl::desc("Use the chain depth requirement with" " target information")); static cl::opt SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, cl::desc("The maximum search distance for instruction pairs")); static cl::opt SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden, cl::desc("Replicating one element to a pair breaks the chain")); static cl::opt VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden, cl::desc("The size of the native vector registers")); static cl::opt MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden, cl::desc("The maximum number of pairing iterations")); static cl::opt Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden, cl::desc("Don't try to form non-2^n-length vectors")); static cl::opt MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden, cl::desc("The maximum number of pairable instructions per group")); static cl::opt MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200), cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use" " a full cycle check")); static cl::opt NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize boolean (i1) values")); static cl::opt NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize integer values")); static cl::opt NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point values")); // FIXME: This should default to false once pointer vector support works. static cl::opt NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden, cl::desc("Don't try to vectorize pointer values")); static cl::opt NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize casting (conversion) operations")); static cl::opt NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point math intrinsics")); static cl::opt NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize the fused-multiply-add intrinsic")); static cl::opt NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize select instructions")); static cl::opt NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize comparison instructions")); static cl::opt NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize getelementptr instructions")); static cl::opt NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize loads and stores")); static cl::opt AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden, cl::desc("Only generate aligned loads and stores")); static cl::opt NoMemOpBoost("bb-vectorize-no-mem-op-boost", cl::init(false), cl::Hidden, cl::desc("Don't boost the chain-depth contribution of loads and stores")); static cl::opt FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden, cl::desc("Use a fast instruction dependency analysis")); #ifndef NDEBUG static cl::opt DebugInstructionExamination("bb-vectorize-debug-instruction-examination", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " instruction-examination process")); static cl::opt DebugCandidateSelection("bb-vectorize-debug-candidate-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " candidate-selection process")); static cl::opt DebugPairSelection("bb-vectorize-debug-pair-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " pair-selection process")); static cl::opt DebugCycleCheck("bb-vectorize-debug-cycle-check", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " cycle-checking process")); static cl::opt PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, dump the basic block after" " every pair is fused")); #endif STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); namespace { struct BBVectorize : public BasicBlockPass { static char ID; // Pass identification, replacement for typeid const VectorizeConfig Config; BBVectorize(const VectorizeConfig &C = VectorizeConfig()) : BasicBlockPass(ID), Config(C) { initializeBBVectorizePass(*PassRegistry::getPassRegistry()); } BBVectorize(Pass *P, const VectorizeConfig &C) : BasicBlockPass(ID), Config(C) { AA = &P->getAnalysis(); DT = &P->getAnalysis(); SE = &P->getAnalysis(); TD = P->getAnalysisIfAvailable(); TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis(); } typedef std::pair ValuePair; typedef std::pair ValuePairWithCost; typedef std::pair ValuePairWithDepth; typedef std::pair VPPair; // A ValuePair pair typedef std::pair VPPairWithType; typedef std::pair::iterator, std::multimap::iterator> VPIteratorPair; typedef std::pair::iterator, std::multimap::iterator> VPPIteratorPair; AliasAnalysis *AA; DominatorTree *DT; ScalarEvolution *SE; DataLayout *TD; const TargetTransformInfo *TTI; // FIXME: const correct? bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false); bool getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap &CandidatePairs, DenseSet &FixedOrderPairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, bool NonPow2Len); // FIXME: The current implementation does not account for pairs that // are connected in multiple ways. For example: // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap) enum PairConnectionType { PairConnectionDirect, PairConnectionSwap, PairConnectionSplat }; void computeConnectedPairs(std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseMap &PairConnectionTypes); void buildDepMap(BasicBlock &BB, std::multimap &CandidatePairs, std::vector &PairableInsts, DenseSet &PairableInstUsers); void choosePairs(std::multimap &CandidatePairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps, DenseSet &PairableInstUsers, DenseMap& ChosenPairs); void fuseChosenPairs(BasicBlock &BB, std::vector &PairableInsts, DenseMap& ChosenPairs, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps); bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); bool areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore, bool NonPow2Len, int &CostSavings, int &FixedOrder); bool trackUsesOfI(DenseSet &Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers = true, std::multimap *LoadMoveSet = 0); void computePairsConnectedTo( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseMap &PairConnectionTypes, ValuePair P); bool pairsConflict(ValuePair P, ValuePair Q, DenseSet &PairableInstUsers, std::multimap *PairableInstUserMap = 0); bool pairWillFormCycle(ValuePair P, std::multimap &PairableInstUsers, DenseSet &CurrentPairs); void pruneTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseMap &Tree, DenseSet &PrunedTree, ValuePair J, bool UseCycleCheck); void buildInitialTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap &ChosenPairs, DenseMap &Tree, ValuePair J); void findBestTreeFor( std::multimap &CandidatePairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseSet &BestTree, size_t &BestMaxDepth, int &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck); Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o); void fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned MaskOffset, unsigned NumInElem, unsigned NumInElem1, unsigned IdxOffset, std::vector &Mask); Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J); bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, Value *&LOp, unsigned numElemL, Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ, unsigned IdxOff = 0); Value *getReplacementInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool IBeforeJ); void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector &ReplacedOperands, bool IBeforeJ); void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, Instruction *&K2); void collectPairLoadMoveSet(BasicBlock &BB, DenseMap &ChosenPairs, std::multimap &LoadMoveSet, Instruction *I); void collectLoadMoveSet(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs, std::multimap &LoadMoveSet); bool canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *I, Instruction *J); void moveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *&InsertionPt, Instruction *I, Instruction *J); void combineMetadata(Instruction *K, const Instruction *J); bool vectorizeBB(BasicBlock &BB) { if (!DT->isReachableFromEntry(&BB)) { DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() << " in " << BB.getParent()->getName() << "\n"); return false; } DEBUG(if (TTI) dbgs() << "BBV: using target information\n"); bool changed = false; // Iterate a sufficient number of times to merge types of size 1 bit, // then 2 bits, then 4, etc. up to half of the target vector width of the // target vector register. unsigned n = 1; for (unsigned v = 2; (TTI || v <= Config.VectorBits) && (!Config.MaxIter || n <= Config.MaxIter); v *= 2, ++n) { DEBUG(dbgs() << "BBV: fusing loop #" << n << " for " << BB.getName() << " in " << BB.getParent()->getName() << "...\n"); if (vectorizePairs(BB)) changed = true; else break; } if (changed && !Pow2LenOnly) { ++n; for (; !Config.MaxIter || n <= Config.MaxIter; ++n) { DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " << n << " for " << BB.getName() << " in " << BB.getParent()->getName() << "...\n"); if (!vectorizePairs(BB, true)) break; } } DEBUG(dbgs() << "BBV: done!\n"); return changed; } virtual bool runOnBasicBlock(BasicBlock &BB) { AA = &getAnalysis(); DT = &getAnalysis(); SE = &getAnalysis(); TD = getAnalysisIfAvailable(); TTI = IgnoreTargetInfo ? 0 : &getAnalysis(); return vectorizeBB(BB); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { BasicBlockPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) { assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() && "Cannot form vector from incompatible scalar types"); Type *STy = ElemTy->getScalarType(); unsigned numElem; if (VectorType *VTy = dyn_cast(ElemTy)) { numElem = VTy->getNumElements(); } else { numElem = 1; } if (VectorType *VTy = dyn_cast(Elem2Ty)) { numElem += VTy->getNumElements(); } else { numElem += 1; } return VectorType::get(STy, numElem); } static inline void getInstructionTypes(Instruction *I, Type *&T1, Type *&T2) { if (isa(I)) { // For stores, it is the value type, not the pointer type that matters // because the value is what will come from a vector register. Value *IVal = cast(I)->getValueOperand(); T1 = IVal->getType(); } else { T1 = I->getType(); } if (I->isCast()) T2 = cast(I)->getSrcTy(); else T2 = T1; if (SelectInst *SI = dyn_cast(I)) { T2 = SI->getCondition()->getType(); } else if (ShuffleVectorInst *SI = dyn_cast(I)) { T2 = SI->getOperand(0)->getType(); } else if (CmpInst *CI = dyn_cast(I)) { T2 = CI->getOperand(0)->getType(); } } // Returns the weight associated with the provided value. A chain of // candidate pairs has a length given by the sum of the weights of its // members (one weight per pair; the weight of each member of the pair // is assumed to be the same). This length is then compared to the // chain-length threshold to determine if a given chain is significant // enough to be vectorized. The length is also used in comparing // candidate chains where longer chains are considered to be better. // Note: when this function returns 0, the resulting instructions are // not actually fused. inline size_t getDepthFactor(Value *V) { // InsertElement and ExtractElement have a depth factor of zero. This is // for two reasons: First, they cannot be usefully fused. Second, because // the pass generates a lot of these, they can confuse the simple metric // used to compare the trees in the next iteration. Thus, giving them a // weight of zero allows the pass to essentially ignore them in // subsequent iterations when looking for vectorization opportunities // while still tracking dependency chains that flow through those // instructions. if (isa(V) || isa(V)) return 0; // Give a load or store half of the required depth so that load/store // pairs will vectorize. if (!Config.NoMemOpBoost && (isa(V) || isa(V))) return Config.ReqChainDepth/2; return 1; } // Returns the cost of the provided instruction using TTI. // This does not handle loads and stores. unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) { switch (Opcode) { default: break; case Instruction::GetElementPtr: // We mark this instruction as zero-cost because scalar GEPs are usually // lowered to the intruction addressing mode. At the moment we don't // generate vector GEPs. return 0; case Instruction::Br: return TTI->getCFInstrCost(Opcode); case Instruction::PHI: return 0; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: return TTI->getArithmeticInstrCost(Opcode, T1); case Instruction::Select: case Instruction::ICmp: case Instruction::FCmp: return TTI->getCmpSelInstrCost(Opcode, T1, T2); case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: case Instruction::ShuffleVector: return TTI->getCastInstrCost(Opcode, T1, T2); } return 1; } // This determines the relative offset of two loads or stores, returning // true if the offset could be determined to be some constant value. // For example, if OffsetInElmts == 1, then J accesses the memory directly // after I; if OffsetInElmts == -1 then I accesses the memory // directly after J. bool getPairPtrInfo(Instruction *I, Instruction *J, Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, unsigned &IAddressSpace, unsigned &JAddressSpace, int64_t &OffsetInElmts, bool ComputeOffset = true) { OffsetInElmts = 0; if (LoadInst *LI = dyn_cast(I)) { LoadInst *LJ = cast(J); IPtr = LI->getPointerOperand(); JPtr = LJ->getPointerOperand(); IAlignment = LI->getAlignment(); JAlignment = LJ->getAlignment(); IAddressSpace = LI->getPointerAddressSpace(); JAddressSpace = LJ->getPointerAddressSpace(); } else { StoreInst *SI = cast(I), *SJ = cast(J); IPtr = SI->getPointerOperand(); JPtr = SJ->getPointerOperand(); IAlignment = SI->getAlignment(); JAlignment = SJ->getAlignment(); IAddressSpace = SI->getPointerAddressSpace(); JAddressSpace = SJ->getPointerAddressSpace(); } if (!ComputeOffset) return true; const SCEV *IPtrSCEV = SE->getSCEV(IPtr); const SCEV *JPtrSCEV = SE->getSCEV(JPtr); // If this is a trivial offset, then we'll get something like // 1*sizeof(type). With target data, which we need anyway, this will get // constant folded into a number. const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV); if (const SCEVConstant *ConstOffSCEV = dyn_cast(OffsetSCEV)) { ConstantInt *IntOff = ConstOffSCEV->getValue(); int64_t Offset = IntOff->getSExtValue(); Type *VTy = cast(IPtr->getType())->getElementType(); int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy); Type *VTy2 = cast(JPtr->getType())->getElementType(); if (VTy != VTy2 && Offset < 0) { int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2); OffsetInElmts = Offset/VTy2TSS; return (abs64(Offset) % VTy2TSS) == 0; } OffsetInElmts = Offset/VTyTSS; return (abs64(Offset) % VTyTSS) == 0; } return false; } // Returns true if the provided CallInst represents an intrinsic that can // be vectorized. bool isVectorizableIntrinsic(CallInst* I) { Function *F = I->getCalledFunction(); if (!F) return false; Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID(); if (!IID) return false; switch(IID) { default: return false; case Intrinsic::sqrt: case Intrinsic::powi: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::pow: return Config.VectorizeMath; case Intrinsic::fma: case Intrinsic::fmuladd: return Config.VectorizeFMA; } } // Returns true if J is the second element in some pair referenced by // some multimap pair iterator pair. template bool isSecondInIteratorPair(V J, std::pair< typename std::multimap::iterator, typename std::multimap::iterator> PairRange) { for (typename std::multimap::iterator K = PairRange.first; K != PairRange.second; ++K) if (K->second == J) return true; return false; } bool isPureIEChain(InsertElementInst *IE) { InsertElementInst *IENext = IE; do { if (!isa(IENext->getOperand(0)) && !isa(IENext->getOperand(0))) { return false; } } while ((IENext = dyn_cast(IENext->getOperand(0)))); return true; } }; // This function implements one vectorization iteration on the provided // basic block. It returns true if the block is changed. bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) { bool ShouldContinue; BasicBlock::iterator Start = BB.getFirstInsertionPt(); std::vector AllPairableInsts; DenseMap AllChosenPairs; DenseSet AllFixedOrderPairs; DenseMap AllPairConnectionTypes; std::multimap AllConnectedPairs, AllConnectedPairDeps; do { std::vector PairableInsts; std::multimap CandidatePairs; DenseSet FixedOrderPairs; DenseMap CandidatePairCostSavings; ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, FixedOrderPairs, CandidatePairCostSavings, PairableInsts, NonPow2Len); if (PairableInsts.empty()) continue; // Now we have a map of all of the pairable instructions and we need to // select the best possible pairing. A good pairing is one such that the // users of the pair are also paired. This defines a (directed) forest // over the pairs such that two pairs are connected iff the second pair // uses the first. // Note that it only matters that both members of the second pair use some // element of the first pair (to allow for splatting). std::multimap ConnectedPairs, ConnectedPairDeps; DenseMap PairConnectionTypes; computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs, PairConnectionTypes); if (ConnectedPairs.empty()) continue; for (std::multimap::iterator I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I) { ConnectedPairDeps.insert(VPPair(I->second, I->first)); } // Build the pairable-instruction dependency map DenseSet PairableInstUsers; buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); // There is now a graph of the connected pairs. For each variable, pick // the pairing with the largest tree meeting the depth requirement on at // least one branch. Then select all pairings that are part of that tree // and remove them from the list of available pairings and pairable // variables. DenseMap ChosenPairs; choosePairs(CandidatePairs, CandidatePairCostSavings, PairableInsts, FixedOrderPairs, PairConnectionTypes, ConnectedPairs, ConnectedPairDeps, PairableInstUsers, ChosenPairs); if (ChosenPairs.empty()) continue; AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), PairableInsts.end()); AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); // Only for the chosen pairs, propagate information on fixed-order pairs, // pair connections, and their types to the data structures used by the // pair fusion procedures. for (DenseMap::iterator I = ChosenPairs.begin(), IE = ChosenPairs.end(); I != IE; ++I) { if (FixedOrderPairs.count(*I)) AllFixedOrderPairs.insert(*I); else if (FixedOrderPairs.count(ValuePair(I->second, I->first))) AllFixedOrderPairs.insert(ValuePair(I->second, I->first)); for (DenseMap::iterator J = ChosenPairs.begin(); J != IE; ++J) { DenseMap::iterator K = PairConnectionTypes.find(VPPair(*I, *J)); if (K != PairConnectionTypes.end()) { AllPairConnectionTypes.insert(*K); } else { K = PairConnectionTypes.find(VPPair(*J, *I)); if (K != PairConnectionTypes.end()) AllPairConnectionTypes.insert(*K); } } } for (std::multimap::iterator I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I) { if (AllPairConnectionTypes.count(*I)) { AllConnectedPairs.insert(*I); AllConnectedPairDeps.insert(VPPair(I->second, I->first)); } } } while (ShouldContinue); if (AllChosenPairs.empty()) return false; NumFusedOps += AllChosenPairs.size(); // A set of pairs has now been selected. It is now necessary to replace the // paired instructions with vector instructions. For this procedure each // operand must be replaced with a vector operand. This vector is formed // by using build_vector on the old operands. The replaced values are then // replaced with a vector_extract on the result. Subsequent optimization // passes should coalesce the build/extract combinations. fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs, AllPairConnectionTypes, AllConnectedPairs, AllConnectedPairDeps); // It is important to cleanup here so that future iterations of this // function have less work to do. (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo()); return true; } // This function returns true if the provided instruction is capable of being // fused into a vector instruction. This determination is based only on the // type and other attributes of the instruction. bool BBVectorize::isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore) { IsSimpleLoadStore = false; if (CallInst *C = dyn_cast(I)) { if (!isVectorizableIntrinsic(C)) return false; } else if (LoadInst *L = dyn_cast(I)) { // Vectorize simple loads if possbile: IsSimpleLoadStore = L->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (StoreInst *S = dyn_cast(I)) { // Vectorize simple stores if possbile: IsSimpleLoadStore = S->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (CastInst *C = dyn_cast(I)) { // We can vectorize casts, but not casts of pointer types, etc. if (!Config.VectorizeCasts) return false; Type *SrcTy = C->getSrcTy(); if (!SrcTy->isSingleValueType()) return false; Type *DestTy = C->getDestTy(); if (!DestTy->isSingleValueType()) return false; } else if (isa(I)) { if (!Config.VectorizeSelect) return false; } else if (isa(I)) { if (!Config.VectorizeCmp) return false; } else if (GetElementPtrInst *G = dyn_cast(I)) { if (!Config.VectorizeGEP) return false; // Currently, vector GEPs exist only with one index. if (G->getNumIndices() != 1) return false; } else if (!(I->isBinaryOp() || isa(I) || isa(I) || isa(I))) { return false; } // We can't vectorize memory operations without target data if (TD == 0 && IsSimpleLoadStore) return false; Type *T1, *T2; getInstructionTypes(I, T1, T2); // Not every type can be vectorized... if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) || !(VectorType::isValidElementType(T2) || T2->isVectorTy())) return false; if (T1->getScalarSizeInBits() == 1) { if (!Config.VectorizeBools) return false; } else { if (!Config.VectorizeInts && T1->isIntOrIntVectorTy()) return false; } if (T2->getScalarSizeInBits() == 1) { if (!Config.VectorizeBools) return false; } else { if (!Config.VectorizeInts && T2->isIntOrIntVectorTy()) return false; } if (!Config.VectorizeFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) return false; // Don't vectorize target-specific types. if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy()) return false; if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy()) return false; if ((!Config.VectorizePointers || TD == 0) && (T1->getScalarType()->isPointerTy() || T2->getScalarType()->isPointerTy())) return false; if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits || T2->getPrimitiveSizeInBits() >= Config.VectorBits)) return false; return true; } // This function returns true if the two provided instructions are compatible // (meaning that they can be fused into a vector instruction). This assumes // that I has already been determined to be vectorizable and that J is not // in the use tree of I. bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore, bool NonPow2Len, int &CostSavings, int &FixedOrder) { DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << " <-> " << *J << "\n"); CostSavings = 0; FixedOrder = 0; // Loads and stores can be merged if they have different alignments, // but are otherwise the same. if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment | (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0))) return false; Type *IT1, *IT2, *JT1, *JT2; getInstructionTypes(I, IT1, IT2); getInstructionTypes(J, JT1, JT2); unsigned MaxTypeBits = std::max( IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(), IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits()); if (!TTI && MaxTypeBits > Config.VectorBits) return false; // FIXME: handle addsub-type operations! if (IsSimpleLoadStore) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; int64_t OffsetInElmts = 0; if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, IAddressSpace, JAddressSpace, OffsetInElmts) && abs64(OffsetInElmts) == 1) { FixedOrder = (int) OffsetInElmts; unsigned BottomAlignment = IAlignment; if (OffsetInElmts < 0) BottomAlignment = JAlignment; Type *aTypeI = isa(I) ? cast(I)->getValueOperand()->getType() : I->getType(); Type *aTypeJ = isa(J) ? cast(J)->getValueOperand()->getType() : J->getType(); Type *VType = getVecTypeForPair(aTypeI, aTypeJ); if (Config.AlignedOnly) { // An aligned load or store is possible only if the instruction // with the lower offset has an alignment suitable for the // vector type. unsigned VecAlignment = TD->getPrefTypeAlignment(VType); if (BottomAlignment < VecAlignment) return false; } if (TTI) { unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI, IAlignment, IAddressSpace); unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ, JAlignment, JAddressSpace); unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType, BottomAlignment, IAddressSpace); if (VCost > ICost + JCost) return false; // We don't want to fuse to a type that will be split, even // if the two input types will also be split and there is no other // associated cost. unsigned VParts = TTI->getNumberOfParts(VType); if (VParts > 1) return false; else if (!VParts && VCost == ICost + JCost) return false; CostSavings = ICost + JCost - VCost; } } else { return false; } } else if (TTI) { unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2); unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2); Type *VT1 = getVecTypeForPair(IT1, JT1), *VT2 = getVecTypeForPair(IT2, JT2); // Note that this procedure is incorrect for insert and extract element // instructions (because combining these often results in a shuffle), // but this cost is ignored (because insert and extract element // instructions are assigned a zero depth factor and are not really // fused in general). unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2); if (VCost > ICost + JCost) return false; // We don't want to fuse to a type that will be split, even // if the two input types will also be split and there is no other // associated cost. unsigned VParts1 = TTI->getNumberOfParts(VT1), VParts2 = TTI->getNumberOfParts(VT2); if (VParts1 > 1 || VParts2 > 1) return false; else if ((!VParts1 || !VParts2) && VCost == ICost + JCost) return false; CostSavings = ICost + JCost - VCost; } // The powi intrinsic is special because only the first argument is // vectorized, the second arguments must be equal. CallInst *CI = dyn_cast(I); Function *FI; if (CI && (FI = CI->getCalledFunction())) { Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID(); if (IID == Intrinsic::powi) { Value *A1I = CI->getArgOperand(1), *A1J = cast(J)->getArgOperand(1); const SCEV *A1ISCEV = SE->getSCEV(A1I), *A1JSCEV = SE->getSCEV(A1J); return (A1ISCEV == A1JSCEV); } if (IID && TTI) { SmallVector Tys; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) Tys.push_back(CI->getArgOperand(i)->getType()); unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys); Tys.clear(); CallInst *CJ = cast(J); for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i) Tys.push_back(CJ->getArgOperand(i)->getType()); unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys); Tys.clear(); assert(CI->getNumArgOperands() == CJ->getNumArgOperands() && "Intrinsic argument counts differ"); for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { if (IID == Intrinsic::powi && i == 1) Tys.push_back(CI->getArgOperand(i)->getType()); else Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(), CJ->getArgOperand(i)->getType())); } Type *RetTy = getVecTypeForPair(IT1, JT1); unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys); if (VCost > ICost + JCost) return false; // We don't want to fuse to a type that will be split, even // if the two input types will also be split and there is no other // associated cost. unsigned RetParts = TTI->getNumberOfParts(RetTy); if (RetParts > 1) return false; else if (!RetParts && VCost == ICost + JCost) return false; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { if (!Tys[i]->isVectorTy()) continue; unsigned NumParts = TTI->getNumberOfParts(Tys[i]); if (NumParts > 1) return false; else if (!NumParts && VCost == ICost + JCost) return false; } CostSavings = ICost + JCost - VCost; } } return true; } // Figure out whether or not J uses I and update the users and write-set // structures associated with I. Specifically, Users represents the set of // instructions that depend on I. WriteSet represents the set // of memory locations that are dependent on I. If UpdateUsers is true, // and J uses I, then Users is updated to contain J and WriteSet is updated // to contain any memory locations to which J writes. The function returns // true if J uses I. By default, alias analysis is used to determine // whether J reads from memory that overlaps with a location in WriteSet. // If LoadMoveSet is not null, then it is a previously-computed multimap // where the key is the memory-based user instruction and the value is // the instruction to be compared with I. So, if LoadMoveSet is provided, // then the alias analysis is not used. This is necessary because this // function is called during the process of moving instructions during // vectorization and the results of the alias analysis are not stable during // that process. bool BBVectorize::trackUsesOfI(DenseSet &Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers, std::multimap *LoadMoveSet) { bool UsesI = false; // This instruction may already be marked as a user due, for example, to // being a member of a selected pair. if (Users.count(J)) UsesI = true; if (!UsesI) for (User::op_iterator JU = J->op_begin(), JE = J->op_end(); JU != JE; ++JU) { Value *V = *JU; if (I == V || Users.count(V)) { UsesI = true; break; } } if (!UsesI && J->mayReadFromMemory()) { if (LoadMoveSet) { VPIteratorPair JPairRange = LoadMoveSet->equal_range(J); UsesI = isSecondInIteratorPair(I, JPairRange); } else { for (AliasSetTracker::iterator W = WriteSet.begin(), WE = WriteSet.end(); W != WE; ++W) { if (W->aliasesUnknownInst(J, *AA)) { UsesI = true; break; } } } } if (UsesI && UpdateUsers) { if (J->mayWriteToMemory()) WriteSet.add(J); Users.insert(J); } return UsesI; } // This function iterates over all instruction pairs in the provided // basic block and collects all candidate pairs for vectorization. bool BBVectorize::getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap &CandidatePairs, DenseSet &FixedOrderPairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, bool NonPow2Len) { BasicBlock::iterator E = BB.end(); if (Start == E) return false; bool ShouldContinue = false, IAfterStart = false; for (BasicBlock::iterator I = Start++; I != E; ++I) { if (I == Start) IAfterStart = true; bool IsSimpleLoadStore; if (!isInstVectorizable(I, IsSimpleLoadStore)) continue; // Look for an instruction with which to pair instruction *I... DenseSet Users; AliasSetTracker WriteSet(*AA); bool JAfterStart = IAfterStart; BasicBlock::iterator J = llvm::next(I); for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) { if (J == Start) JAfterStart = true; // Determine if J uses I, if so, exit the loop. bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep); if (Config.FastDep) { // Note: For this heuristic to be effective, independent operations // must tend to be intermixed. This is likely to be true from some // kinds of grouped loop unrolling (but not the generic LLVM pass), // but otherwise may require some kind of reordering pass. // When using fast dependency analysis, // stop searching after first use: if (UsesI) break; } else { if (UsesI) continue; } // J does not use I, and comes before the first use of I, so it can be // merged with I if the instructions are compatible. int CostSavings, FixedOrder; if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len, CostSavings, FixedOrder)) continue; // J is a candidate for merging with I. if (!PairableInsts.size() || PairableInsts[PairableInsts.size()-1] != I) { PairableInsts.push_back(I); } CandidatePairs.insert(ValuePair(I, J)); if (TTI) CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J), CostSavings)); if (FixedOrder == 1) FixedOrderPairs.insert(ValuePair(I, J)); else if (FixedOrder == -1) FixedOrderPairs.insert(ValuePair(J, I)); // The next call to this function must start after the last instruction // selected during this invocation. if (JAfterStart) { Start = llvm::next(J); IAfterStart = JAfterStart = false; } DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " << *I << " <-> " << *J << " (cost savings: " << CostSavings << ")\n"); // If we have already found too many pairs, break here and this function // will be called again starting after the last instruction selected // during this invocation. if (PairableInsts.size() >= Config.MaxInsts) { ShouldContinue = true; break; } } if (ShouldContinue) break; } DEBUG(dbgs() << "BBV: found " << PairableInsts.size() << " instructions with candidate pairs\n"); return ShouldContinue; } // Finds candidate pairs connected to the pair P = . This means that // it looks for pairs such that both members have an input which is an // output of PI or PJ. void BBVectorize::computePairsConnectedTo( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseMap &PairConnectionTypes, ValuePair P) { StoreInst *SI, *SJ; // For each possible pairing for this variable, look at the uses of // the first value... for (Value::use_iterator I = P.first->use_begin(), E = P.first->use_end(); I != E; ++I) { if (isa(*I)) { // A pair cannot be connected to a load because the load only takes one // operand (the address) and it is a scalar even after vectorization. continue; } else if ((SI = dyn_cast(*I)) && P.first == SI->getPointerOperand()) { // Similarly, a pair cannot be connected to a store through its // pointer operand. continue; } VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); // For each use of the first variable, look for uses of the second // variable... for (Value::use_iterator J = P.second->use_begin(), E2 = P.second->use_end(); J != E2; ++J) { if ((SJ = dyn_cast(*J)) && P.second == SJ->getPointerOperand()) continue; VPIteratorPair JPairRange = CandidatePairs.equal_range(*J); // Look for : if (isSecondInIteratorPair(*J, IPairRange)) { VPPair VP(P, ValuePair(*I, *J)); ConnectedPairs.insert(VP); PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect)); } // Look for : if (isSecondInIteratorPair(*I, JPairRange)) { VPPair VP(P, ValuePair(*J, *I)); ConnectedPairs.insert(VP); PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap)); } } if (Config.SplatBreaksChain) continue; // Look for cases where just the first value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) { if ((SJ = dyn_cast(*J)) && P.first == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair(*J, IPairRange)) { VPPair VP(P, ValuePair(*I, *J)); ConnectedPairs.insert(VP); PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); } } } if (Config.SplatBreaksChain) return; // Look for cases where just the second value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator I = P.second->use_begin(), E = P.second->use_end(); I != E; ++I) { if (isa(*I)) continue; else if ((SI = dyn_cast(*I)) && P.second == SI->getPointerOperand()) continue; VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) { if ((SJ = dyn_cast(*J)) && P.second == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair(*J, IPairRange)) { VPPair VP(P, ValuePair(*I, *J)); ConnectedPairs.insert(VP); PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); } } } } // This function figures out which pairs are connected. Two pairs are // connected if some output of the first pair forms an input to both members // of the second pair. void BBVectorize::computeConnectedPairs( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseMap &PairConnectionTypes) { for (std::vector::iterator PI = PairableInsts.begin(), PE = PairableInsts.end(); PI != PE; ++PI) { VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI); for (std::multimap::iterator P = choiceRange.first; P != choiceRange.second; ++P) computePairsConnectedTo(CandidatePairs, PairableInsts, ConnectedPairs, PairConnectionTypes, *P); } DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size() << " pair connections.\n"); } // This function builds a set of use tuples such that is in the set // if B is in the use tree of A. If B is in the use tree of A, then B // depends on the output of A. void BBVectorize::buildDepMap( BasicBlock &BB, std::multimap &CandidatePairs, std::vector &PairableInsts, DenseSet &PairableInstUsers) { DenseSet IsInPair; for (std::multimap::iterator C = CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) { IsInPair.insert(C->first); IsInPair.insert(C->second); } // Iterate through the basic block, recording all users of each // pairable instruction. BasicBlock::iterator E = BB.end(); for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) { if (IsInPair.find(I) == IsInPair.end()) continue; DenseSet Users; AliasSetTracker WriteSet(*AA); for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) (void) trackUsesOfI(Users, WriteSet, I, J); for (DenseSet::iterator U = Users.begin(), E = Users.end(); U != E; ++U) PairableInstUsers.insert(ValuePair(I, *U)); } } // Returns true if an input to pair P is an output of pair Q and also an // input of pair Q is an output of pair P. If this is the case, then these // two pairs cannot be simultaneously fused. bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q, DenseSet &PairableInstUsers, std::multimap *PairableInstUserMap) { // Two pairs are in conflict if they are mutual Users of eachother. bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) || PairableInstUsers.count(ValuePair(P.first, Q.second)) || PairableInstUsers.count(ValuePair(P.second, Q.first)) || PairableInstUsers.count(ValuePair(P.second, Q.second)); bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) || PairableInstUsers.count(ValuePair(Q.first, P.second)) || PairableInstUsers.count(ValuePair(Q.second, P.first)) || PairableInstUsers.count(ValuePair(Q.second, P.second)); if (PairableInstUserMap) { // FIXME: The expensive part of the cycle check is not so much the cycle // check itself but this edge insertion procedure. This needs some // profiling and probably a different data structure (same is true of // most uses of std::multimap). if (PUsesQ) { VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q); if (!isSecondInIteratorPair(P, QPairRange)) PairableInstUserMap->insert(VPPair(Q, P)); } if (QUsesP) { VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P); if (!isSecondInIteratorPair(Q, PPairRange)) PairableInstUserMap->insert(VPPair(P, Q)); } } return (QUsesP && PUsesQ); } // This function walks the use graph of current pairs to see if, starting // from P, the walk returns to P. bool BBVectorize::pairWillFormCycle(ValuePair P, std::multimap &PairableInstUserMap, DenseSet &CurrentPairs) { DEBUG(if (DebugCycleCheck) dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> " << *P.second << "\n"); // A lookup table of visisted pairs is kept because the PairableInstUserMap // contains non-direct associations. DenseSet Visited; SmallVector Q; // General depth-first post-order traversal: Q.push_back(P); do { ValuePair QTop = Q.pop_back_val(); Visited.insert(QTop); DEBUG(if (DebugCycleCheck) dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> " << *QTop.second << "\n"); VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop); for (std::multimap::iterator C = QPairRange.first; C != QPairRange.second; ++C) { if (C->second == P) { DEBUG(dbgs() << "BBV: rejected to prevent non-trivial cycle formation: " << *C->first.first << " <-> " << *C->first.second << "\n"); return true; } if (CurrentPairs.count(C->second) && !Visited.count(C->second)) Q.push_back(C->second); } } while (!Q.empty()); return false; } // This function builds the initial tree of connected pairs with the // pair J at the root. void BBVectorize::buildInitialTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, DenseMap &ChosenPairs, DenseMap &Tree, ValuePair J) { // Each of these pairs is viewed as the root node of a Tree. The Tree // is then walked (depth-first). As this happens, we keep track of // the pairs that compose the Tree and the maximum depth of the Tree. SmallVector Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.back(); // Push each child onto the queue: bool MoreChildren = false; size_t MaxChildDepth = QTop.second; VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap::iterator k = qtRange.first; k != qtRange.second; ++k) { // Make sure that this child pair is still a candidate: bool IsStillCand = false; VPIteratorPair checkRange = CandidatePairs.equal_range(k->second.first); for (std::multimap::iterator m = checkRange.first; m != checkRange.second; ++m) { if (m->second == k->second.second) { IsStillCand = true; break; } } if (IsStillCand) { DenseMap::iterator C = Tree.find(k->second); if (C == Tree.end()) { size_t d = getDepthFactor(k->second.first); Q.push_back(ValuePairWithDepth(k->second, QTop.second+d)); MoreChildren = true; } else { MaxChildDepth = std::max(MaxChildDepth, C->second); } } } if (!MoreChildren) { // Record the current pair as part of the Tree: Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth)); Q.pop_back(); } } while (!Q.empty()); } // Given some initial tree, prune it by removing conflicting pairs (pairs // that cannot be simultaneously chosen for vectorization). void BBVectorize::pruneTreeFor( std::multimap &CandidatePairs, std::vector &PairableInsts, std::multimap &ConnectedPairs, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseMap &Tree, DenseSet &PrunedTree, ValuePair J, bool UseCycleCheck) { SmallVector Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.pop_back_val(); PrunedTree.insert(QTop.first); // Visit each child, pruning as necessary... SmallVector BestChildren; VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap::iterator K = QTopRange.first; K != QTopRange.second; ++K) { DenseMap::iterator C = Tree.find(K->second); if (C == Tree.end()) continue; // This child is in the Tree, now we need to make sure it is the // best of any conflicting children. There could be multiple // conflicting children, so first, determine if we're keeping // this child, then delete conflicting children as necessary. // It is also necessary to guard against pairing-induced // dependencies. Consider instructions a .. x .. y .. b // such that (a,b) are to be fused and (x,y) are to be fused // but a is an input to x and b is an output from y. This // means that y cannot be moved after b but x must be moved // after b for (a,b) to be fused. In other words, after // fusing (a,b) we have y .. a/b .. x where y is an input // to a/b and x is an output to a/b: x and y can no longer // be legally fused. To prevent this condition, we must // make sure that a child pair added to the Tree is not // both an input and output of an already-selected pair. // Pairing-induced dependencies can also form from more complicated // cycles. The pair vs. pair conflicts are easy to check, and so // that is done explicitly for "fast rejection", and because for // child vs. child conflicts, we may prefer to keep the current // pair in preference to the already-selected child. DenseSet CurrentPairs; bool CanAdd = true; for (SmallVector::iterator C2 = BestChildren.begin(), E2 = BestChildren.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { if (C2->second >= C->second) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } } if (!CanAdd) continue; // Even worse, this child could conflict with another node already // selected for the Tree. If that is the case, ignore this child. for (DenseSet::iterator T = PrunedTree.begin(), E2 = PrunedTree.end(); T != E2; ++T) { if (T->first == C->first.first || T->first == C->first.second || T->second == C->first.first || T->second == C->first.second || pairsConflict(*T, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*T); } if (!CanAdd) continue; // And check the queue too... for (SmallVector::iterator C2 = Q.begin(), E2 = Q.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } if (!CanAdd) continue; // Last but not least, check for a conflict with any of the // already-chosen pairs. for (DenseMap::iterator C2 = ChosenPairs.begin(), E2 = ChosenPairs.end(); C2 != E2; ++C2) { if (pairsConflict(*C2, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*C2); } if (!CanAdd) continue; // To check for non-trivial cycles formed by the addition of the // current pair we've formed a list of all relevant pairs, now use a // graph walk to check for a cycle. We start from the current pair and // walk the use tree to see if we again reach the current pair. If we // do, then the current pair is rejected. // FIXME: It may be more efficient to use a topological-ordering // algorithm to improve the cycle check. This should be investigated. if (UseCycleCheck && pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs)) continue; // This child can be added, but we may have chosen it in preference // to an already-selected child. Check for this here, and if a // conflict is found, then remove the previously-selected child // before adding this one in its place. for (SmallVector::iterator C2 = BestChildren.begin(); C2 != BestChildren.end();) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers)) C2 = BestChildren.erase(C2); else ++C2; } BestChildren.push_back(ValuePairWithDepth(C->first, C->second)); } for (SmallVector::iterator C = BestChildren.begin(), E2 = BestChildren.end(); C != E2; ++C) { size_t DepthF = getDepthFactor(C->first.first); Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF)); } } while (!Q.empty()); } // This function finds the best tree of mututally-compatible connected // pairs, given the choice of root pairs as an iterator range. void BBVectorize::findBestTreeFor( std::multimap &CandidatePairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps, DenseSet &PairableInstUsers, std::multimap &PairableInstUserMap, DenseMap &ChosenPairs, DenseSet &BestTree, size_t &BestMaxDepth, int &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck) { for (std::multimap::iterator J = ChoiceRange.first; J != ChoiceRange.second; ++J) { // Before going any further, make sure that this pair does not // conflict with any already-selected pairs (see comment below // near the Tree pruning for more details). DenseSet ChosenPairSet; bool DoesConflict = false; for (DenseMap::iterator C = ChosenPairs.begin(), E = ChosenPairs.end(); C != E; ++C) { if (pairsConflict(*C, *J, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { DoesConflict = true; break; } ChosenPairSet.insert(*C); } if (DoesConflict) continue; if (UseCycleCheck && pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet)) continue; DenseMap Tree; buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, ChosenPairs, Tree, *J); // Because we'll keep the child with the largest depth, the largest // depth is still the same in the unpruned Tree. size_t MaxDepth = Tree.lookup(*J); DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << Tree.size() << "\n"); // At this point the Tree has been constructed, but, may contain // contradictory children (meaning that different children of // some tree node may be attempting to fuse the same instruction). // So now we walk the tree again, in the case of a conflict, // keep only the child with the largest depth. To break a tie, // favor the first child. DenseSet PrunedTree; pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree, PrunedTree, *J, UseCycleCheck); int EffSize = 0; if (TTI) { DenseSet PrunedTreeInstrs; for (DenseSet::iterator S = PrunedTree.begin(), E = PrunedTree.end(); S != E; ++S) { PrunedTreeInstrs.insert(S->first); PrunedTreeInstrs.insert(S->second); } // The set of pairs that have already contributed to the total cost. DenseSet IncomingPairs; // If the cost model were perfect, this might not be necessary; but we // need to make sure that we don't get stuck vectorizing our own // shuffle chains. bool HasNontrivialInsts = false; // The node weights represent the cost savings associated with // fusing the pair of instructions. for (DenseSet::iterator S = PrunedTree.begin(), E = PrunedTree.end(); S != E; ++S) { if (!isa(S->first) && !isa(S->first) && !isa(S->first)) HasNontrivialInsts = true; bool FlipOrder = false; if (getDepthFactor(S->first)) { int ESContrib = CandidatePairCostSavings.find(*S)->second; DEBUG(if (DebugPairSelection) dbgs() << "\tweight {" << *S->first << " <-> " << *S->second << "} = " << ESContrib << "\n"); EffSize += ESContrib; } // The edge weights contribute in a negative sense: they represent // the cost of shuffles. VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S); if (IP.first != ConnectedPairDeps.end()) { unsigned NumDepsDirect = 0, NumDepsSwap = 0; for (std::multimap::iterator Q = IP.first; Q != IP.second; ++Q) { if (!PrunedTree.count(Q->second)) continue; DenseMap::iterator R = PairConnectionTypes.find(VPPair(Q->second, Q->first)); assert(R != PairConnectionTypes.end() && "Cannot find pair connection type"); if (R->second == PairConnectionDirect) ++NumDepsDirect; else if (R->second == PairConnectionSwap) ++NumDepsSwap; } // If there are more swaps than direct connections, then // the pair order will be flipped during fusion. So the real // number of swaps is the minimum number. FlipOrder = !FixedOrderPairs.count(*S) && ((NumDepsSwap > NumDepsDirect) || FixedOrderPairs.count(ValuePair(S->second, S->first))); for (std::multimap::iterator Q = IP.first; Q != IP.second; ++Q) { if (!PrunedTree.count(Q->second)) continue; DenseMap::iterator R = PairConnectionTypes.find(VPPair(Q->second, Q->first)); assert(R != PairConnectionTypes.end() && "Cannot find pair connection type"); Type *Ty1 = Q->second.first->getType(), *Ty2 = Q->second.second->getType(); Type *VTy = getVecTypeForPair(Ty1, Ty2); if ((R->second == PairConnectionDirect && FlipOrder) || (R->second == PairConnectionSwap && !FlipOrder) || R->second == PairConnectionSplat) { int ESContrib = (int) getInstrCost(Instruction::ShuffleVector, VTy, VTy); if (VTy->getVectorNumElements() == 2) { if (R->second == PairConnectionSplat) ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( TargetTransformInfo::SK_Broadcast, VTy)); else ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( TargetTransformInfo::SK_Reverse, VTy)); } DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << *Q->second.first << " <-> " << *Q->second.second << "} -> {" << *S->first << " <-> " << *S->second << "} = " << ESContrib << "\n"); EffSize -= ESContrib; } } } // Compute the cost of outgoing edges. We assume that edges outgoing // to shuffles, inserts or extracts can be merged, and so contribute // no additional cost. if (!S->first->getType()->isVoidTy()) { Type *Ty1 = S->first->getType(), *Ty2 = S->second->getType(); Type *VTy = getVecTypeForPair(Ty1, Ty2); bool NeedsExtraction = false; for (Value::use_iterator I = S->first->use_begin(), IE = S->first->use_end(); I != IE; ++I) { if (ShuffleVectorInst *SI = dyn_cast(*I)) { // Shuffle can be folded if it has no other input if (isa(SI->getOperand(1))) continue; } if (isa(*I)) continue; if (PrunedTreeInstrs.count(*I)) continue; NeedsExtraction = true; break; } if (NeedsExtraction) { int ESContrib; if (Ty1->isVectorTy()) { ESContrib = (int) getInstrCost(Instruction::ShuffleVector, Ty1, VTy); ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1)); } else ESContrib = (int) TTI->getVectorInstrCost( Instruction::ExtractElement, VTy, 0); DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << *S->first << "} = " << ESContrib << "\n"); EffSize -= ESContrib; } NeedsExtraction = false; for (Value::use_iterator I = S->second->use_begin(), IE = S->second->use_end(); I != IE; ++I) { if (ShuffleVectorInst *SI = dyn_cast(*I)) { // Shuffle can be folded if it has no other input if (isa(SI->getOperand(1))) continue; } if (isa(*I)) continue; if (PrunedTreeInstrs.count(*I)) continue; NeedsExtraction = true; break; } if (NeedsExtraction) { int ESContrib; if (Ty2->isVectorTy()) { ESContrib = (int) getInstrCost(Instruction::ShuffleVector, Ty2, VTy); ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( TargetTransformInfo::SK_ExtractSubvector, VTy, Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2)); } else ESContrib = (int) TTI->getVectorInstrCost( Instruction::ExtractElement, VTy, 1); DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << *S->second << "} = " << ESContrib << "\n"); EffSize -= ESContrib; } } // Compute the cost of incoming edges. if (!isa(S->first) && !isa(S->first)) { Instruction *S1 = cast(S->first), *S2 = cast(S->second); for (unsigned o = 0; o < S1->getNumOperands(); ++o) { Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o); // Combining constants into vector constants (or small vector // constants into larger ones are assumed free). if (isa(O1) && isa(O2)) continue; if (FlipOrder) std::swap(O1, O2); ValuePair VP = ValuePair(O1, O2); ValuePair VPR = ValuePair(O2, O1); // Internal edges are not handled here. if (PrunedTree.count(VP) || PrunedTree.count(VPR)) continue; Type *Ty1 = O1->getType(), *Ty2 = O2->getType(); Type *VTy = getVecTypeForPair(Ty1, Ty2); // Combining vector operations of the same type is also assumed // folded with other operations. if (Ty1 == Ty2) { // If both are insert elements, then both can be widened. InsertElementInst *IEO1 = dyn_cast(O1), *IEO2 = dyn_cast(O2); if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2)) continue; // If both are extract elements, and both have the same input // type, then they can be replaced with a shuffle ExtractElementInst *EIO1 = dyn_cast(O1), *EIO2 = dyn_cast(O2); if (EIO1 && EIO2 && EIO1->getOperand(0)->getType() == EIO2->getOperand(0)->getType()) continue; // If both are a shuffle with equal operand types and only two // unqiue operands, then they can be replaced with a single // shuffle ShuffleVectorInst *SIO1 = dyn_cast(O1), *SIO2 = dyn_cast(O2); if (SIO1 && SIO2 && SIO1->getOperand(0)->getType() == SIO2->getOperand(0)->getType()) { SmallSet SIOps; SIOps.insert(SIO1->getOperand(0)); SIOps.insert(SIO1->getOperand(1)); SIOps.insert(SIO2->getOperand(0)); SIOps.insert(SIO2->getOperand(1)); if (SIOps.size() <= 2) continue; } } int ESContrib; // This pair has already been formed. if (IncomingPairs.count(VP)) { continue; } else if (IncomingPairs.count(VPR)) { ESContrib = (int) getInstrCost(Instruction::ShuffleVector, VTy, VTy); if (VTy->getVectorNumElements() == 2) ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( TargetTransformInfo::SK_Reverse, VTy)); } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) { ESContrib = (int) TTI->getVectorInstrCost( Instruction::InsertElement, VTy, 0); ESContrib += (int) TTI->getVectorInstrCost( Instruction::InsertElement, VTy, 1); } else if (!Ty1->isVectorTy()) { // O1 needs to be inserted into a vector of size O2, and then // both need to be shuffled together. ESContrib = (int) TTI->getVectorInstrCost( Instruction::InsertElement, Ty2, 0); ESContrib += (int) getInstrCost(Instruction::ShuffleVector, VTy, Ty2); } else if (!Ty2->isVectorTy()) { // O2 needs to be inserted into a vector of size O1, and then // both need to be shuffled together. ESContrib = (int) TTI->getVectorInstrCost( Instruction::InsertElement, Ty1, 0); ESContrib += (int) getInstrCost(Instruction::ShuffleVector, VTy, Ty1); } else { Type *TyBig = Ty1, *TySmall = Ty2; if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements()) std::swap(TyBig, TySmall); ESContrib = (int) getInstrCost(Instruction::ShuffleVector, VTy, TyBig); if (TyBig != TySmall) ESContrib += (int) getInstrCost(Instruction::ShuffleVector, TyBig, TySmall); } DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << *O1 << " <-> " << *O2 << "} = " << ESContrib << "\n"); EffSize -= ESContrib; IncomingPairs.insert(VP); } } } if (!HasNontrivialInsts) { DEBUG(if (DebugPairSelection) dbgs() << "\tNo non-trivial instructions in tree;" " override to zero effective size\n"); EffSize = 0; } } else { for (DenseSet::iterator S = PrunedTree.begin(), E = PrunedTree.end(); S != E; ++S) EffSize += (int) getDepthFactor(S->first); } DEBUG(if (DebugPairSelection) dbgs() << "BBV: found pruned Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << PrunedTree.size() << " (effective size: " << EffSize << ")\n"); if (((TTI && !UseChainDepthWithTI) || MaxDepth >= Config.ReqChainDepth) && EffSize > 0 && EffSize > BestEffSize) { BestMaxDepth = MaxDepth; BestEffSize = EffSize; BestTree = PrunedTree; } } } // Given the list of candidate pairs, this function selects those // that will be fused into vector instructions. void BBVectorize::choosePairs( std::multimap &CandidatePairs, DenseMap &CandidatePairCostSavings, std::vector &PairableInsts, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps, DenseSet &PairableInstUsers, DenseMap& ChosenPairs) { bool UseCycleCheck = CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck; std::multimap PairableInstUserMap; for (std::vector::iterator I = PairableInsts.begin(), E = PairableInsts.end(); I != E; ++I) { // The number of possible pairings for this variable: size_t NumChoices = CandidatePairs.count(*I); if (!NumChoices) continue; VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I); // The best pair to choose and its tree: size_t BestMaxDepth = 0; int BestEffSize = 0; DenseSet BestTree; findBestTreeFor(CandidatePairs, CandidatePairCostSavings, PairableInsts, FixedOrderPairs, PairConnectionTypes, ConnectedPairs, ConnectedPairDeps, PairableInstUsers, PairableInstUserMap, ChosenPairs, BestTree, BestMaxDepth, BestEffSize, ChoiceRange, UseCycleCheck); // A tree has been chosen (or not) at this point. If no tree was // chosen, then this instruction, I, cannot be paired (and is no longer // considered). DEBUG(if (BestTree.size() > 0) dbgs() << "BBV: selected pairs in the best tree for: " << *cast(*I) << "\n"); for (DenseSet::iterator S = BestTree.begin(), SE2 = BestTree.end(); S != SE2; ++S) { // Insert the members of this tree into the list of chosen pairs. ChosenPairs.insert(ValuePair(S->first, S->second)); DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " << *S->second << "\n"); // Remove all candidate pairs that have values in the chosen tree. for (std::multimap::iterator K = CandidatePairs.begin(); K != CandidatePairs.end();) { if (K->first == S->first || K->second == S->first || K->second == S->second || K->first == S->second) { // Don't remove the actual pair chosen so that it can be used // in subsequent tree selections. if (!(K->first == S->first && K->second == S->second)) CandidatePairs.erase(K++); else ++K; } else { ++K; } } } } DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n"); } std::string getReplacementName(Instruction *I, bool IsInput, unsigned o, unsigned n = 0) { if (!I->hasName()) return ""; return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) + (n > 0 ? "." + utostr(n) : "")).str(); } // Returns the value that is to be used as the pointer input to the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; int64_t OffsetInElmts; // Note: the analysis might fail here, that is why the pair order has // been precomputed (OffsetInElmts must be unused here). (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, IAddressSpace, JAddressSpace, OffsetInElmts, false); // The pointer value is taken to be the one with the lowest offset. Value *VPtr = IPtr; Type *ArgTypeI = cast(IPtr->getType())->getElementType(); Type *ArgTypeJ = cast(JPtr->getType())->getElementType(); Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); Type *VArgPtrType = PointerType::get(VArgType, cast(IPtr->getType())->getAddressSpace()); return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), /* insert before */ I); } void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned MaskOffset, unsigned NumInElem, unsigned NumInElem1, unsigned IdxOffset, std::vector &Mask) { unsigned NumElem1 = cast(J->getType())->getNumElements(); for (unsigned v = 0; v < NumElem1; ++v) { int m = cast(J)->getMaskValue(v); if (m < 0) { Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context)); } else { unsigned mm = m + (int) IdxOffset; if (m >= (int) NumInElem1) mm += (int) NumInElem; Mask[v+MaskOffset] = ConstantInt::get(Type::getInt32Ty(Context), mm); } } } // Returns the value that is to be used as the vector-shuffle mask to the // vector instruction that fuses I with J. Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J) { // This is the shuffle mask. We need to append the second // mask to the first, and the numbers need to be adjusted. Type *ArgTypeI = I->getType(); Type *ArgTypeJ = J->getType(); Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); unsigned NumElemI = cast(ArgTypeI)->getNumElements(); // Get the total number of elements in the fused vector type. // By definition, this must equal the number of elements in // the final mask. unsigned NumElem = cast(VArgType)->getNumElements(); std::vector Mask(NumElem); Type *OpTypeI = I->getOperand(0)->getType(); unsigned NumInElemI = cast(OpTypeI)->getNumElements(); Type *OpTypeJ = J->getOperand(0)->getType(); unsigned NumInElemJ = cast(OpTypeJ)->getNumElements(); // The fused vector will be: // ----------------------------------------------------- // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ | // ----------------------------------------------------- // from which we'll extract NumElem total elements (where the first NumElemI // of them come from the mask in I and the remainder come from the mask // in J. // For the mask from the first pair... fillNewShuffleMask(Context, I, 0, NumInElemJ, NumInElemI, 0, Mask); // For the mask from the second pair... fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ, NumInElemI, Mask); return ConstantVector::get(Mask); } bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, Value *&LOp, unsigned numElemL, Type *ArgTypeL, Type *ArgTypeH, bool IBeforeJ, unsigned IdxOff) { bool ExpandedIEChain = false; if (InsertElementInst *LIE = dyn_cast(LOp)) { // If we have a pure insertelement chain, then this can be rewritten // into a chain that directly builds the larger type. if (isPureIEChain(LIE)) { SmallVector VectElemts(numElemL, UndefValue::get(ArgTypeL->getScalarType())); InsertElementInst *LIENext = LIE; do { unsigned Idx = cast(LIENext->getOperand(2))->getSExtValue(); VectElemts[Idx] = LIENext->getOperand(1); } while ((LIENext = dyn_cast(LIENext->getOperand(0)))); LIENext = 0; Value *LIEPrev = UndefValue::get(ArgTypeH); for (unsigned i = 0; i < numElemL; ++i) { if (isa(VectElemts[i])) continue; LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i], ConstantInt::get(Type::getInt32Ty(Context), i + IdxOff), getReplacementName(IBeforeJ ? I : J, true, o, i+1)); LIENext->insertBefore(IBeforeJ ? J : I); LIEPrev = LIENext; } LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH); ExpandedIEChain = true; } } return ExpandedIEChain; } // Returns the value to be used as the specified operand of the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool IBeforeJ) { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); // Compute the fused vector type for this operand Type *ArgTypeI = I->getOperand(o)->getType(); Type *ArgTypeJ = J->getOperand(o)->getType(); VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); Instruction *L = I, *H = J; Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ; unsigned numElemL; if (ArgTypeL->isVectorTy()) numElemL = cast(ArgTypeL)->getNumElements(); else numElemL = 1; unsigned numElemH; if (ArgTypeH->isVectorTy()) numElemH = cast(ArgTypeH)->getNumElements(); else numElemH = 1; Value *LOp = L->getOperand(o); Value *HOp = H->getOperand(o); unsigned numElem = VArgType->getNumElements(); // First, we check if we can reuse the "original" vector outputs (if these // exist). We might need a shuffle. ExtractElementInst *LEE = dyn_cast(LOp); ExtractElementInst *HEE = dyn_cast(HOp); ShuffleVectorInst *LSV = dyn_cast(LOp); ShuffleVectorInst *HSV = dyn_cast(HOp); // FIXME: If we're fusing shuffle instructions, then we can't apply this // optimization. The input vectors to the shuffle might be a different // length from the shuffle outputs. Unfortunately, the replacement // shuffle mask has already been formed, and the mask entries are sensitive // to the sizes of the inputs. bool IsSizeChangeShuffle = isa(L) && (LOp->getType() != L->getType() || HOp->getType() != H->getType()); if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) { // We can have at most two unique vector inputs. bool CanUseInputs = true; Value *I1, *I2 = 0; if (LEE) { I1 = LEE->getOperand(0); } else { I1 = LSV->getOperand(0); I2 = LSV->getOperand(1); if (I2 == I1 || isa(I2)) I2 = 0; } if (HEE) { Value *I3 = HEE->getOperand(0); if (!I2 && I3 != I1) I2 = I3; else if (I3 != I1 && I3 != I2) CanUseInputs = false; } else { Value *I3 = HSV->getOperand(0); if (!I2 && I3 != I1) I2 = I3; else if (I3 != I1 && I3 != I2) CanUseInputs = false; if (CanUseInputs) { Value *I4 = HSV->getOperand(1); if (!isa(I4)) { if (!I2 && I4 != I1) I2 = I4; else if (I4 != I1 && I4 != I2) CanUseInputs = false; } } } if (CanUseInputs) { unsigned LOpElem = cast(cast(LOp)->getOperand(0)->getType()) ->getNumElements(); unsigned HOpElem = cast(cast(HOp)->getOperand(0)->getType()) ->getNumElements(); // We have one or two input vectors. We need to map each index of the // operands to the index of the original vector. SmallVector, 8> II(numElem); for (unsigned i = 0; i < numElemL; ++i) { int Idx, INum; if (LEE) { Idx = cast(LEE->getOperand(1))->getSExtValue(); INum = LEE->getOperand(0) == I1 ? 0 : 1; } else { Idx = LSV->getMaskValue(i); if (Idx < (int) LOpElem) { INum = LSV->getOperand(0) == I1 ? 0 : 1; } else { Idx -= LOpElem; INum = LSV->getOperand(1) == I1 ? 0 : 1; } } II[i] = std::pair(Idx, INum); } for (unsigned i = 0; i < numElemH; ++i) { int Idx, INum; if (HEE) { Idx = cast(HEE->getOperand(1))->getSExtValue(); INum = HEE->getOperand(0) == I1 ? 0 : 1; } else { Idx = HSV->getMaskValue(i); if (Idx < (int) HOpElem) { INum = HSV->getOperand(0) == I1 ? 0 : 1; } else { Idx -= HOpElem; INum = HSV->getOperand(1) == I1 ? 0 : 1; } } II[i + numElemL] = std::pair(Idx, INum); } // We now have an array which tells us from which index of which // input vector each element of the operand comes. VectorType *I1T = cast(I1->getType()); unsigned I1Elem = I1T->getNumElements(); if (!I2) { // In this case there is only one underlying vector input. Check for // the trivial case where we can use the input directly. if (I1Elem == numElem) { bool ElemInOrder = true; for (unsigned i = 0; i < numElem; ++i) { if (II[i].first != (int) i && II[i].first != -1) { ElemInOrder = false; break; } } if (ElemInOrder) return I1; } // A shuffle is needed. std::vector Mask(numElem); for (unsigned i = 0; i < numElem; ++i) { int Idx = II[i].first; if (Idx == -1) Mask[i] = UndefValue::get(Type::getInt32Ty(Context)); else Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx); } Instruction *S = new ShuffleVectorInst(I1, UndefValue::get(I1T), ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o)); S->insertBefore(IBeforeJ ? J : I); return S; } VectorType *I2T = cast(I2->getType()); unsigned I2Elem = I2T->getNumElements(); // This input comes from two distinct vectors. The first step is to // make sure that both vectors are the same length. If not, the // smaller one will need to grow before they can be shuffled together. if (I1Elem < I2Elem) { std::vector Mask(I2Elem); unsigned v = 0; for (; v < I1Elem; ++v) Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); for (; v < I2Elem; ++v) Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); Instruction *NewI1 = new ShuffleVectorInst(I1, UndefValue::get(I1T), ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o, 1)); NewI1->insertBefore(IBeforeJ ? J : I); I1 = NewI1; I1T = I2T; I1Elem = I2Elem; } else if (I1Elem > I2Elem) { std::vector Mask(I1Elem); unsigned v = 0; for (; v < I2Elem; ++v) Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); for (; v < I1Elem; ++v) Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); Instruction *NewI2 = new ShuffleVectorInst(I2, UndefValue::get(I2T), ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o, 1)); NewI2->insertBefore(IBeforeJ ? J : I); I2 = NewI2; I2T = I1T; I2Elem = I1Elem; } // Now that both I1 and I2 are the same length we can shuffle them // together (and use the result). std::vector Mask(numElem); for (unsigned v = 0; v < numElem; ++v) { if (II[v].first == -1) { Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); } else { int Idx = II[v].first + II[v].second * I1Elem; Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); } } Instruction *NewOp = new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o)); NewOp->insertBefore(IBeforeJ ? J : I); return NewOp; } } Type *ArgType = ArgTypeL; if (numElemL < numElemH) { if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeL, VArgType, IBeforeJ, 1)) { // This is another short-circuit case: we're combining a scalar into // a vector that is formed by an IE chain. We've just expanded the IE // chain, now insert the scalar and we're done. Instruction *S = InsertElementInst::Create(HOp, LOp, CV0, getReplacementName(IBeforeJ ? I : J, true, o)); S->insertBefore(IBeforeJ ? J : I); return S; } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL, ArgTypeH, IBeforeJ)) { // The two vector inputs to the shuffle must be the same length, // so extend the smaller vector to be the same length as the larger one. Instruction *NLOp; if (numElemL > 1) { std::vector Mask(numElemH); unsigned v = 0; for (; v < numElemL; ++v) Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); for (; v < numElemH; ++v) Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL), ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o, 1)); } else { NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0, getReplacementName(IBeforeJ ? I : J, true, o, 1)); } NLOp->insertBefore(IBeforeJ ? J : I); LOp = NLOp; } ArgType = ArgTypeH; } else if (numElemL > numElemH) { if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeH, VArgType, IBeforeJ)) { Instruction *S = InsertElementInst::Create(LOp, HOp, ConstantInt::get(Type::getInt32Ty(Context), numElemL), getReplacementName(IBeforeJ ? I : J, true, o)); S->insertBefore(IBeforeJ ? J : I); return S; } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH, ArgTypeL, IBeforeJ)) { Instruction *NHOp; if (numElemH > 1) { std::vector Mask(numElemL); unsigned v = 0; for (; v < numElemH; ++v) Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); for (; v < numElemL; ++v) Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH), ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o, 1)); } else { NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0, getReplacementName(IBeforeJ ? I : J, true, o, 1)); } NHOp->insertBefore(IBeforeJ ? J : I); HOp = NHOp; } } if (ArgType->isVectorTy()) { unsigned numElem = cast(VArgType)->getNumElements(); std::vector Mask(numElem); for (unsigned v = 0; v < numElem; ++v) { unsigned Idx = v; // If the low vector was expanded, we need to skip the extra // undefined entries. if (v >= numElemL && numElemH > numElemL) Idx += (numElemH - numElemL); Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); } Instruction *BV = new ShuffleVectorInst(LOp, HOp, ConstantVector::get(Mask), getReplacementName(IBeforeJ ? I : J, true, o)); BV->insertBefore(IBeforeJ ? J : I); return BV; } Instruction *BV1 = InsertElementInst::Create( UndefValue::get(VArgType), LOp, CV0, getReplacementName(IBeforeJ ? I : J, true, o, 1)); BV1->insertBefore(IBeforeJ ? J : I); Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1, getReplacementName(IBeforeJ ? I : J, true, o, 2)); BV2->insertBefore(IBeforeJ ? J : I); return BV2; } // This function creates an array of values that will be used as the inputs // to the vector instruction that fuses I with J. void BBVectorize::getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector &ReplacedOperands, bool IBeforeJ) { unsigned NumOperands = I->getNumOperands(); for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) { // Iterate backward so that we look at the store pointer // first and know whether or not we need to flip the inputs. if (isa(I) || (o == 1 && isa(I))) { // This is the pointer for a load/store instruction. ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o); continue; } else if (isa(I)) { Function *F = cast(I)->getCalledFunction(); Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID(); if (o == NumOperands-1) { BasicBlock &BB = *I->getParent(); Module *M = BB.getParent()->getParent(); Type *ArgTypeI = I->getType(); Type *ArgTypeJ = J->getType(); Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType); continue; } else if (IID == Intrinsic::powi && o == 1) { // The second argument of powi is a single integer and we've already // checked that both arguments are equal. As a result, we just keep // I's second argument. ReplacedOperands[o] = I->getOperand(o); continue; } } else if (isa(I) && o == NumOperands-1) { ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J); continue; } ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ); } } // This function creates two values that represent the outputs of the // original I and J instructions. These are generally vector shuffles // or extracts. In many cases, these will end up being unused and, thus, // eliminated by later passes. void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, Instruction *&K2) { if (isa(I)) { AA->replaceWithNewValue(I, K); AA->replaceWithNewValue(J, K); } else { Type *IType = I->getType(); Type *JType = J->getType(); VectorType *VType = getVecTypeForPair(IType, JType); unsigned numElem = VType->getNumElements(); unsigned numElemI, numElemJ; if (IType->isVectorTy()) numElemI = cast(IType)->getNumElements(); else numElemI = 1; if (JType->isVectorTy()) numElemJ = cast(JType)->getNumElements(); else numElemJ = 1; if (IType->isVectorTy()) { std::vector Mask1(numElemI), Mask2(numElemI); for (unsigned v = 0; v < numElemI; ++v) { Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v); } K1 = new ShuffleVectorInst(K, UndefValue::get(VType), ConstantVector::get( Mask1), getReplacementName(K, false, 1)); } else { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1)); } if (JType->isVectorTy()) { std::vector Mask1(numElemJ), Mask2(numElemJ); for (unsigned v = 0; v < numElemJ; ++v) { Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v); } K2 = new ShuffleVectorInst(K, UndefValue::get(VType), ConstantVector::get( Mask2), getReplacementName(K, false, 2)); } else { Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1); K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2)); } K1->insertAfter(K); K2->insertAfter(K1); InsertionPt = K2; } } // Move all uses of the function I (including pairing-induced uses) after J. bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *I, Instruction *J) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); for (; cast(L) != J; ++L) (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet); assert(cast(L) == J && "Tracking has not proceeded far enough to check for dependencies"); // If J is now in the use set of I, then trackUsesOfI will return true // and we have a dependency cycle (and the fusing operation must abort). return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet); } // Move all uses of the function I (including pairing-induced uses) after J. void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB, std::multimap &LoadMoveSet, Instruction *&InsertionPt, Instruction *I, Instruction *J) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); for (; cast(L) != J;) { if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) { // Move this instruction Instruction *InstToMove = L; ++L; DEBUG(dbgs() << "BBV: moving: " << *InstToMove << " to after " << *InsertionPt << "\n"); InstToMove->removeFromParent(); InstToMove->insertAfter(InsertionPt); InsertionPt = InstToMove; } else { ++L; } } } // Collect all load instruction that are in the move set of a given first // pair member. These loads depend on the first instruction, I, and so need // to be moved after J (the second instruction) when the pair is fused. void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB, DenseMap &ChosenPairs, std::multimap &LoadMoveSet, Instruction *I) { // Skip to the first instruction past I. BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I)); DenseSet Users; AliasSetTracker WriteSet(*AA); // Note: We cannot end the loop when we reach J because J could be moved // farther down the use chain by another instruction pairing. Also, J // could be before I if this is an inverted input. for (BasicBlock::iterator E = BB.end(); cast(L) != E; ++L) { if (trackUsesOfI(Users, WriteSet, I, L)) { if (L->mayReadFromMemory()) LoadMoveSet.insert(ValuePair(L, I)); } } } // In cases where both load/stores and the computation of their pointers // are chosen for vectorization, we can end up in a situation where the // aliasing analysis starts returning different query results as the // process of fusing instruction pairs continues. Because the algorithm // relies on finding the same use trees here as were found earlier, we'll // need to precompute the necessary aliasing information here and then // manually update it during the fusion process. void BBVectorize::collectLoadMoveSet(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs, std::multimap &LoadMoveSet) { for (std::vector::iterator PI = PairableInsts.begin(), PIE = PairableInsts.end(); PI != PIE; ++PI) { DenseMap::iterator P = ChosenPairs.find(*PI); if (P == ChosenPairs.end()) continue; Instruction *I = cast(P->first); collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I); } } // When the first instruction in each pair is cloned, it will inherit its // parent's metadata. This metadata must be combined with that of the other // instruction in a safe way. void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) { SmallVector, 4> Metadata; K->getAllMetadataOtherThanDebugLoc(Metadata); for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { unsigned Kind = Metadata[i].first; MDNode *JMD = J->getMetadata(Kind); MDNode *KMD = Metadata[i].second; switch (Kind) { default: K->setMetadata(Kind, 0); // Remove unknown metadata break; case LLVMContext::MD_tbaa: K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); break; case LLVMContext::MD_fpmath: K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); break; } } } // This function fuses the chosen instruction pairs into vector instructions, // taking care preserve any needed scalar outputs and, then, it reorders the // remaining instructions as needed (users of the first member of the pair // need to be moved to after the location of the second member of the pair // because the vector instruction is inserted in the location of the pair's // second member). void BBVectorize::fuseChosenPairs(BasicBlock &BB, std::vector &PairableInsts, DenseMap &ChosenPairs, DenseSet &FixedOrderPairs, DenseMap &PairConnectionTypes, std::multimap &ConnectedPairs, std::multimap &ConnectedPairDeps) { LLVMContext& Context = BB.getContext(); // During the vectorization process, the order of the pairs to be fused // could be flipped. So we'll add each pair, flipped, into the ChosenPairs // list. After a pair is fused, the flipped pair is removed from the list. DenseSet FlippedPairs; for (DenseMap::iterator P = ChosenPairs.begin(), E = ChosenPairs.end(); P != E; ++P) FlippedPairs.insert(ValuePair(P->second, P->first)); for (DenseSet::iterator P = FlippedPairs.begin(), E = FlippedPairs.end(); P != E; ++P) ChosenPairs.insert(*P); std::multimap LoadMoveSet; collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet); DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n"); for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) { DenseMap::iterator P = ChosenPairs.find(PI); if (P == ChosenPairs.end()) { ++PI; continue; } if (getDepthFactor(P->first) == 0) { // These instructions are not really fused, but are tracked as though // they are. Any case in which it would be interesting to fuse them // will be taken care of by InstCombine. --NumFusedOps; ++PI; continue; } Instruction *I = cast(P->first), *J = cast(P->second); DEBUG(dbgs() << "BBV: fusing: " << *I << " <-> " << *J << "\n"); // Remove the pair and flipped pair from the list. DenseMap::iterator FP = ChosenPairs.find(P->second); assert(FP != ChosenPairs.end() && "Flipped pair not found in list"); ChosenPairs.erase(FP); ChosenPairs.erase(P); if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) { DEBUG(dbgs() << "BBV: fusion of: " << *I << " <-> " << *J << " aborted because of non-trivial dependency cycle\n"); --NumFusedOps; ++PI; continue; } // If the pair must have the other order, then flip it. bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I)); if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) { // This pair does not have a fixed order, and so we might want to // flip it if that will yield fewer shuffles. We count the number // of dependencies connected via swaps, and those directly connected, // and flip the order if the number of swaps is greater. bool OrigOrder = true; VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J)); if (IP.first == ConnectedPairDeps.end()) { IP = ConnectedPairDeps.equal_range(ValuePair(J, I)); OrigOrder = false; } if (IP.first != ConnectedPairDeps.end()) { unsigned NumDepsDirect = 0, NumDepsSwap = 0; for (std::multimap::iterator Q = IP.first; Q != IP.second; ++Q) { DenseMap::iterator R = PairConnectionTypes.find(VPPair(Q->second, Q->first)); assert(R != PairConnectionTypes.end() && "Cannot find pair connection type"); if (R->second == PairConnectionDirect) ++NumDepsDirect; else if (R->second == PairConnectionSwap) ++NumDepsSwap; } if (!OrigOrder) std::swap(NumDepsDirect, NumDepsSwap); if (NumDepsSwap > NumDepsDirect) { FlipPairOrder = true; DEBUG(dbgs() << "BBV: reordering pair: " << *I << " <-> " << *J << "\n"); } } } Instruction *L = I, *H = J; if (FlipPairOrder) std::swap(H, L); // If the pair being fused uses the opposite order from that in the pair // connection map, then we need to flip the types. VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L)); for (std::multimap::iterator Q = IP.first; Q != IP.second; ++Q) { DenseMap::iterator R = PairConnectionTypes.find(*Q); assert(R != PairConnectionTypes.end() && "Cannot find pair connection type"); if (R->second == PairConnectionDirect) R->second = PairConnectionSwap; else if (R->second == PairConnectionSwap) R->second = PairConnectionDirect; } bool LBeforeH = !FlipPairOrder; unsigned NumOperands = I->getNumOperands(); SmallVector ReplacedOperands(NumOperands); getReplacementInputsForPair(Context, L, H, ReplacedOperands, LBeforeH); // Make a copy of the original operation, change its type to the vector // type and replace its operands with the vector operands. Instruction *K = L->clone(); if (L->hasName()) K->takeName(L); else if (H->hasName()) K->takeName(H); if (!isa(K)) K->mutateType(getVecTypeForPair(L->getType(), H->getType())); combineMetadata(K, H); K->intersectOptionalDataWith(H); for (unsigned o = 0; o < NumOperands; ++o) K->setOperand(o, ReplacedOperands[o]); K->insertAfter(J); // Instruction insertion point: Instruction *InsertionPt = K; Instruction *K1 = 0, *K2 = 0; replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2); // The use tree of the first original instruction must be moved to after // the location of the second instruction. The entire use tree of the // first instruction is disjoint from the input tree of the second // (by definition), and so commutes with it. moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J); if (!isa(I)) { L->replaceAllUsesWith(K1); H->replaceAllUsesWith(K2); AA->replaceWithNewValue(L, K1); AA->replaceWithNewValue(H, K2); } // Instructions that may read from memory may be in the load move set. // Once an instruction is fused, we no longer need its move set, and so // the values of the map never need to be updated. However, when a load // is fused, we need to merge the entries from both instructions in the // pair in case those instructions were in the move set of some other // yet-to-be-fused pair. The loads in question are the keys of the map. if (I->mayReadFromMemory()) { std::vector NewSetMembers; VPIteratorPair IPairRange = LoadMoveSet.equal_range(I); VPIteratorPair JPairRange = LoadMoveSet.equal_range(J); for (std::multimap::iterator N = IPairRange.first; N != IPairRange.second; ++N) NewSetMembers.push_back(ValuePair(K, N->second)); for (std::multimap::iterator N = JPairRange.first; N != JPairRange.second; ++N) NewSetMembers.push_back(ValuePair(K, N->second)); for (std::vector::iterator A = NewSetMembers.begin(), AE = NewSetMembers.end(); A != AE; ++A) LoadMoveSet.insert(*A); } // Before removing I, set the iterator to the next instruction. PI = llvm::next(BasicBlock::iterator(I)); if (cast(PI) == J) ++PI; SE->forgetValue(I); SE->forgetValue(J); I->eraseFromParent(); J->eraseFromParent(); DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" << BB << "\n"); } DEBUG(dbgs() << "BBV: final: \n" << BB << "\n"); } } char BBVectorize::ID = 0; static const char bb_vectorize_name[] = "Basic-Block Vectorization"; INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) { return new BBVectorize(C); } bool llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) { BBVectorize BBVectorizer(P, C); return BBVectorizer.vectorizeBB(BB); } //===----------------------------------------------------------------------===// VectorizeConfig::VectorizeConfig() { VectorBits = ::VectorBits; VectorizeBools = !::NoBools; VectorizeInts = !::NoInts; VectorizeFloats = !::NoFloats; VectorizePointers = !::NoPointers; VectorizeCasts = !::NoCasts; VectorizeMath = !::NoMath; VectorizeFMA = !::NoFMA; VectorizeSelect = !::NoSelect; VectorizeCmp = !::NoCmp; VectorizeGEP = !::NoGEP; VectorizeMemOps = !::NoMemOps; AlignedOnly = ::AlignedOnly; ReqChainDepth= ::ReqChainDepth; SearchLimit = ::SearchLimit; MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck; SplatBreaksChain = ::SplatBreaksChain; MaxInsts = ::MaxInsts; MaxIter = ::MaxIter; Pow2LenOnly = ::Pow2LenOnly; NoMemOpBoost = ::NoMemOpBoost; FastDep = ::FastDep; }